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Optical pump–terahertz probe spectroscopy has become a widely used experimental tool for the
investigation of the ultrafast far-infrared response of polar systems. In this paper the authors present
an analytical method of calculating the propagation of ultrashort terahertz pulses in photoexcited
media. The transient terahertz wave form transmitted through the sample is equal to a product of the
incident terahertz field �at a mixed frequency�, transient susceptibility, and a so called transfer
function which depends on the properties of the sample in equilibrium. The form of the transfer
function is derived for general layered systems and for specific cases including one-dimensional
photonic crystals, thin films, and bulk samples. Simplified expressions directly applicable to the
analysis of the experimental results related to the most common sample geometries are shown and
discussed. © 2007 American Institute of Physics. �DOI: 10.1063/1.2748402�

I. INTRODUCTION

The time-domain terahertz spectroscopy uses broadband
picosecond pulses of far infrared radiation with frequencies
most often in the range of 0.1–3 THz. The pulses are de-
tected using gating techniques which make it possible to re-
solve the temporal profile of their electric field with a subpi-
cosecond resolution. Optical pump–terahertz probe �OPTP�
experiments represent a powerful experimental method in
which these terahertz pulses are used to probe changes of the
far-infrared susceptibility �or conductivity� spectrum initi-
ated by an optical excitation event. They provide access to
subpicosecond, picosecond, and nanosecond dynamics of
far-infrared polar response in a large variety
of physical and chemical systems �see, e.g., Ref. 1 for a
review�.

In principle, the time resolution in the OPTP experi-
ments is not limited by the terahertz pulse length �typically
�1ps �; rather, it is limited by the bandwidth of the gated
detection process which yields a subpicosecond resolution
��0.2−0.4 ps�. If an investigated system undergoes a
change of its state on a subpicosecond time scale, its dynami-
cal response must involve frequency components overlap-
ping with the terahertz spectral range. This leads to a fre-
quency mixing which distorts the transient terahertz wave
form.2,3

Any single measurement uses three pulses: optical
pump, terahertz probe, and a gating detection pulse. The in-
tervals between them correspond to two time variables which
can be alternatively transformed to frequencies. The most
complete experimental approach consists in the acquisition
of a two-dimensional �2D� data grid in the time domain, i.e.,

in a measurement of a series of transient terahertz wave
forms at closely spaced delays between the optical pump and
terahertz probe. The key task is then to relate the observed
ultrafast evolution of the raw terahertz signal to the underly-
ing sample dynamics described by a transient susceptibility
or conductivity.2–10 The first theoretical work which showed
some hints on the correct OPTP measurement protocol and
the data analysis was published by Kindt and
Schmuttenmaer.2 This concept was further developed and
supplied by experimental results in Refs. 4 and 5. The same
authors developed an approach based on numerical finite-
difference time-domain calculations.6,7

Subsequently, we have developed a general analytical
frequency-domain methodology of the OPTP experiments. In
Refs. 3 and 8 we have proposed a framework for the trans-
formation of the raw terahertz data needed to obtain the tran-
sient response function of a photoexcited sample; in Ref. 9
we have demonstrated the power of our approach in experi-
ments with a number of different physical systems from ul-
trafast semiconductors to solutions.

The main aim of this paper is to complete some gaps we
have still left in our approach. More specifically, in Ref. 3 we
have shown that the Maxwell equations describing the OPTP
experiment can be analytically solved in a 2D Fourier
�frequency� space. In such a case, the transient terahertz field
�E �i.e., the change of the terahertz field due to the photo-
excitation� can be written as the product of the incident tera-
hertz wave Einc, the transient susceptibility �� �or conduc-
tivity ��� �Ref. 8� of the photoexcited sample, and a transfer
function � which depends solely on the ground state prop-
erties of the sample,

�E = �Einc�� . �1�a�Electronic mail: kuzelp@fzu.cz
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The analysis of OPTP experiments then relies on a construc-
tion of the transfer function � for the given sample and
experimental geometry. In Ref. 3 we derived a general for-
mula for � in a single homogeneous layer and discussed
how to extract correctly the transient susceptibility from the
experimental data. In the current paper we discuss important
special cases of the sample geometry where the function �
can be substantially simplified to render the interpretation of
the data to be more transparent and easier. At the same time
we generalize our approach to more complex structures in-
cluding two-component samples and general layered struc-
tures.

The paper is organized as follows: Sec. II shortly sum-
marizes our approach and shows the basic equations and
their solutions in a general form. Section III is devoted to
thin films and Sec. IV to bulk samples; issues related to the
finite length of the optical pump pulses are addressed in Sec.
V. Finally, in Sec. VI we generalize our approach to layered
structures �one-dimensional photonic crystals�. The paper
can serve either as a quick reference providing the formulas
which apply to the most common experimental situations
�these are summarized in Fig. 2� or as a general recipe al-
lowing one to derive the transfer function � for specific
sample geometries.

II. BASIC EQUATIONS AND QUANTITIES

A. Wave equation and simplifying conditions

We describe the problem using the two proper time vari-
ables of Representation II as introduced in Ref. 3: � related
to the gated detection of terahertz pulses �i.e., the real time
with respect to the terahertz wave form profile� and the
pump-probe delay �p �describing the time evolution of the
excited sample�. These variables are controlled experimen-
tally by two independent delay lines. The related frequency-
domain variables are � and �p. In the frequency domain
�� ,�p� the generation and propagation of the transient tera-
hertz field �E�� ,�p ;z� in the sample along its normal
�z axis� is described by the following general wave equation
with a source term �cf. Eq. �16� in Ref. 3�:

d2�E

dz2 + n���2k0
2�E = U��,�p;z� . �2�

Here n��� is the complex refractive index of the sample at
terahertz frequencies in the ground state and k0=� /c is the
wave vector of the terahertz wave in vacuum. The right-hand
side U�� ,�p ;z� describes the transient polarization �or tran-
sient current� in the sample. It is induced by the local tera-
hertz field ETHz if the transient susceptibility �̃ �or conduc-
tivity �̃� does not vanish,

U��,�p;z� = − k0
2��̃��,�p;z�ETHz�� − �p;z� . �3�

The frequency mixing in terms of �−�p in this expression
clearly demonstrates that new terahertz spectral components
can appear in the photoexcited sample. We point out that for
slowly evolving photoexcited systems the transient suscepti-
bility differs from zero at a close vicinity of �p=0 and van-
ishes rapidly at higher values of �p. In this case the fre-
quency mixing can be neglected, i.e., ETHz��−�p ;z� can be

replaced by ETHz�� ;z� in Eq. �3�, and the data can be ana-
lyzed by using a simple quasi-steady-state approach based on
one-dimensional Fourier transformations of the transient and
reference wave forms for several pump-probe delays.3,8 In
contrast, for samples exhibiting an ultrafast decay of the tran-
sient response �as compared to the terahertz pulse length� the
frequency mixing has to be taken into account.

