
Higher complexity search problems for bounded

arithmetic and a formalized no-gap theorem

Neil Thapen∗

April 29, 2010

Abstract

We give a new characterization of the strict ∀Σb
j sentences provable

using Σb
k induction, for 1 ≤ j ≤ k. As a small application we show

that Buss’s witnessing theorem for strict Σb
k formulas already holds

over the relatively weak theory PV.
We exhibit a combinatorial principle with the property that a lower

bound for it in constant-depth Frege would imply that the narrow
CNFs with short depth j Frege refutations form a strict hierarchy with
j, and hence that the relativized bounded arithmetic hierarchy can be
separated by a family of ∀Σb

1 sentences.

1 Introduction

Let LPV be a language for arithmetic containing a function symbol for every
polynomial time machine. We work over a universal base theory PV which
fixes the basic properties of these symbols [11, 18]. Define a Σ̂b

k (or strict
Σb

k) formula to be a formula consisting of k or fewer alternating blocks of
bounded quantifiers, with the first one existential, followed by a quantifier-
free formula, where a bounded quantifier has the form ∀x<t or ∃x<t for t
a term not containing x. We are interested in Buss’s [3] hierarchy (T k

2)k∈N

of bounded arithmetic theories, which we may take to be defined as

T k
2 := PV + Σ̂b

k-IND

where Γ-IND stands for the usual induction axiom restricted to formulas
from the class Γ.

∗Institute of Mathematics, Academy of Sciences of the Czech Republic, Žitná 25, CZ-

115 67 Praha 1, thapen@math.cas.cz. Partially supported by institutional research plan

AV0Z10190503 and grant IAA100190902 of GA AV ČR, grants LC505 (Eduard Čech

Center) and 1M0545 (ITI) of MŠMT and by a grant from the John Templeton Foundation.

1

Whether or not this hiearchy collapses to a finite level is a long-standing
open question, closely connected to a similar question in complexity theory
[18, 6, 28]. It is expected that it does not collapse, and that in fact the
theories prove different ∀Σ̂b

1 (or even ∀Π̂b
1) sentences, by analogy with the

behaviour of classical fragments of Peano arithmetic. If we expand the
language so that induction hypotheses may contain new, undefined relation
or (bounded) function symbols, it is known, using oracle separation results
from complexity theory, that the hierarchy does not collapse. However it is
still open whether this separation of “relativized” theories can be done using
sentences of low, fixed complexity. The best general relativized separation
that is known is that T i+1

2 is not ∀Σ̂b
i+1 conservative over T i

2 [8].
The ∀Σ̂b

j sentences provable in T k
2 , for j ≤ k, were first characterized in

[17] in terms of reflection principles for systems of quantified propositional
logic. Other characterizations of at least the provable ∀Σ̂b

1 sentences have
appeared in [21, 12, 9, 13, 24, 20, 25, 1, 2]. In [26], building on [20], Alan
Skelley and this author presented a simple, combinatorial characterization
of the ∀Σ̂b

1 sentences provable in T k
2 in terms of a game induction principle

GIk. In this paper we extend the work of [26] by three small results which
make use of versions of the principle GIk with higher quantifier complexity.

In Section 2, slightly generalizing a construction from [26], we define
the j-initial game induction principle j-GIk and show that it captures, in
a strong way, the ∀Σ̂b

j sentences provable in T k
2 for all 1 ≤ j ≤ k. Another

recent characterization of these sentences appears in [1] and [2].
In Section 3 we use this characterization to give a strengthening of Buss’s

witnessing theorem for Sk
2 [3]. We show that any ∀Σ̂b

k sentence provable in
Sk

2 can be witnessed by a �p
k function, provably in PV. Previously the

witnessing was only known to be provable in T k−1
2 [5].

The most interesting result is in Section 4. We show how GI|||a|||(a), the
(negated) game induction principle for log(3)-turn games, can be written as
a narrow CNF and show that a lower bound for constant-depth refutations
of GI|||a|||(a) would imply a separation between the narrow CNFs with short
refutations in depth k and in depth k + 1 Frege systems, for all k ∈ N.
Via a standard correspondence between first-order and propositional proofs
([22] or see e.g. [15]), this would imply a ∀Σ̂b

1 separation of the relativized
bounded arithmetic hierarchy, as discussed above.

One reason this is interesting is that we do have a subexponential lower
bound on constant-depth refutations of GI|a|(a). This follows from the lower
bounds known for the pigeonhole principle PHPa

a−1 [19, 23], since the pi-
geonhole principle is reducible to GI|a|(a) – the reduction is essentially by
the construction in Section 2.3 of [26], which is based on the way counting
can be done in Frege proof systems and in the theory U1

1 [4, 15].

2

A possible approach to a low-level separation using GI|||a|||(a) may come
from a proposal in [16]. There, Kraj́ıček defines the isomorphism-chain
principle: let L be a first-order language and let Φ and Ψ be two Σ1

1 L-
sentences that cannot be satisfied simultaneously in any finite L-structure.
Then for any numbers m,n and any chain C1, . . . , Cm of finite L-structures
with the universe [n], it cannot be the case that C1 |= Φ, Cm |= Ψ, and Ci

is isomorphic to Ci+1 for each i = 1, . . . ,m−1. Kraj́ıček poses the following
question: if this principle has small constant-depth proofs, does it follow that
there is a family of small constant-depth circuits that separate L-structures
satisfying Φ from those satisfying Ψ? The intuition behind this is that the
existence of such circuits would allow a very natural constant-depth proof
of the principle, by induction along the chain.

