



Website: http://www.ipp.cas.cz

- Location:Za Slovankou 3182 00 Praha 8Czech Republic
- Founded 1959
- Scientific Departments:
   Tokamak (COMPASS D)
   Pulsed Plasma Systems
   Thermal Plasma
   Materials Engineering
   Optical diagnostics
   Laser Plasma (PALS with IoP)
- Shops: Optical, Mechanical



#### The Institute carries out research in the following fields:

- edge plasma in tokamaks, ELMs, additional heatings in tokamaks, turbulences, plasma diagnostics
- pulsed capillary discharge (coherent XUV radiation) and corona discharges in gases and liquids
- generation of chemically active non-equilibrium plasma
- plasma chemistry studies
- focused shock waves in water for non-invasive destruction of kidney stones and other medical applications
- generation of equilibrium plasma with the water-stabilized arc discharges WSP<sup>®</sup>
- interaction of plasma with other states of matter as a basis for plasma gasification and
- plasma spraying, plasma decomposition or synthesis
- materials research connected with plasma technologies for wide applications and materials for fusion devices
- optical diagnostics and design of optical elements
- Prague Asterix Laser System (PALS)
  - joint laboratory with the Institute of Physics AS CR



#### **General comments**

- More than 1/3 of IPP's capacity goes to the "Fusion related research" integrated under Euratom Association IPP.CR
  - The goal: science and engineering needed for future fusion energy
- Other research: various plasma discharges generation of thermal plasma materials engineering related to plasma
  - The goal: development of scientific foundation of plasma technologies (plasma chemistry, decomposition, synthesis, spraying...)
- Smaller scientific but large administrative capacities joined with the <u>Institute of Physics AS CR</u>, v.v.i. in <u>PALS (Prague Asterix Laser System)</u>



### Fusion-relevant research of magnetized plasmas

- ~30 years long tradition in experiments and theory
- Key experimental device today tokamak COMPASS D

#### ITER relevant Research Program

(focused towards particular topics of fusion research)

#### Edge Plasma Physics

Plasma turbulence Plasma - Wall interaction

#### Diagnostics Development

Soft X-Ray spectroscopy Advanced probes

#### <u> Wave - Plasma Interaction</u>

Fastparticle generation Propagation of waves

#### <u>Education</u>

Diploma & PhD thesis Lectures & Summer school



COMPASS-D je relativně malý tokamak, ale má geometrií podobnou ITER (1:10)

#### **Association EURATOM/IPP.CR**

ČR "vstoupila" do EURATOM XII/1999 a vytvořila "asociaci" = 7 institucí koordinovaných Ústavem fyziky plazmatu AV ČR, v.v.i.

## Fyzikální výzkum

Tokamak CASTOR/COMPASS, teorie/modelování, srážkové procesy

- Ústav fyzikální chemie, AV ČR
- Matematicko-fyzikální fakulta, UK
- Fakulta jaderná a fyzikálně inženýrská, ČVUT
- Ústav jaderné fyziky, AV ČR

## Vývoj nových technologií (obecně i pro ITER)

Cyklotron, ozařování ve štěpném reaktoru, materiálový výzkum

- Ústav jaderného výzkumu, a.s. Řež
- Ústav aplikované mechaniky a.s, Brno

Celkem - cca 70 pracovníků (VŠ i technici)

#### **PULSED PLASMA**



## Non-equilibrium Plasma Discharges in Gasses and Water

- Capillary discharges
- Shock wave generation by spark discharges
- Pulsed electrical discharges in water
  - needle-plate or coaxial rod-tube electrode geometry
  - generation of focused shock waves

#### Possible applications:

- plasmachemistry, waste treatment (degradation of organics by OH radicals and hydrogen peroxide)
- medical applications (lithotripsy, destruction of soft tissue by focused shock waves, sterilization)
- generation of coherent X-rays



#### THERMAL PLASMA





#### **Facilities:**

- Water stabilized plasma torch
- Hybrid torch (unique, patented)

# Thermal (equlibrium) plasma in arc discharges, its properties and utilization

- Generation of equilibrium
   plasma in water-stabilized and
   hybrid arc discharges
- Modeling of processes in electric arcs
- Interaction of plasma with other states of matter as a basis for plasma spraying, plasma decomposition or synthesis
- Plasma based waste disposal
- Gassification, vitrification

#### MATERIALS ENGINEERING



**Research areas:** Interaction of plasma with matter, plasma spraying, materials characterization

- Development of optimized plasma sprayed deposits using a detailed microstructure control and characterization
- Amorphous and Nanocrystalline coatings
- Oxidation of metals and alloys during plasma spraying
- Plasma spraying of novel materials (silicates, titanates, etc.)
- Plasma spraying of ceramic self-supporting bodies
- Plasma sprayed materials for fusion applications (boron carbide, tungsten)

#### MATERIALS ENGINEERING



## **Applications center**

- Materials processing with WSP® torch
- Special plasma spraying for industrial applications



#### **OPTICAL BRANCH at Turnov**



## Dept. of **OPTICAL DIAGNOSTICS**

- Design of special "classical" optical parts;
- Future: XRD optics, non-spherical optics, etc.;

### Optical development workshop

Production of special (unique) optical parts on orders

Both from the former "Vývojová optická dílna AV ČR" (since 2006)

## PALS — joint center of IPP and IoP AS CR

A users facility, providing transnational access, member of LASERLAB-EUROPE

## Laser soft x-ray sources

Time- and space-resolved x-ray spectroscopy Contact XUV microscopy XUV ablations studies

Neon-like zinc <u>x-ray laser</u> (21.2 nm)

the most bright electromagnetic source ever

built in laboratory

**XUV** interferometry of surfaces

Laser ion sources
Ion implantation studies
Crater formation studies
Multiframe laser interferometry

**Shock wave studies** 