The local terahertz field ETHz is expressed in our model
as a sum of a primary field E which would propagate through
the sample in equilibrium and the transient field �E induced
in the photoexcited sample: ETHz=E+�E. The main approxi-
mation of our approach consists in assuming that �E�E. We
then replace ETHz��−�p ;z� by E��−�p ;z� in Eq. �3�; Eq.
�2� is then linearized and can be solved analytically. The
quantity Einc of Eq. �1� is the amplitude of the terahertz wave
incident on the sample �which can be directly measured�.
The equilibrium field E�z� inside the sample can be easily
connected to Einc within the linear optics approach by using
appropriate Fresnel formulas.

As a starting point, we describe a single homogeneous
layer. The pump pulse propagates in this layer with a group
velocity vg and we assume a linear absorption process char-
acterized by an absorption coefficient 	. The magnitude of
��̃�� ,�p ;z� is proportional to the density of photoexcited
particles and we introduce a transient susceptibility per unit
pump fluence11 ���� ,�p�,

��̃��,�p;z� = F��p�exp�− �i�p/vg + 	�z�����,�p� , �4�

where F��p� is the spectral density of the pump fluence en-
tering the sample. Unless explicitly stated, we will consider
throughout this paper that the pump pulse is infinitely short
in the time domain and we set F=1 for simplicity.

Under all these conditions, the expression for U reads
�cf. Eq. �16� in Ref. 3�

U = − k0
2 exp�− i��p/vg − i	�z�E�� − �p;z�����,�p� .

�5�

In the derivation, we have implicitly neglected a possible
reflection of the pump pulse at the output face of the sample.
This approximation is not fulfilled for any sample, neverthe-
less we deem that it is a very reasonable approximation for a
large number of experimental situations. Its validity can be
violated in the case when the thickness of the sample is
smaller than the penetration depth of the optical radiation. In
the case of thin samples we do take into account the multiple
reflections of the terahertz pulse. By contrast, the difference
between the refractive indices of materials in the optical
range is usually much smaller than that in the terahertz spec-
tral range and the optical power reflection coefficient is typi-
cally smaller than 10% in the majority of cases of interest. It
means that second and higher-order internal reflections of the
pump beam inside the sample can be usually safely neglected
and the magnitude of a single reflection at the output side of
the sample is to be discussed in some particular cases. We
will come back to this issue further in the paper for some
particular sample geometries considered here.
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We can express Eq. �5� in terms of either the transient
susceptibility �� or the transient conductivity �� which are
related together by

����,�p� =
����,�p�

i�
0
. �6�

We think that the interpretation and modeling of experimen-
tal results is more straightforward and appropriate in terms of
the transient conductivity for the majority of systems. How-
ever, as indicated by Eq. �6� the choice of the description of
the photoexcitation and probing processes in terms of either
�� and �� is quite arbitrary and we have chosen to use ��
in the subsequent paragraphs for the simple reason to abbre-
viate the notation.

B. Notation convention

To abbreviate and simplify the expressions we derive
throughout this paper we introduce the following notation.
All the variables and parameters which are evaluated at fre-
quency � will be denoted by lowercase letters, while the
values of these parameters at the mixed frequency �−�p are
denoted by uppercase letters, e.g., the refractive index of the
sample is denoted by n�n��� and N�n��−�p�; the �possi-
bly complex� refractive indices of media 1 and 2 which are
adjacent to the sample �see Fig. 1� are denoted as ni

�ni��� and Ni�ni��−�p�, i=1,2. Media 1 and 2 can cor-
respond, e.g., to air, cuvette material, film substrate, etc. In
any of these cases we assume that they are thick such that the
echoes corresponding to multiple internal reflections inside
these media can be resolved in the time-domain scan and cut
away.

A complete list of the symbols and expressions used in
this paper is given below �note that this notation slightly
differs from the one introduced in Ref. 3�. The wave vectors
in the sample k, K and in the adjacent media ki, Ki read

k = n
�

c
, K = N

� − �p

c
, �7�

ki = ni
�

c
, Ki = Ni

� − �p

c
�i = 1,2�; �8�

in addition, we define

KF = K +
�p

vg
− i	 , �9�

KB = − K +
�p

vg
− i	 . �10�

The amplitude reflection �ri ,Ri� and transmission �ti ,Ti� co-
efficients read

ri =
n − ni

n + ni
, Ri =

N − Ni

N + Ni
�i = 1,2� , �11�

t1 =
2n1

n + n1
, T1 =

2N1

N + N1
, �12�

t2 =
2n

n + n2
, T2 =

2N

N + N2
, �13�

t12 =
2n1

n1 + n2
, T12 =

2N1

N1 + N2
. �14�

This notation allows us to skip the frequency arguments in
the subsequent complicated equations. However, notice that
this does not bring any additional restriction nor approxima-
tion on the results derived in this paper: All refractive indices
can be complex and frequency dependent.