If we take L to consist of a single k-ary relation defining a k-turn game,
and take Φ to be “Player B has a winning strategy” and Ψ to be “Player
A has a winning strategy”, then the isomorphism-chain principle becomes
a special case of GIk. We can alter the principle to deal with games with a
non-constant number of turns by considering three-sorted structures with a
number sort, an index sort and a sequence sort, each of an appropriate size
(rather than a single-sorted structure on a universe [n]), and adding relations
to the language and putting suitable axioms into Ψ and Φ to allow us to
talk about indexed sequences of numbers. We take the language to include a
relation G expressing whether a sequence of numbers is a win for A or B, and
take Φ and Ψ to express that respectively B or A has a winning strategy, as
above. Then, if there is a small constant-depth proof of GI|||a|||(a), it follows
that there is also such a proof of such an instance of chain-isomorphism. If
the answer to the question posed in [16], suitably altered, is “yes”, then this
implies that there is a small constant-depth circuit which decides whether
A or B has a winning strategy. This is impossible as these represent Sipser
functions of non-constant depth [27, 14].

We will assume that the reader has access to [26] and will make heavy
use of the notation, definitions and results from there.

In this paper we will say that a formula φ is a Herbrandization of a
formula ψ if φ is obtained from ψ by replacing some or all of the existential
quantifiers with explicit PV functions. To make it easier to talk about long
alternating sequences of quantifiers, we will often use three dots . . . in a
formula to stand for a sequence of finite length.

The author would like to thank Jan Kraj́ıček for helpful comments on
an earlier version of this paper.

3

2 The ∀Σ̂b
j consequences of T k

2

We first observe that a simple way to characterize the ∀Σ̂b
j+1 consequences of

T k+j
2 for k ≥ 1, j ≥ 0 would be to take the principle GIk, which captures the
∀Σ̂b

1 consequences of T k
2 , and relativize everything to a complete Π̂b

j oracle.
Our construction in this section has a few advantages over this. One is that
it is tidier, and in particular is built up out of games, effective strategies
and game reductions that are polynomial time rather than �p

j+1. Others
are that we get a stronger notion of reducibility, and that it works provably
over PV.

Definition 1 An instance of the j-initial k-game induction principle j-GIk
is given by size parameters a and b, a uniform sequence G0, . . . , Ga−1 of poly-
nomial time relations, a polynomial time function V and a uniform sequence
W0, . . . ,Wa−2 of polynomial time functions.

The instance GIk(G,V,W, a, b) states that, interpreting G0, . . . , Ga−1 as
k-turn games in which all moves are bounded by b, the following cannot all
be true:

1. Deciding the winner of game G0 depends only on the first j moves.

2. Player B can always win G0 (expressed as a Π̂b
j property).

3. For i = 0, . . . , a− 2, Wi gives a game-reduction of Gi+1 to Gi.

4. V is an explicit winning strategy for Player A in Ga−1.

The statement that this holds for all a and b can be written as a ∀Σ̂b
j

formula (see below). It is provable in T k
2 by Π̂b

k-IND on i with the inductive
hypothesis “Player B can always win Gi”.

To explain the sense in which this captures the provable ∀Σ̂b
j sentences

of T k
2 , we will need a technical definition. We repeat a definition from [26],

since it is used here in a slightly different way.

Definition 2 A formula is Σ̃b
k if it consists of k bounded quantifiers, be-

ginning with an existential quantifier and then strictly alternating in type.
The bounds on the quantifiers may only contain free variables, not bound
variables. Π̃b

k is defined dually.

Any Σ̂b
k formula Φ can be made into a Σ̃b

k formula Ψ by using pairing to
combine adjacent quantifiers, finding a common bounding term, and possibly
adding dummy quantifiers. Clearly Ψ is equivalent to Φ in a strong sense.
In particular, witnessing results about Ψ can be transferred to Φ provably
in PV.

4

We may write a sentence from j-GIk as a ∀Σ̃b
j sentence as follows:

∀(a, b)∃(w, x1)<(ab2k, b)∀x2<b∃x3<b . . .Qxj<b

[¬G0(x1, . . . , xj , 0, . . . , 0) ∨ ψ(w)]

where Q stands for ∃ if j is odd and ∀ if j is even, and where we are (rather
informally) using a pairing function (u, v) to avoid repeated quantifiers. Here
ψ(w) stands for a PV formula expressing that w witnesses that condition 3
or condition 4 from Definition 1 fails, and the formula

∃x1<b∀x2<b∃x3<b . . .Qxj<b¬G0(x1, . . . , xj , 0, . . . , 0)

expresses that either condition 1 or condition 2 fails.

Definition 3 Let Φ and Ψ be ∀Σ̃b
k sentences respectively of the form

∀x∃y1<s1 ∀y2<s2 ∃y3<s3 . . . φ(x, ȳ)

and

∀u∃v1<t1 ∀v2<t2 ∃v3<t3 . . . ψ(x, ȳ).

Then we say that Ψ is reducible to Φ if there are PV functions f0(u),
f1(u, y1), f2(u, y1, v2), . . . such that fi(u, y1, v2, . . . , yi−1, vi) < si for all even
0 < i ≤ k, fi(u, y1, v2, . . . , vi−1, yi) < ti for all odd i ≤ k, and

φ(f0(u), y1, f2(u, y1, v2), y3, . . .) → ψ(u, f1(u, y1), v2, f3(u, y1, v2, y3), . . .).

For classes Γ and ∆ of ∀Σ̃b
k sentences, we write Γ ≤ ∆ if every sentence

in Γ is reducible to some sentence in ∆, and Γ ≡ ∆ if this holds in both
directions.

This is a natural extension to higher complexity classes of the definition
of reducibility between NP search problems. Notice that it is a Herbran-
dization of the implication Ψ → Φ, and is essentially the same thing as what
[26] calls a game-reduction between games represented by Ψ and Φ.

We can now state our characterization result.

Theorem 4 For k ≥ 1 and 1 ≤ j ≤ k, ∀Σ̃b
j(T

k
2) ≡ j-GIk, provably in PV.

Proof For one direction, each sentence in j-GIk is provable in T k
2 , so j-

GIk ⊆ ∀Σ̃b
j(T

k
2). The other direction will follow from Lemmas 5 and 6

below. �

Lemma 5 For all k ≥ 1, ∀Σ̃b
1(T

k
2) ≤ 1-GIk, provably in PV.

5

Proof This is by a straightforward reduction of GIk to 1-GIk. Suppose
we have an instance of GIk given by games G0, . . . , Ga−1, strategies U and
V and game-reductions W0, . . . ,Wa−2. This is reducible to an instance of
1-GIk formed by adding an extra game G−1 at the start in which B wins
every play, and using the strategy V to define a game-reduction W−1 of G0

to G−1. �

Lemma 6 For k ≥ 0 and 2 ≤ j ≤ k+2, ∀Σ̃b
j(T

k+2
2) ≤ j-GIk+2, provably in

PV.

Proof The argument is essentially that of Theorems 4 and 5 of [26]. Sup-
pose that ∀uΨ(u) is provable in T k+2

2 , for Ψ a Σ̃b
j formula. The first step

is to replace Ψ with an equivalent (under reducibility) Σ̃b
j formula Φ of the

form ∃v1 < t(u)∀v2 < t(u) . . . φ(u, v̄), where t is a term with u as its only
free variable.

We have that ∀uΦ(u) is provable in T k+2
2 . Let Φ∆(u) be the dual

∀v1 < t(u)∃v2 < t(u) . . .¬φ(u, v̄) of Φ(u). By free-cut elimination (see e.g.
[7]) there is a first order derivation, in the sequent calculus for T k+2

2 , of
the sequent Φ∆(u) −→ ∅ in which every formula is of complexity Π̃b

k+2 or
lower. Hence by Theorem 21 of [26] there is a family of quasipolynomial
size PK0

k refutations of the table of cedents (Φ∆(a))◦ + A, where (Φ∆(a))◦

is the propositional translation of Φ∆(a) and A is a sequence of true, poly-
logarithmic width “auxiliary” clauses. Furthermore these refutations are
polynomial-time definable using the parameter a.

From now on we will write t for t(a). By simple changes to the refutation,
we may build a new, at most quasipolynomially larger, refutation which
begins not with the initial cedents (Φ∆(a))◦ but with a slightly different
translation of Φ∆(a) into a table of propositional cedents, namely

({〈∀v3<t∃v4<t . . .¬φ(a, s1, s2, v3, . . . , vj)〉 : s2 < t})s1<t.

So our refutation now starts with exactly these t initial cedents, which we
will call B0, . . . , Bt−1. These are followed by the auxiliary clauses and then
the body of the refutation; we will call these two sets of cedents together
C1, . . . , Ce, so that C1 is the first auxiliary clause and Ce is the final, empty
cedent of the refutation.

We can now define our instance of j-initial k-game induction. For conve-
nience we will use a slightly different notation from the definition and call our
first game G−1 rather than G0, and our last game Ge. So the instance will
consist of games G−1, . . . , Ge, a strategy V and reductions W−1, . . . ,We−1.

The games G0, G1, . . . , Ge are defined from our refutation B0, . . . , Bt−1,

C1, . . . , Ce as in the proof of Theorem 4 of [26], except that this time we

6

do not have games corresponding to the first t − 1 cedents B0, . . . , Bt−2

but instead begin with Bt−1. So G0 is a game which starts with player A
choosing a cedent from B0, . . . , Bt−1 and claiming that all formulas in it are
false; player B then picks a formula from the cedent and claims that it is
true, and then the game continues as in [26]. For 1 ≤ i ≤ e, Gi is a game
which starts with player A choosing a cedent from B0, . . . , Bt−1, C1, . . . , Ci

and then proceeds in the same way.
The strategy V is the same as in the proof of Theorem 4 of [26].
We define the reductions W0, . . . ,We−1 as follows: if Ci+1 is an auxiliary

clause, then the reduction Wi of Gi+1 to Gi is trivial. This is because Ci+1 is
true and its literals can be listed in polynomial time, so if player A chooses
Ci+1 on the first turn of Gi+1 then B can win on the second turn by naming
the first true literal in Ci+1. If Ci+1 is not an auxiliary clause then the
reduction of Gi+1 to Gi is exactly as in the proof of Theorem 4 of [26].

It remains to define the game G−1 and the reduction W−1 of G0 to G−1.
Notice that game G0 has the following structure:

1. Player A first names a cedent Br1 , with r1 ≤ t− 1, and claims all
formulas in it are false. By construction, Br1 has the form

{〈∀v3<t . . .¬φ(a, r1, s2, v3, . . . , vj)〉 : s2 < t},

which is a translation of ∃v2<t∀v3<t . . .¬φ(a, r1, v2, . . . , vj).