C. Solutions

Depending on the thickness of the sample and on the
temporal length of the measured terahertz wave form, the
right-hand side of Eq. �2� should be properly constructed and
appropriate boundary conditions should be imposed. For op-
tically thick samples, for which the pulse echoes coming
from the internal �Fabry-Pérot� reflections on the sample in-
put and output faces are well separated in time from each
other, a temporal windowing procedure can be applied to the
raw time-domain data, i.e., the measured wave forms can be
cut at a suitable time � to remove the signal coming from
these Fabry-Pérot reflections while keeping the one corre-
sponding to the direct pass through the sample. This proce-
dure usually simplifies the data analysis.12 If, by contrast, the
sample is optically thin, such that the individual Fabry-Pérot
echoes cannot be separated in time, the whole wave form
should be measured and analyzed accordingly. In this last
case the right-hand side of Eq. �2� reads

U = − k0
2����,�p�EincT1A�exp�− iKFz�

+ R2 exp�− 2iKL�exp�− iKBz�� , �15�

where

A =
1

1 − R1R2 exp�− 2iKL�
, �16�

and where Einc�Einc��−�p�, as shown in Fig. 1, denotes the
incident terahertz field in medium 1 at the interface with the
sample �i.e., at z=0−�. The term T1 in expression �15� ac-
counts for the transmission losses at the input interface of the
sample while A accounts for the internal reflections of the
primary terahertz field E in the sample,

E�� − �p;z� = EincT1A�exp�− iKz�

+ R2 exp�− iKL�exp�− iK�L − z��� . �17�

FIG. 1. Scheme of the fields in the sample in the photoexcited state. Einc, Er,
and Et are the incident, reflected, and transmitted fields, respectively, rela-
tive to the sample ground state. �Er and �Et are the photoinduced transient
waves propagating in the backward and forward directions, respectively.
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The solution of the wave equation �Eq. �2�� in the
sample with the right-hand side of Eq. �15� reads

�E�z� = � exp�− ikz� + � exp�ikz� − k0
2��EincT1A


� exp�− iKFz�
k2 − KF

2 + R2 exp�− 2iKL�
exp�− iKBz�

k2 − KB
2 � .

�18�

The transient magnetic field then can be calculated using
�H= i / ��0��d�E /dz. The coefficients � and � are evaluated
using the continuity conditions of the fields at the sample
boundaries �i.e., at z=0 and z=L�. The primary fields Einc,
Er, and Et �see Fig. 1 for the symbol definition� fulfill the
usual Fresnel equation; the boundary conditions for the tran-
sient fields then read

�Er = �E�z = 0�, − k1�Er = i
d�E�z = 0�

dz
�19�

�Et = �E�z = L�, k2�Et = i
d�E�z = L�

dz
. �20�

Introducing Eq. �18� into Eqs. �19� and �20� one finally
finds the following solution of the wave equation with the
boundary conditions:

�Et��,�p� = �Einc�� − �p�����,�p� , �21�

where the transfer function � only depends on the equilib-
rium sample properties,

� = −
k0

2T1

k2 + k
exp�− ikL�Aa	r1

1 − exp�− i�KF + k�L�
KF + k

+
1 − exp�− i�KF − k�L�

KF − k
+ �r1

1 − exp�− i�KB + k�L�
KB + k

+
1 − exp�− i�KB − k�L�

KB − k
�R2 exp�− 2iKL�
 . �22�

The factor

a =
1

1 − r1r2 exp�− 2ikL�
�23�

represents the multiple reflections of the transient wave in
the sample. Equation �22� is equivalent to Eq. �A4� in Ref. 3
in a slightly different notation. �Note also that there is a
misprint in Ref. 3: The first sign in the second line of Eq.
�A4� must be “�” instead of “
”.�

For optically thick samples, the temporal windowing can
be applied to the time-domain data. The phase of the tera-
hertz signal coming directly to the detector �without any in-
ternal reflections in the sample� should be close to −ikL. The
“windowed” transfer function relative to a direct �single�
pass through the sample can be easily obtained from Eq. �22�
if all the terms with the phase larger than or equal to −2ikL
or −2iKL �which, in fact, represent the terahertz field coming
into the detector after the signal window� are omitted. One
finds

� = −
k0

2T1

k2 + k
exp�− ikL�	 r1

KF + k
+

1 − exp�− i�KF − k�L�
KF − k

− R2
exp�− i�KB − k + 2K�L�

KB − k

 . �24�

This equation can be directly compared to Eqs. �30� and
�31b� in Ref. 3. Note, however, that the last term in the above
equation �Eq. �24�� is usually small and that it was neglected
in Ref. 3.

Equations �22� and �24� for the transfer function are the
basic equations of this paper. They are quite general and can
be directly used for the evaluation of OPTP data; however,
they are rather complex. Much simpler expressions can be
found in some special but frequent experimental cases �see
Fig. 2�, and the investigation of these special cases is the
subject of the subsequent sections.

III. THIN FILMS

A. Single-component systems

For thin films, the interference of all the Fabry-Pérot
reflections should always be taken into account, which
means that the transfer function defined by Eq. �22� is of
interest here. We consider sufficiently thin films where kL
�1, and consequently also KL�1 �i.e., thinner than the
wavelength of terahertz radiation in the sample; see also
Figs. 2�a�–2�c�� for all the available terahertz spectral com-
ponents: the arguments −ikL and −iKL of the exponentials in
�22� can be developed into power expansions. As the upper
limit of the terahertz pulse bandwidth in OPTP experiments
is typically at about 2.5 or 3 THz, about micrometer-sized or
thinner films can be described within this approximation.

Note that, e.g., for a strongly photoexcited thin semicon-
ductor films, a condition nexc�L /c�1 may not be satisfied in
the excited state due to a high density of free carriers causing
the refractive index nexc to be high. However, the value of
nexc is accounted for by �� in our model. It means that in
this case the conditions kL�1 and �E�E are still the mea-
sure of applicability of the thin film approximation.

First we study the case of a strong or a medium optical
absorption of the film, i.e., 	L�1 �	�k� as shown in Figs.
2�a� and 2�b�. In this case the developments of the exponen-
tial terms to the lowest order yield, e.g.,

a��� �
t12

t1t2
, �25�

and

1 − exp�− i�KF − k�L�
KF − k

�
1 − exp�− 	L�

− i	
. �26�

The other terms in Eq. �22� are developed similarly. Finally,
we obtain

� �
T12

n1 + n2
�−

ik0

	
��1 − exp�− 	L�� . �27�

For a strong optical absorption of the film �	L�1, Fig. 2�a��
one finds
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� �
T12

n1 + n2
�−

ik0

	
� . �28�

In the remaining case of a weak optical absorption of the
thin film �	L�1�, we obtain a quasiuniform excitation of the
sample �Fig. 2�c�� and we get instead of Eq. �26�

1 − exp�− i�KF − k�L�
KF − k

� iL . �29�

The resulting expression then reads

� �
T12

n1 + n2
�− ik0L� . �30�

Note that in this particular case of a very thin film, Et

=T12Einc; Eqs. �6�, �21�, and �30� when put together yield

�Et��,�p� = −
L


0c�n1 + n2�
����,�p�Et�� − �p�; �31�

this equation is equivalent to Eq. �A5� in Ref. 10 which was
derived directly for this very specific case.

The expressions for thin films presented in this para-
graph are important especially for the time-resolved spec-

troscopy of semiconductor thin films deposited on optically
transparent substrates. Typical examples of the application
are silicon thin films �radiation damaged silicon on
sapphire,9,13 microcrystalline and amorphous silicon,14,15

superconductors,16,17 etc.�. By changing the wavelength of
the optical pump pulse, one can achieve the three experimen-
tal situations depicted in Figs. 2�a�–2�c�. Let us consider a
1 �m silicon layer as a typical thin film sample. For an ex-
citation at 800 nm, where the light penetration depth is about
10 �m, one obtains a quasihomogeneous carrier density
throughout the film: The experiment is described by Eq. �30�.
In contrast, for a pump wavelength of 400 nm the radiation
penetration depth reaches only about 100 nm: The experi-
ment is then described by Eq. �28�.

The problem of the nonvanishing reflection of the optical
excitation pulse at the output face of the thin film concerns
only the cases �b� and �c� as shown in Fig. 2. Two issues
should be considered: the time resolution of the pump-probe
experiment and the magnitude of the transient terahertz sig-
nal. Concerning the time resolution, the time of a round trip
of the optical radiation in a 1 �m thick thin film is smaller
than 25 fs for typical optical refractive indices ��3.5�, i.e.,

FIG. 2. Special sample geometries discussed in this paper. The black areas indicate the density of photoexcited particles interacting with the terahertz field.
��a�-�c�� Thin film �self-standing or on a substrate�: photoexcitation of the thin film only; �d� thin film on a substrate: photoexcitation of the sample and of a
part of the substrate; �e� thick sample: surface photoexcitation; �f� thick sample: bulk photoexcitation, quasi-phase matched case; �g� layered sample �photonic
structure�: parts P and Q are general layered structures and the part S is a homogeneous sample layer. Right panel: summary of the transfer functions found
for these special geometries and the corresponding equation numbers in the text;see also Eq. �52� for a slightly more general form of this transfer function.
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the time broadening of the excitation event is negligible for
thin films. As for the signal magnitude, notice that the physi-
cal meaning of the square bracket in Eq. �27� is the fraction
of the incident pulse fluence absorbed in the sample. One can
then correct this value to obtain the true fraction of the ab-
sorbed fluence taking into account the pump beam reflection
at the back side of the thin film.

Concerning the quasihomogeneous excitation of a
weakly absorbing thin film described by Eq. �30�, one should
simply take into account the fact that the true density of
excited particles is appropriately higher than that estimated
from a single pass of the optical pump beam.

B. Two-component systems

In some cases the semiconductor thin films are grown on
substrates which show an appreciable terahertz signal in the
photoexcited state �see Fig. 2�d��. Typical examples of such
systems are ultrafast semiconductors such as proton-
bombarded InP �Ref. 18� or low-temperature grown GaAs
layer �LT-GaAs� on a GaAs single crystal substrate. For a
micrometer thick LT-GaAs layer, 18% of free carriers are
generated in the bulk GaAs substrate if an optical excitation
at 800 nm is used.19 The carrier dynamics in the layer and in
the substrate are described by distinct transient conductivity
�or susceptibility� functions. We treat such a sample as a
two-component system—we consider both the film suscepti-
bility ���� ,�p� and that of the substrate ����� ,�p� to de-
scribe the response of the whole sample. The aim of this
paragraph is to derive the appropriate transfer functions �
and �� for such a system.

We adopt a notation in which all the quantities relative
to the substrate are primed �see Fig. 3�. The wave equation
�Eq. �2�� is valid for the substrate provided that the refractive
index n at the left-hand side is replaced by n� and the right-
hand side U is properly constructed. We denote by d the
thickness of the thin film.

The Fabry-Pérot reflections inside the thin film should be
taken into account. In contrast, we assume that the substrate
is thick enough to make it possible to eliminate the Fabry-
Pérot reflections inside the substrate by a proper choice of
the time window in the windowing procedure; i.e., only the
direct pass through the substrate is considered as shown in
Fig. 3. The calculation of the right-hand side of Eq. �2� is
then straightforward. It reads inside the film

U = − k0
2����,�p�EincT1A��exp�− iKFz�

+ R� exp�− 2iKd�exp�− iKBz�� , �32�

and in the substrate �where the signal coming from the back-
ward propagating wave is eliminated by the temporal win-
dowing�

U� = − k0
2�����,�p�EincT1T�A�exp�− iKFd�


exp�− iKF��z − d�� . �33�

All the primed quantities are defined analogously to those
introduced in Eqs. �7�–�14� and �16�,

T� =
2N

N + N�
, �34�

R� =
N − N�

N + N�
, �35�

A� =
1

1 − R1R� exp�− 2iKd�
, �36�

KF� = K� +
�p

vg�
− i	�, �37�

KB� = − K� +
�p

vg�
− i	�. �38�

The solutions of the wave equation �Eq. �2�� then read

�E�z� = � exp�− ikz� + � exp�ikz� − k0
2��EincT1A�


� exp�− iKFz�
k2 − KF

2 + R� exp�− 2iKL�
exp�− iKBz�

k2 − KB
2 � ,

�39�

�E��z� = �� exp�− ik�z� + �� exp�ik�z� − k0
2���EincT1T�A�


exp�− i�KF − KF��d�
exp�− iKF�z�

k�2 − KF�
2 . �40�

The continuity conditions of the electric and magnetic fields
at the boundaries z=0, z=d, and z=L yield the constants �,
��, �, and �� and, finally, the output transient terahertz field
�Et. The expression for �Et is rather complex in the general
case, therefore we present it here only for a special case of a
substrate which shows the same equilibrium properties as the
thin film, i.e., n=n�, KF=KF� , etc. Such a requirement is ful-
filled in LT-GaAs/GaAs structure5 but also in other ultrafast
semiconducting structures where a surface layer with an ul-
trafast response is created by ion bombardment.18,20 In this
case R�=0, T�=1, and A�=1. We also assume that the
excitation beam is fully absorbed in the thick substrate
�	L�1�. Note, however, that the dynamical properties of the
film and substrate in the photoexcited state remain different:
������. One finds finally