2. Player B then names a formula r2 ∈ Br1 , claiming it is true. By the
structure of Br1 , r2 must be a formula of the form

〈∀v3<t . . .¬φ(a, r1, r′2, v3, . . . , vj)〉

for some r′2 < t. So choosing r2 is equivalent to choosing a value r′2 for
the variable v2 in the formula ∃v2<t∀v3<t . . .¬φ(a, r1, v2, . . . , vj).

3. Player A then names a conjunct r3 of r2, claiming it is false. This
is equivalent to choosing a value r′3 for the variable v3 in the formula
∀v3<t . . .¬φ(a, r1, r′2, v3, . . . , vj).

4. etc.

The game ends on the jth turn, in which one of the players must name some
literal 〈¬φ(a, r1, r′2, . . . , r

′
j)〉, with B winning if the literal is true and A if it

is false.
So we define the game G−1 as follows: if either player plays a move ≥ t,

that player loses immediately (this captures the bounds on the quantifiers
in Φ∆(a)). Otherwise, after a finished play v1, . . . , vk, player B wins if
¬φ(a, v1, . . . , vj) and player A wins if φ(a, v1, . . . , vj).

7

The games G0 and G−1 are now essentially the same, and a reduction of
G0 to G−1 consists simply of a sequence of functions translating moves rm
in G0 (naming cedents or subformulas in the propositional translation) to
equivalent moves r′m in G−1 (naming values to assign to the variables) and
vice versa. Also notice that although they are both formally k turn games,
only the first j moves play a role in deciding the winner.

The sentence of j-GIk we have built has the following form, where q is
a term in a coming from the size of the PK0

k refutation and ψ(w) expresses
that w witnesses that condition 3 or 4 from Definition 1 fails:

∀a∃(w, v1)<(q2k+1, t)∀v2<t∃v3<t . . .Qvj<t

[¬G−1(v1, . . . , vj , 0, . . . , 0) ∨ ψ(w)].

Since the PK0
k refutation we used in our construction is well-formed, prov-

ably in PV, we have that PV proves that φ(w) is always false. Furthermore,
observe that ¬G−1(v1, . . . , vj , 0, . . . , 0) is just φ(a, v1, . . . , vj). Therefore the
sentence

∀u ∃v1<t(u)∀v2<t(u) . . . φ(u, v̄)

is reducible to the j-GIk sentence written above, provably in PV, by a re-
duction in which all functions f0, . . . , fj are projections. �

3 A witnessing theorem

Theorem 4 can be seen as a kind of witnessing theorem, since in some sense
it gives you a mechanical way to witness a provable Σ̂b

k sentence, by reducing
it to an instance of game induction. Furthermore it works over the relatively
weak theory PV. We can use this, together with the fact that k-GIk can be
witnessed by a �p

k+1 machine using binary search, to give a strengthening
of Buss’s witnessing theorem about the ∀Σ̂b

k consequences of Sk
2 .

In its original form in [3], this showed the following: if φ is a Π̂b
k formula

and Sk+1
2 ` ∀x∃y φ(x, y), then there is a �p

k+1 function f such that N |=
∀xφ(x, f(x)). In [5] Buss strengthened this by showing that, under the
same assumptions, the sentence ∀xφ(x, f(x)) is actually provable in T k

2 , for
a natural way of formalizing the function f . We show below that, for the
right choice of f , this witnessing is provable even in PV.

For a �p
k+1 machine M , that is, a polynomial time Turing machine with

an oracle for a Σ̂b
k formula ∃x< tΘ(q, x), where Θ is some complete Π̂b

k−1

formula, let CompM (x, y, w) express that w is a correct history of a compu-
tation of machine M on input x giving output y. In detail, it expresses that

8

the initial configuration of the work tape contains x, that the final configu-
ration contains y, that for each j going from configuration j to configuration
j + 1 obeys the transition rules, and that oracle queries are replied to cor-
rectly as follows: for each pair of a query and reply qj and rj recorded in w,
either rj witnesses that the oracle answer is “yes” (rj is a number in [0, t)
and Θ(qj , rj) is true) or rj correctly records that the oracle answer is “no”
(rj =“no” and ∀x<t¬Θ(qj , x)). In this way we can write CompM (x, y, w)
as a Π̂b

k formula.

Theorem 7 For k ≥ 0, suppose Sk+1
2 ` ∀u ∃v χ(u, v), where χ is a Π̂b

k

formula. Then there is a �p
k+1 machine M such that

PV ` ∀u, v, w, CompM (u, v, w) → χ(u, v).

Proof We may suppose k ≥ 1, since the case k = 0 already follows from
[5]. Suppose we have

Sk+1
2 ` ∀u ∃v ∀z φ(u, v, z)

for φ a Σ̂b
k−1 formula, which we assume contains some implicit bound t on the

variable z. Then by the witnessing theorem of [5] there is a �p
k+1 machine

P such that ∀u ∀z φ(u, P (u), z), provably in T k
2 . That is,

T k
2 ` ∀u, z, w, v, ¬CompP (u, v, w) ∨ φ(u, v, z).

The right hand side is now equivalent to a ∀Σ̂b
k sentence. It is provable in

T k
2 , so by Theorem 4 it is reducible, provably in PV, to an instance of k-GIk

taking parameters u, z, w, v. Let us write this instance as a Σ̂b
k sentence

∃xH(u, z, w, v, x). We do not need the full strength of reducibility, but only
the consequence that the existence of a solution x implies the above Σ̂b

k

formula. That is,

PV ` ∀u, z, w, v [∃xH(u, z, w, v, x) → ¬CompP (u, v, w) ∨ φ(u, v, z)].

There is a �p
k+1 machine Q that solves H, given the parameters as input.

It first makes queries “can player B always win G0” and “can player A always
win Ga−1” (where a is the number of games in the instance). If either answer
is “no”, then it is easy to compute a witness to either condition 2 or 4 of
the definition of k-GIk being false. Otherwise, by binary search the machine
finds i such that player B can always win Gi but player A can always win
Gi+1, and from this it is easy to compute a witness to condition 3 being
false.

The machine M needed for the theorem now works as follows. On input
u, it first simulates P , obtaining strings v and w for the output and com-
putation of P . It then uses a Π̂b

k query to find out whether ∀z<t φ(u, v, z)

9

(where t is the implicit bound on z in φ). If this is true, M halts and out-
puts v. If it is false, it finds a counterexample z, then simulates Q on inputs
u, z, w, v, then halts.

We claim that M witnesses ∀u ∃v ∀z<t φ(u, v, z), provably in PV. In a
model of PV, let s be the history of a correct computation of M on some
input u. Clearly if M does output some v in this computation, then by
correctness v must satisfy ∀z < t φ(u, v, z). But M must output some such
v, since otherwise M would go on to find a counterexample z and then find
(and check) a solution to H and record this solution in s. Hence, for some
x in our model we would have

H(u, z, w, v, x) ∧ CompP (u, v, w) ∧ ¬φ(u, v, z)

which is impossible. �

4 A uniform collapse

In [26] we strengthened the “no gap” theorem of [10] and showed in partic-
ular that if, in a relativized world, T k

2 (α) ` GIk+1(α) for some k ∈ N then
T k

2 (α) ` GIi(α) for all i ∈ N with i ≥ k. The purpose of this section is
to show that the constructions used to show this result are uniform enough
that it can be extended up to non-constant values of i. The argument is dif-
ficult to do in a purely first-order way since this would involve talking about
formulas of non-standard quantifier depth, so instead we use a mixture of
propositional and first-order logic, using bounded arithmetic as a tool to ar-
gue about families of propositional proofs. Unfortunately the presentation
becomes rather technical, but the only really important thing happening is
the analysis of the growth rate of the objects involved.

GIm(a) is a propositional contradiction, defined below. It is a straightfor-
ward translation of the first order sentence “GIm fails for games, strategies
and reductions G,U, V,W at a”. We want GIm(a) to be a narrow CNF,
that is, one in which every disjunction has size polynomial in |a|, so we will
translate functions as bit-graphs rather than graphs.

For simplicity we will restrict ourselves to powers of 2 for a, so a is 2n

for some n. We also only consider GIm(a) for values of m less than |a|. The
propositional variables in GIm(a) are then:

1. Gix1...xm for all i, x1, . . . , xm < a, expressing whether Player B wins
game Gi with the play x1, . . . , xm;

2. U r
jx1x3...xj−1

for all even 1 ≤ j ≤ m, all x1, x3, . . . , xj−1 < a and all
r < n, expressing the rth bit of the move played at turn j by player B
in strategy U , in response to player A playing x1, x3, . . . , xj−1 so far;

10

3. V r
jx2x4...xj−1

for all odd 1 ≤ j ≤ m, all x2, x4, . . . , xj−1 < a and all
r < n, expressing the rth bit of the move played at turn j by player A
in strategy V , in response to player B playing x2, x4, . . . , xj−1 so far;

4. W r
ijz1...zj

for all i < a− 1, all 1 ≤ j ≤ m and all z1, . . . , zj , expressing
the rth bit of the jth function in the game-reduction Wi, on inputs
z1, . . . , zj .

We will call these respectively variables in G, U , V or W .
For readability, in the next definition we will write clauses as implications

rather than disjunctions. For variables expressing the bit graphs of functions
we will write, for example, (U2x1 = y) as shorthand for

∧
r<n U

r
2x1

= δr where
δr is 0 or 1 depending on the rth bit of y.

Definition 8 For even m, GIm(a) is the CNF consisting of the following
three groups of clauses.

1. For each x1, . . . , xm < a, the clause

(U2x1 = x2)∧ (U4x1x3 = x4)∧ . . .∧ (Umx1...xm−1 = xm) → G0x1...xm .

These express that U is a winning strategy for player B in G0.

2. For each x1, . . . , xm < a, the clause

(V1 = x1)∧(V3x2 = x3)∧. . .∧(V(m−1)x2...xm−2
= xm−1) → ¬G(a−1)x1...xm

.

These express that V is a winning strategy for player A in Ga−1.

3. For each x1, . . . , xm, y1, . . . , ym < a and each i < a− 1, the clause

(Wi1y1 = x1) ∧ (Wi2y1x2 = y2) ∧ . . . ∧ (Wimy1x2...xm = ym)

∧ Gix1...xm → G(i+1)y1...ym
.

These express that Wi is a reduction of Gi+1 to Gi.

For odd m the formula is similar, but the first two groups of clauses are
changed to reflect that A now has the final move in all games, and the
clauses in the third group become

(Wi1y1 = x1) ∧ (Wi2y1x2 = y2) ∧ . . . ∧ (Wimy1x2...ym = xm)

∧ Gix1...xm → G(i+1)y1...ym
.