�Et��,�p� = ������,�p� + �������,�p��Einc�� − �p� ,

�41�

where

FIG. 3. Scheme of the fields in the photoexcited sample consisting of a thin
film on a substrate with a nonvanishing terahertz response in the excited
state �the ratio of thicknesses of the film and substrate is not in scale�.
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� = −
k0

2T1

k2 + k
exp�− ikL�� r1

KF + k
+

1

KF − k
� − ��, �42�

�� = −
k0

2T1

k2 + k
exp�− ikL�� r1 exp�− ikd�

KF + k
+

exp�ikd�
KF − k

�

exp�− iKFd� . �43�

As we deal with a thin film sample we can assume k0d�1.
We may also assume 	d�1; for 	d�1 no carriers are cre-
ated in the substrate and we get a situation equivalent to that
shown in Fig. 2�e�, for 	d�1 the signal from the thin film
would be entirely overwhelmed by that of the substrate. Us-
ing these approximations we find in the lowest-order devel-
opment

� �
T1t2 exp�− ikL�

n1 + n
�− ik0

	
��1 − exp�− 	d�� , �44�

�� �
T1t2 exp�− ikL�

n1 + n
�− ik0

	
�exp�− 	d� , �45�

which means that the magnitudes of the signals coming from
the film and from the substrate are directly proportional to
the optical energy absorbed in the respective parts of the
sample.

Note that our treatment can be generalized for multicom-
ponent layered samples for which one finds the following
general expression:

�Et��,�p� = �

i

��i����i���,�p��Einc�� − �p� , �46�

where ���i��� ,�p� are the transient susceptibilities of the
individual components of the sample. The transfer functions
��i� then should be evaluated using the form of the right-
hand side of the wave equation and the continuity conditions
appropriate for the particular sample geometry.

IV. BULK SAMPLES

The thickness of the bulk samples �slabs� is assumed to
be high enough to enable the temporal windowing procedure.
The time distance of individual terahertz echoes 2nL /c
should exceed the period 1/�min of the minimum useful fre-
quency within the bandwidth of the terahertz pulse. This
means kL��, hence k0L�1. Since the signal corresponding
to the direct pass of the terahertz pulse is separated from the
other Fabry-Pérot reflections, the transfer function defined by
Eq. �24� is to be applied to the experimental data.

A. Surface excitation

This case concerns highly absorbing samples in the op-
tical range such that the pump pulse reaches a thin surface
layer only �see Fig. 2�e��. We meet this situation typically in
thick semiconductor wafers �GaAs, InP, etc.�. The condition
of a strong optical absorption 	L�1 implies for the transfer
function �Eq. �24��

� � −
k0

2T1

k2 + k
exp�− ikL�� r1

KF + k
+

1

KF − k
� , �47�

which finally yields

� � − k0T1t2 exp�− ikL�
KF + k1

�k + k1��KF
2 − k2�

. �48�

If, in addition, we assume that the optical penetration depth
is much smaller than the terahertz wavelength �	�k0� for-
mula �48� can be further simplified,

� �
T1t2 exp�− ikL�

n1 + n
�− ik0

	
� . �49�

This last approximation is valid for the experiments where
the optical penetration depth is of the order of a few microns
or less which is true for the interband transitions in direct gap
semiconductors.

Note also that, as expected, Eq. �49� is equivalent to Eq.
�44� in the strong absorption limit �	d�1� where all the
optical power is absorbed in the first layer of a two-
component sample.

B. Quasi-phase-matched case

We have stressed in Ref. 3 the importance of the phase
matching condition for thick samples with low optical ab-
sorption. In such a sample the density of optical excitation is
nonzero over the whole thickness of the sample or over its
appreciable part. However, a high transient terahertz signal
can be obtained only if the group velocity of the optical pulse
in the sample is close to the phase velocity of the terahertz
radiation. This is expressed mathematically by the equation:
KF−k�−i	. Under this simplifying condition,

KF + k � − i	 + 2k , �50�

KB − k � − i	 − 2K , �51�

and the transfer function �Eq. �24�� becomes

� �
k0T1 exp�− ikL�

n + n2
�1 − exp�− 	L�

i	
+

r1

i	 − 2k

−
R2 exp�− 	L�

i	 + 2K
� . �52�

The first term in the square brackets of Eq. �52� represents
the quasi-phase-matched contribution, while the second and
the third ones come from terms for which the phase match-
ing cannot be achieved. Consequently, their relative impor-
tance increases for samples with stronger optical absorption
�where the quasi-phase-matched term is diminished due to
	�. In contrast, if the optical absorption is low, 1/	
�500 �m, the phase-matched term clearly dominates. In
this case we obtain

� �
T1 exp�− ikL�

n + n2
�− ik0

	
��1 − exp�− 	L�� . �53�

If, in addition, 	L�1, we can develop the exponential term
into series to get
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� �
T1 exp�− ikL�

n + n2
�− ik0L� . �54�

From this expression the phase-matched character of the gen-
eration of the transient terahertz field is apparent through the
linear thickness dependence.

It is important to note that the part of the optical pump
pulse which is reflected at the output face of the sample
cannot give rise to phase-matched terms. These terms have
similar form to the second and third terms in the square
brackets of Eq. �52�, but they are even smaller as they are
proportional to Ropt exp�−	L� �where Ropt is the optical
power reflection coefficient of the interface between the
sample and medium 2�.

V. PUMP PULSE WITH A FINITE LENGTH AND
CONTINUOUS PUMPING

Our model is also able to describe the terahertz signal
from a sample which was excited by an arbitrarily long op-
tical pump pulse. The key is Eq. �4� where the Fourier trans-
formation F��p� of the pump pulse time-domain intensity
profile can be introduced. This spectral function then enters,
as a multiplicative factor, the expressions for the transfer
function � that we have derived up to now. The immediate
consequence of this additional contribution is the spectral
filtering of the response in �p: The factor reduces the avail-
able spectral range where the transient susceptibility can be
experimentally determined.