Observe that there are no more than a2m+1 clauses and that the maximum
size of a clause is nm+ 2.

11

Definition 9 GI4,m(a) is the set of cedents obtained by taking GI4(a) and
replacing, for all i, x1, . . . , x4 < a, each occurrence of the literal Gix1...x4 with
the formula∧

y1

∨
y2

. . . G′
ix1...x4y1...ym

and each occurrence of the literal ¬Gix1...x4 with the formula∨
y1

∧
y2

. . .¬G′
ix1...x4y1...ym

where the connectives range over [0, a) and we are using a new set of propo-
sitional variables G′

ix1...x4y1...ym
for i, x1, . . . , x4, y1, . . . , ym < a. GI4,m(a) is

a propositional contradiction, since GI4(a) is.

We need to argue about exponentially large (in |a|) propositional for-
mulas, derivations and assignments. To do this, it is convenient to think of
these things as coded by second-order objects (in the form of exponentially
long strings of bits) and to allow second-order constants and variables to
appear in our bounded arithmetic formulas.

So long as we only use universal quantification over these variables, and
avoid any second-order quantifiers in induction hypotheses, we may treat
these new objects exactly like oracles (except that unlike oracles, they have
a size bound). All we are really doing is using a slightly different language
to talk about relativized bounded arithmetic theories.

We will say that a second-order object Y is given by a polynomial time
machine A(X̄, a, p̄), where a is a size parameter and X̄ stands for a tuple
of second-order variables or oracles, if there is a function f(X̄, a, p̄, j) which
takes the parameters a, p̄, j as inputs, has oracle access to X̄, runs in time
polynomial in |a|, and outputs the jth bit of Y .

Below, propositional formulas and derivations are formalized as in [26],
except that the functions and relations involved will now sometimes be coded
by second-order objects. The size of a propositional derivation means the
size of the second-order object coding it; in particular this is a bound on
both the number of cedents in the derivation and on the number of names
for formulas occuring in it. Similarly the size of a CNF is a bound on the
number of clauses and the number of literals in it.

Lemma 10 GI4,m(a) is shortly derivable from GIm+4(a) in PK0
m+1 (with a

natural renaming of variables from G′ to G, which we will not say any more
about). In fact, there is a polynomial time machine F such that provably in
PV, for all a and all m < |a|, F (a) is a PK0

m+1 derivation of GI4,m(a) from
GIm+4(a) of size quasipolynomial in a. �

12

Suppose that for some c ∈ N there is a family of PK0
1 refutation of

GI4(a) of size 2|a|
c
. Let I(α, a) be a machine that recovers a sequence of

second-order objects that have been coded into an oracle α, and let T be
the theory

PV + ∀a[I(α, a) is a PK0
1 refutation of GI4(a) of size 2|a|

c
].

We will not use the assumption about the existence of a refutation until the
end of this section, but we are stating it now so that we have a suitable
exponent c available for the definition of T .

Lemma 11 There is a polynomial time machine A such that provably in T ,
for all a and all m < |a|, A(α, a,m) is a PK0

m+1 refutation of GIm+4(a) of
size quasipolynomial in a.

Proof Let Π be the quasipolynomial size PK0
1 refutation of GI4(a) guar-

anteed to exist by T . The first step is to change Π into a PK0
m+1 refutation

of GI4,m(a), as follows.
For each formula φ appearing in a cedent in Π, if φ is a literal in U , V

or W , leave it unchanged. If φ is a literal of the form Gix1...x4 or ¬Gix1...x4 ,
replace φ with a level m conjunction or disjunction respectively, as in Defi-
nition 9. Now suppose that φ is a conjunction of literals l1, . . . , lm. Replace
φ with a level m + 1 conjunction, defined as follows (recall that in a PK0

proof all formulas in a conjunction must be disjunctions of the same level):
if lj is a literal in U , V or W , simply make lj into a level m disjunction by
padding. If lj is a literal of the form ¬Gix1...x4 , replace lj with the level m
disjunction from Definition 9. If lj is a literal of the form Gix1...x4 , replace
lj with the set of conjuncts

{
∨
y2

∧
y3

. . . {G′
ix1...x4y1...ym

} : y1 < a},

where the curly brackets around {G′
ix1...x4y1...ym

} are meant to indicate that
the literal has been padded up by one level so that each formula in this set
is a level m disjunction.

Call this new object Π′. Π′ is something like a PK0
m+1 refutation of

GI4,m(a), except that the cedents do not follow from each other by valid
PK0

m+1 rules. But we can add in quasipolynomially many steps to make it
a valid PK0

m+1 refutation. For example, in PK0
m+1 we can derive a cut be-

tween the formulas
∧

y1

∨
y2
. . . G′

ix1...x4y1...ym
and

∨
y1

∧
y2
. . .¬G′

ix1...x4y1...ym

in about O(am) steps, and we can replace each application of resolution on
a G variable in Π with one of these derivations.

13

Our new refutation is defined locally in a simple way using the local
properties of Π, and in particular can be defined in polynomial time from
the oracle α and the parameters. We combine it with the derivation from
Lemma 10 to get the desired refutation of GIm+4(a). �

Definition 12 For m < |a|, 1−Ref(PK0
m)(a) is a propositional contradic-

tion, of size quasipolynomial in a, expressing that there is a narrow CNF
formula which is both satisfiable and refutable in PK0

m. Formally, it has
seven sets of propositional variables F , A, Q, R, S, T and f and states that

1. F codes a CNF of size < a in which each clause has size at most |a|;

2. (Q,R, S, T, f) code a PK0
m refutation of F , of size a;

3. A is a satisfying assignment to F .

This is a propositional translation of the negation of the 1−Ref(PK0
k)

principle of [26], except that here we give explicit bounds to the size of
the clauses and of the refutation in terms of a, so that we have one fixed
quasipolynomial bound on the size of the propositional formula.

Lemma 13 There is a polynomial time machine B such that provably in
PV, for all a, all m < |a| and all second-order objects X, if X is a satisfying
assignment to 1−Ref(PK0

m)(a) then B(X, a,m) is a satisfying assignment
to GIm+2(a).

Proof This is shown for constant m ∈ N in the proof of Theorem 4 of [26].
The same construction works for general m < |a|. �

Lemma 14 There is a polynomial time machine C and a constant d ∈ N
such that provably in T , for all a, all m < |a| and all second-order vari-
ables X, if X is a satisfying assignment to GIm+4(a) then C(X, a,m) is a
satisfying assignment to GIm+3(2|a|

d
).

Proof By Lemma 11 there is d ∈ N such that A(α, a,m) is a PK0
m+1

refutation of GIm+4(a) of size 2|a|
d
. We also have a satisfying assignment X

to GIm+4(a), and we may assume that GIm+4(a) is of size < 2|a|
d

and that
its clauses are of size < |a|d. This is exactly what we need to define from
α and X a satisfying assignment to 1−Ref(PK0

m+1)(2
|a|d), and from this by

Lemma 13 we can define a satisfying assignment to GIm+3(2|a|
d
). �

Recall that T 3
3 is the theory T 3

2 together with the axiom that 22||x||
2

exists
for all x [3].

14

Lemma 15 Provably in the theory

T 3
3 + ∀a[I(α, a) is a PK0

1 refutation of GI4(a) of size 2|a|
c
],

for all a and all second-order X, X is not a satisfying assignment to GI|||a|||(a).

Proof We will write γ for |||a|||. Suppose X satisfies GIγ(a). Then we can
apply Lemma 14 to get

C(X, a, γ − 4) satisfies GIγ−1(2|a|
d
),

and then again to get

C(C(X, a, γ − 4), 2|a|
d
, γ − 5) satisfies GIγ−2(2|a|

d2

),

and so on. If we can formalize repeating this step γ−3 times as an induction,
we will have shown a contradiction, since GI3 is provable in T 3

3 .
Let M = 2|a|

dγ

. Then M is a bound on the largest parameters we will
need in the induction, and since |a|dγ

< |a|2dγ
= |a|||a||d , M is guaranteed to

exist in T 3
3 . Now let D be the machine which iterates C, that is, such that

D(X, a, 0) = X and D(X, a, i+1) = C(D(X, a, i), 2|a|
di

, γ− 4− i). We want
to estimate the time bound on D.

Let f(Y, b,m, j) be the polynomial time function, with time bound |b|e
for e ∈ N, which calculates the jth bit of C(Y, b,m). In our induction the
parameter b will always be less than M , so the maximum time to calculate
f is |M |e. Calculating a bit of D(X, a, i) requires calling f recursively, once
for each node of a tree of depth i and fan-out < |M |e, so for i < γ we can
bound the time taken by |M |eγ < |a|eγ||a||d < |a|||a||d+1

. Hence the function
to calculate bits of D is definable in our theory.

Therefore we can write our inductive hypothesis

D(X, a, i) satisfies GIγ−i(2|a|
di

)

as a Π̂b
1 formula. Induction on i up to γ − 3 completes the proof. �

Theorem 16 Suppose that for some c ∈ N there is a family of PK0
1 refuta-

tion of GI4(a) of size 2|a|
c
. Then for some s ∈ N, there is a family of PK0

1

refutations of GI|||a|||(a) of size 22||a||
s

.

Proof By Lemma 15 and Parikh’s theorem, there is a term t (with a

22||a||
O(1)

growth rate) such that

T 3
3 ` ∀X, ∀b<t(a) (I(α, b) is a PK0

1 refutation of GI4(b) of size 2|b|
c
)

→ (X is not a satisfying assignment to GI|||a|||(a)).

15

Hence by doing some rearrangement and using the Paris-Wilkie translation
of first-order into propositional proofs (in the form of Theorem 21 of [26]),
for some s ∈ N there is a family πa of 22||a||

s

-size PK0
1 refutations of the set

of clauses Fa ∪Ga, where Fa is the propositional translation of

∀b<t(a) (I(α, b) is a PK0
1 refutation of GI4(b) of size 2|b|

c
)

and Ga is the translation of

(X is a satisfying assignment to GI|||a|||(a))

(both of these are Π̂b
1). Here Fa has propositional atoms translating the

bits of the oracle α and Ga has atoms translating the bits of α and of the
second-order variable X.

But by the assumption that short PK0
1 refutations of GI4(a) exist, we

know that there is an assignment to the oracle α which satisfies Fa, for every
a. Under this assignment, each πa becomes a refutation of Ga, and by some
small manipulations can be made into a refutation of GI|||a|||(a). �

Theorem 17 Suppose that there is no size 22||a||
O(1)

constant-depth refu-
tation of GI|||a|||(a). Then the narrow CNFs refutable in polynomial (or
quasipolynomial) size and constant depth form a strict hierarchy with depth.