A similar approach can be also applied to the case when
the experimental data were taken in a non-collinear geom-
etry, i.e., when the optical pump beam forms a nonzero angle
with the terahertz beam. Simple geometrical considerations
show that the different spatial parts of the pump beam reach
the input surface of the sample within the finite input aper-
ture at different times. This makes the excitation event
spread in time, which can be taken into account in the first
approximation by an effective lengthening of the pump
pulse, hence by an introduction of an appropriate spectral
distribution F��p� in the expressions for �.

It turns out that our model can be easily generalized to
account for the case where the terahertz signal transmitted
through the sample is measured under the regime of a con-
tinuous pumping �or possibly of a continuous influence of an
external physical parameter such as bias electric field, mag-
netic field, etc.�. In such experiments, one wishes to evaluate
small modulations of the terahertz properties of the sample
which are induced by the chosen external parameter. An ex-
periment of this type has been reported recently;21 in that
paper we determined the electric field induced changes in the
dielectric properties of a strontium titanate thin film. A low-
frequency �quasistatic� ac bias voltage �synchronizing at the
same time the lock-in detection� was applied to the sample
and the changes in the terahertz transmission of the sample
were measured.

Such an experiment is also described by Eq. �21� and,
depending on the sample geometry �thin film versus thick
slab�, by Eq. �22� or �24� where �p=0 �i.e., F��p�=���p��. If

the sample excitation is homogenous, one also sets 	→0.
For a thick sample where time windowing can be performed,
we obtain

���p = 0,	 = 0� = −
t1 exp�− ikL�

n2 + n
� r1 + r2

2n
+ ik0L� . �55�

Taking into account the relation ��=2n�n and introducing
Eq. �55� into Eq. �21� we finally find

�t �
�E��,0�
Einc���

= t1t2 exp�− ikL��1

n
−

1

n + n1
−

1

n + n2
− ik0L��n . �56�

It can be easily verified that this equation is reduced to

�t =
dt

dn
�n , �57�

where

t = t1t2 exp�− ikL� �58�

is the transmission of the slab in the ground state �without
excitation�.

An analogous relation can be found also for thin films;
we obtain in the static limit

���p = 0,	 = 0������ =
dt

dn
�n , �59�

where

t =
t1t2 exp�− ikL�

1 − r1r2 exp�− 2ikL�
. �60�

VI. ONE-DIMENSIONAL PHOTONIC STRUCTURES

Recently a modulator based on the photoexcitation of a
semiconductor wafer inserted inside a one-dimensional pho-
tonic crystal has been reported.22 In that work the terahertz
transmittance of the element was controlled by optical pulses
generating free carriers at the surface of a GaAs defect layer
enclosed in the middle of a Bragg-type layered structure.

As a rule layered structures have quite complicated dis-
persion and transmission properties. Notably, they may ex-
hibit forbidden bands, where they totally reflect the incident
radiation, and very narrow defect modes, which are charac-
terized by a high transmission and a strong localization of
the electromagnetic radiation in the vicinity of the defect
layer.23–25 They are then usually designed to operate in this
specific narrow spectral region and also their time response
is of interest only in this particular range. The description in
the frequency space is then highly appropriate.

The windowing procedure is not applicable for photonic
crystals since the pulses partially reflected at various inter-
faces of the structure usually overlap in time. Hence we
should take into account all the reflections of the terahertz
wave within the structure. These add up to an output tera-
hertz pulse which is substantially stretched in time compared
to the input one; this effect is correlated with the presence of
sharp features in the transmission spectra of the photonic
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structure. Consequently, such a structure makes the data very
sensitive to the frequency mixing as it was pointed out in the
text below Eq. �3�, unless the frequencies involved in the
dynamical response of the system are small compared to the
width of the sharp features in the transmission spectra of the
structure. In other words, the quasi-steady-state approxima-
tion of the data analysis can be used only if the response of
the photoexcited sample is slower than the length of the tera-
hertz pulse stretched by the structure which can easily ex-
ceed tens or even hundreds of picoseconds.22 The quasi-
steady-state approximation is not able to describe correctly
faster dynamics; our theory then appears to be highly appro-
priate to provide a background for the interpretation of the
time response of these fast devices.

At first, it is necessary to calculate the distribution of the
electromagnetic field in the structures in equilibrium; this
allows one to construct properly the right-hand side of the
wave equation �Eq. �2��.

For the description of the equilibrium properties of the
layered structures we use the transfer matrix formalism.26,27

Let us consider a stack of homogeneous layers with their
normals parallel to the z axis. The transfer matrix � j links the
tangential components of the electric and magnetic fields at
input and output interfaces of the jth layer,27

� Ej−1,j

�0Hj−1,j
� = � j� Ej,j+1

�0Hj,j+1
� , �61�

where for the case of the normal incidence, which is treated
in this paper, the transfer matrices � j read

� j = � cos�kjdj� i sin�kjdj�/nj

inj sin�kjdj� cos�kjdj�
� , �62�

where dj is the layer thickness, nj is its complex refractive
index, kj =�nj /c is the z component of the wave vector in-
side the layer, and �0=��0 /
0 is the vacuum wave imped-
ance. The transfer matrix of the whole layered structure is
obtained as a product of transfer matrices of individual lay-
ers.

Let us now consider the structure schematically shown
in Fig. 4. It consists of three blocks denoted by the letters P,
S, and Q. The blocks P and Q consist of optically transparent
media; they are general layered structures which do not ex-
hibit any photoinduced terahertz response while S is a single
homogeneous layer which exhibits a transient terahertz re-
sponse upon photoexcitation. Therefore we call S a sample
layer. We introduce a notation similar to that defined by Eqs.

�7�–�14�: The transfer matrices and their elements evaluated
at frequency � are denoted by lower-case letters �transfer
matrices p, s, and q and matrix elements pij, sij, and qij�,
while by using upper-case letters we refer to the transfer
matrices �P, S, Q� or the matrix elements �Pij, Sij, Qij� evalu-
ated at frequency �−�p.