In particular, for each k ∈ N the narrow CNF family GIk+3 has polynomial-
size refutations in PKk+1 but no quasipolynomial-size refutations in PKk (or
in Res(log) in the case k = 0).

Proof Firstly, by the constructions in Theorem 21 of [26], any PKk refu-
tation of GIj(a) can be made into a PK0

k refutation that is at most quasi-
polynomially larger, and vice versa.

Secondly, in Theorem 16, GI4(a) and PK0
1 could be replaced with GIk+3(a)

and PK0
k for any constant k ∈ N greater than 1, and the same argument

would still go through.
Finally, if there is a a quasipolynomial-size Res(log) refutation of GI3(a)

then by Theorem 8 of [26] there is a quasipolynomial-size PK0
1 refutation of

GI4(a), to which Theorem 16 applies. �

References

[1] A. Beckmann and S. Buss. Polynomial local search in the polynomial
hierarchy and witnessing in fragments of bounded arithmetic. Preprint,
2008.

16

[2] A. Beckmann and S. Buss. Characterizing definable search problems in
bounded arithmetic via proof notations. Preprint, 2009.

[3] S. Buss. Bounded Arithmetic. Bibliopolis, 1986.

[4] S. Buss. Polynomial size proofs of the propositional pigeonhole princi-
ple. Journal of Symbolic Logic, 52(4):916–927, 1987.

[5] S. Buss. Axiomatizations and conservation results for fragments of
bounded arithmetic. In Logic and Computation, Proceedings of a Work-
shop held at Carnegie Mellon University, pages 57–84. AMS, 1990.

[6] S. Buss. Relating the bounded arithmetic and polynomial time hierar-
chies. Annals of Pure and Applied Logic, 75(1–2):67–77, 1995.

[7] S. Buss. Chapter 1: An introduction to proof theory & Chapter 2:
First-order proof theory of arithmetic. In S. Buss, editor, Handbook of
Proof Theory. Elsevier, 1998.

[8] S. Buss and J. Kraj́ıček. An application of Boolean complexity to
separation problems in bounded arithmetic. Proceedings of the London
Mathematical Society, 69:1–21, 1994.

[9] M. Chiari and J. Kraj́ıček. Witnessing functions in bounded arithmetic
and search problems. Journal of Symbolic Logic, 63(3):1095–1115, 1998.

[10] M. Chiari and J. Kraj́ıček. Lifting independence results in bounded
arithmetic. Archive for Mathematical Logic, 38(2):123–138, 1999.

[11] S. Cook. Feasibly constructive proofs and the propositional calculus.
Proceedings of the 7th Annual ACM Symposium on Theory of comput-
ing, pages 83–97, 1975.

[12] F. Ferreira. What are the ∀Σb
1-consequences of T 1

2 and T 2
2 ? Annals of

Pure and Applied Logic, 75(1):79–88, 1995.

[13] J. Hanika. Herbrandizing search problems in bounded arithmetic. Math-
ematical Logic Quarterly, 50(6):577–586, 2004.

[14] J. H̊astad. Computational limitations for small-depth circuits. MIT
Press, 1987.

[15] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic and Computa-
tional Complexity. Cambridge University Press, 1995.

[16] J. Kraj́ıček. A form of feasible interpolation for constant depth frege
systems. Journal of Symbolic Logic, 75(2):774–784, 2010.

17

[17] J. Kraj́ıček and P. Pudlák. Quantified propositional calculi and frag-
ments of bounded arithmetic. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, 36(1):29–46, 1990.

[18] J. Kraj́ıček, P. Pudlák, and G. Takeuti. Bounded arithmetic and the
polynomial hierarchy. Annals of Pure and Applied Logic, 52:143–153,
1991.

[19] J. Kraj́ıček, P. Pudlák, and A. Woods. An exponential lower bound
to the size of bounded depth frege proofs of the pigeonhole principle.
Random Structures and Algorithms, 7(1):15–39, 1995.

[20] J. Kraj́ıček, A. Skelley, and N. Thapen. NP search problems in low
fragments of bounded arithmetic. Journal of Symbolic Logic, 72(2):649–
672, 2007.

[21] J. Kraj́ıček and G. Takeuti. On induction-free provability. Annals of
Mathematics and Artificial Intelligence, 6:107–126, 1992.

[22] J. Paris and A. Wilkie. Counting problems in bounded arithmetic.
In Methods in Mathematical Logic, number 1130 in Lecture Notes in
Mathematics, pages 317–340. Springer, 1985.

[23] T. Pitassi, P. Beame, and R. Impagliazzo. Exponential lower bounds
for the pigeonhole principle. Computational complexity, 3:97–220, 1993.

[24] P. Pudlák. Consistency and games - in search of new combinatorial
principles. In V. Stoltenberg-Hansen and J. Väänänen, editors, Logic
Colloquium ’03, number 24 in Lecture Notes in Logic, pages 244–281.
ASL, 2006.

[25] P. Pudlák. Fragments of bounded arithmetic and the lengths of proofs.
Journal of Symbolic Logic, 73(4):1389–1406, 2008.

[26] A. Skelley and N. Thapen. The provably total search problems of
bounded arithmetic. Preprint, 2007.

[27] A. Yao. Separating the polynomial-time hierarchy by oracles. In Proc.
26th annual symposium on Foundations of computer science, pages 1–
10. IEEE Press, 1985.

[28] D. Zambella. Notes on polynomially bounded arithmetic. Journal of
Symbolic Logic, 61(3):942–966, 1996.

18