The transmission and reflection coefficients at terahertz
frequency � of any general layered structure surrounded by
air read

tm =
2

m11 + m12 + m21 + m22
, �63�

rm =
m11 + m12 − m21 − m22

m11 + m12 + m21 + m22
, �64�

where mij are the transfer matrix components of the struc-
ture. An analogous expressions can be also written for the
transmission and reflection coefficients TM and RM calculated
at frequency �−�p.

The electric field distribution in the sample layer which
is to be substituted to the right-hand side �Eq. �5�� of the
wave equation reads

E�� − �p;z� = E�� − �p;0�cos�Kz�

− i
�0H�� − �p;0�

N
sin�Kz� , �65�

where the fields at the input face of the sample layer can be
calculated using the transfer matrix formalism as follows:

� E�0�
�0H�0�

� = SQ�Et

Et
� = SQ�TPSQEinc

TPSQEinc
�; �66�

TPSQ is the transmission coefficient of the whole PSQ struc-
ture. The substitution into Eq. �65� yields

E�z� = �exp�− iKz�
1 + R0RSQ

T0TSQ

+ exp�+ iKz�
R0 + RSQ

T0TSQ
�TPSQEinc, �67�

where R0= �N−1� / �N+1� and T0=2N / �N+1�.
The right-hand side of the wave equation then has a form

analogous to Eq. �15�,

U = − k0
2��Einc�XF exp�− iKFz� + XB exp�− iKBz�� , �68�

with

XF = �1 + R0RSQ�
TPSQ

T0TSQ
, �69�

XB = �R0 + RSQ�
TPSQ

T0TSQ
. �70�

The transient field in the sample layer S is then described by
an equation similar to Eq. �18�,

FIG. 4. Scheme of the fields in the photoexcited layered structure consisting
of three blocks: P, S, and Q. Blocks P and Q are general layered structures
which are optically transparent and/or insensitive to photoexcitation; these
blocks surround the sample layer S which is the only part exhibiting a
photoinduced terahertz response. The origin of coordinates is chosen at the
input face of the sample layer for convenience.
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�E�z� = � exp�− ikz� + � exp�ikz�

− k0
2��Einc�XF exp�− iKFz�

k2 − KF
2 +

XB exp�− iKBz�
k2 − KB

2 � .

�71�

The boundary conditions for the transient field �cf. Eqs. �19�
and �20� and Fig. 4�

� �Er

− �Er
� = p� �E�0�

�0�H�0�
�, � �E�L�

�0�H�L�
� = q��Et

�Et
�

�72�

lead to Eq. �21�, with an appropriate form of the transfer
function � describing the response of a photonic crystal con-
taining a photoexcited layer. We write here the solution only
for the particular case when 	L�1 �the excitation pulse is
completely absorbed within the sample layer�, which is well
fulfilled in the previously reported experiment.22 Under this
assumption the transfer function � takes the following form:

� = k0
tpsq

2
�XF

k0�p11 + p21� + KF�p12 + p22�
k2 − KF

2

+ XB
k0�p11 + p21� + KB�p12 + p22�

k2 − KB
2 � . �73�

This expression can be further simplified assuming 	�k0

and taking into account that

p12 + p22 =
1 + r̃p

tp
, �74�

where r̃p is the amplitude reflection coefficient of the block P
standing alone in the air if the incident light impinges on the
block from the right-hand side.28 One finally finds

� = �−
ik0

	
� tpsqTPSQ

2

1 + r̃p

tp

1 + RSQ

TSQ
. �75�

In Ref. 22 we experimentally characterized the response of a
photonic crystal inside its forbidden band close to a defect
mode. The crystal consisted of parts P and Q of alternating
layers with high and low refractive indices and of a defect S
enclosed in the middle. In such a case the transmission func-
tion of the structure �tpsq��� or TPSQ��−�p�� is very small
within the forbidden band �say between some frequencies �1

and �2� with the exception of a quite narrow range of the
defect mode �at �0�. The existence of the forbidden band is
related to the periodic character of the blocks P and Q while
the appearance of the defect mode is connected to the pres-
ence of the defect layer S in the middle of the structure. In
contrast, no defect mode appears in the forbidden band if the
periodicity of the photonic crystal is not broken by the defect
�i.e., if the defect layer is either absent or placed as an outer
layer of the structure at any side�.

We discuss the two right-most terms of Eq. �75�:
�1+ r̃p� / tp and �1+RSQ� /TSQ. The field reflectance of the
blocks P and SQ inside the forbidden band reaches values
close either to −1 or 1. In the former case the discussed terms
are small and the transmittance of the structure at the defect
mode frequency is rather insensitive to the photoexcitation.

In the latter case, these terms do not exhibit any sharp feature
between �1 and �2 and show only a flat frequency depen-
dence. Moreover, they reach quite high values of �2/ tp and
2/TSQ �tp ,TSQ�1� accounting for the enhancement of the
interaction due to the field localization close to the defect
layer:29 One can show that in this case the field distribution
inside the structure shows antinodes at the interfaces PS and
SQ.22 The high value of these terms also makes the parts of
the spectra outside the band gap relatively unimportant.

The transient response of the element within the band
gap is then proportional to

�Et��,�p� � − tpsq����,�p�Et�� − �p� . �76�

In this equation only small values of �p are considered such
that �−�p stays within the forbidden band. It follows that
the dynamical response of the whole photonic element is
determined by the lifetime of the carriers in the semiconduc-
tor encoded into �� and by the lifetime of the terahertz wave
inside the structure introduced through the linewidth of the
defect mode in tpsq. Note that the transmitted terahertz refer-
ence wave Et��−�p� shows a sharp peak at �p=�−�0 due
to the equilibrium transmission properties of the photonic
structure �Et��−�p�=Einc��−�p�TPSQ�. It follows that �i� if
the decay of the conductivity in the sample layer occurs on
the picosecond or subpicosecond time scale, such that
���� ,�p� is a relatively broad function in �p, the transient
response of the structure is anyway limited to small values of
�p being controlled by the lifetime of the terahertz wave in
the structure through TPSQ; �ii� the frequency mixing in the
OPTP experiment can be neglected only if ���� ,�p� is a
narrow function of �p compared to the linewidth of the de-
fect mode at �−�p=�0 given by TPSQ.

We discussed here merely the basic predictions for the
transient properties of photonic structures. A more detailed
analysis supplied with experimental results on particular
structures will be published elsewhere.30

The problem of multiple reflections of the optical pump
pulse in the structure needs to be discussed and evaluated
separately for any particular structure. However, in our case
of an optically opaque sample layer there are no back reflec-
tions from the part Q. The block P is then usually required to
be transparent for the optical radiation in order to ensure an
efficient optical pump. The total optical power incident on
the interface between the blocks P and S can be calculated
by using the transfer matrix formalism applied in the optical
spectral range. The issue of the time extent of the optical
excitation event due to these reflections will not be of crucial
importance in the majority of cases. This is because of an
unavoidable increase of the response time of the photonic
structure due to the large lifetime of terahertz photons inside
the structure given by the form of tpsq.

VII. CONCLUSION

We have described the propagation of terahertz pulses in
photoexcited layered media. The transient terahertz wave
forms obtained in the transmission geometry are given by a
product of the incident field �at a mixed frequency�, transient
susceptibility, or conductivity, and a transfer function de-
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pending solely on the sample properties in the ground state
and on the properties of surrounding media. The forms of the
transfer functions for the most frequently encountered ex-
perimental cases are summarized in Fig. 2. Our treatment is
also applicable to multicomponent samples �where different
layers of the sample structure exhibit different transient re-
sponses� and for one-dimensional photonic structures.

ACKNOWLEDGMENTS

The financial support from the Ministry of Education of
the Czech Republic �Project No. LC512� and from the Grant
Agency of the Czech Republic �Project No. 202/06/0286� are
gratefully acknowledged.

1 C. A. Schmuttenmaer, Chem. Rev. �Washington, D.C.� 104, 1759 �2004�.
2 J. T. Kindt and C. A. Schmuttenmaer, J. Chem. Phys. 110, 8589 �1999�.
3 H. Němec, F. Kadlec, and P. Kužel, J. Chem. Phys. 117, 8454 �2002�.
4 M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, Phys. Rev. B 62,
15764 �2000�.

5 M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, J. Appl. Phys. 90,
5915 �2001�.

6 M. C. Beard and C. A. Schmuttenmaer, J. Chem. Phys. 114, 2903 �2001�.
7 M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, Low Frequency,
Collective Solvent Dynamics Probed with Time-resolved THz Spectros-
copy, ACS Symposium Series 820 �ACS, Washington, DC, 2002�.

8 H. Němec, F. Kadlec, S. Surendran, P. Kužel, and P. Jungwirth, J. Chem.
Phys. 122, 104503 �2005�.

9 H. Němec, F. Kadlec, C. Kadlec, P. Kužel, and P. Jungwirth, J. Chem.
Phys. 122, 104504 �2005�.

10 H.-K. Nienhuys and V. Sundström, Phys. Rev. B 71, 235110 �2005�.
11 In some experimental cases including time-resolved spectroscopy of so-

lutions or thin organic films it may be useful to define a transient suscep-
tibility per unit excitation density as �� /	. Note also that the absorption

coefficient 	 appears in the denominator of the majority of expressions
for � in Fig. 2.

12 L. Duvillaret, F. Garet, and J.-L. Coutaz, IEEE J. Sel. Top. Quantum
Electron. 2, 739 �1996�.

13 K. P. H. Lui and F. A. Hegmann, Appl. Phys. Lett. 78, 3478 �2001�.
14 P. U. Jepsen, W. Schairer, I. H. Libon, U. Lemmer, N. E. Hecker, M.

Birkholz, K. Lips, and M. Schall, Appl. Phys. Lett. 79, 1291 �2001�.
15 L. Fekete, H. Němec, F. Kadlec, P. Kužel, J. Stuchlík, A. Fejfar, and J.

Kočka, J. Non-Cryst. Solids 352, 2846 �2006�.
16 J. Demsar, R. D. Averitt, A. J. Taylor, V. V. Kabanov, W. N. Kang, H. J.

Kim, E. M. Choi, and S. I. Lee, Phys. Rev. Lett. 91, 267002 �2003�.
17 H. Wald, P. Seidel, and M. Tonouchi, Physica C 367, 308 �2002�.
18 C. Messner, H. Kostner, R. A. Höpfel, and K. Unterrainer, J. Opt. Soc.

Am. B 18, 1369 �2001�.
19 H. Němec, A. Pashkin, P. Kužel, M. Khazan, S. Schnüll, and I. Wilke, J.

Appl. Phys. 90, 1303 �2001�.
20 C. Carmody, H. Boudinov, H. H. Tan, C. Jagadish, M. J. Lederer, V.

Kolev, B. Luther-Davies, L. V. Dao, and M. Gal, J. Appl. Phys. 92, 2420
�2002�.

21 P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, Appl.
Phys. Lett. 88, 102901 �2006�.

22 L. Fekete, F. Kadlec, P. Kužel, and H. Němec, Opt. Lett. 32, 680 �2007�.
23 V. Mizeikis, S. Juodkazis, A. Marcinkevičius, S. Matsuo, and H. Misawa,

J. Photochem. Photobiol. C 2, 35 �2001�.
24 E. Yablonovitch, J. Phys.: Condens. Matter 5, 2443 �1993�.
25 K. Sakoda, Optical Properties of Photonic Crystals �Springer, Berlin,

2001�.
26 R. Jacobsson, Light Reflection from Films of Continuously Varying Re-

fractive Index, Progress in Optics Vol. 5 �North-Holland, Amsterdam,
1965�, Chap. 5.

27 F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics, 2nd ed. �Prentice
Hall, Englewood Cliffs, 1993�.

28 H. Němec, P. Kužel, F. Garet, and L. Duvillaret, Appl. Opt. 43, 1965
�2004�.

29 H. Němec, L. Duvillaret, F. Quemeneur, and P. Kužel, J. Opt. Soc. Am. B
21, 548 �2004�.

30 L. Fekete, F. Kadlec, H. Němec, and, P. Kužel, Opt. Express 15, 8898
�2007�.

024506-11 Propagation of terahertz pulses in photoexcited media J. Chem. Phys. 127, 024506 �2007�

Downloaded 16 Jul 2007 to 130.235.28.56. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


