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Abstract

The determination of state of stress of thick orthotropic plate is outlined here. The analytical formulations
of dispersion curves for arbitrary direction of wave propagation in orthotropic plate, which we defined earlier, are
used to obtain results. The false roots appearing in the numerical computation of thick plate dispersion curves
from orthotropic materials are mentioned. The displacements and the stresses of the thick orthotropic plate are
presented too.
c©Copyright statement.
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1. Introduction

The determination of the dispersion curves of orthotropic plates is very important for ul-
trasonic nondestructive method based on the guided waves. The measured dispersion curves
are compared to the computed dispersion curves of thick infinitely extended plate with free
boundary conditions at this method. The distributions of displacements and stresses across the
plate thickness play important role in the location of ultrasonic transducers on plate surface.

The analytical formulations of dispersion curves for arbitrary direction of wave propagation
in orthotropic plate of thickness 2d are resumed in the following chapter. The direction of wave
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Fig. 1. The scheme of the problem.

propagation is defined by the angle φ, the angle between the
[100] axis and the wave vector, see fig. 1. The computed
dispersion curves are presented for the unidirectional com-
posite. The problems with false roots of dispersion curves
are mentioned here too.

Another two chapters describe the displacements and
stresses in the thick orthotropic plate. The results are given
for several directions of wave propagation and for the first
ten dispersion curves.

2. Dispersion curves

To obtaining analytical dispersion formulae, we have used the method of partial waves, [1].
In this method, the plate wave solutions are constructed from simple exponential-type waves,
which reflect back and forth between the boundaries of the plate. Every partial wave have to
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have the same value kx = k = ω/v, where v is the plate wave phase velocity. The solution has
the form uj = αj exp [ik(x+ lzz)], j = x, y, z and lz = kz/kx, for every partial wave solution.
uj are components of displacement, kj are components of wave vector and αj are components
of polarization of partial waves. By substitution of trial solution into Christoffel equation,
we obtain a system of three homogeneous linear equations for αx, αy and αz, [2]. Nontrivial
solutions exist only when the determinant of the system equals zero. This gives a sixth order
polynomial in lz with six roots l

(n)
z , n = 1, . . . , 6. The allowed partial wave solutions defined

by these roots correspond to the three incident and three reflected waves. The coupling between
partial waves at the plate boundaries is given by three boundary conditions for stress T

Txz = Tyz = Tzz = 0, for z = ±d. (1)

These conditions are satisfied by taking a linear combination of the six allowed partial waves,

uj =
6∑

n=1

Cn α
(n)
j exp

[
ik(x+ l(n)z z)

]
, (j = x, y, z). (2)

Substitution of partial waves into the boundary conditions (1) gives a system of six homo-
geneous linear equations, in which the coefficients, Cn, are now functions of ρ, cIJ , ω/k = v
and kd. Here ρ is density and cIJ are elastic coefficients. Nontrivial solutions exist only when
the determinant of the system equals zero, and this defines the dispersion relation between ω
and k.

2.1. Orthotropic plate

As was remarked above, it follows for orthotropic thick plate:

1. Direction of wave propagation φ = 0◦ and φ = 90◦

The dispersion formula can be written for symmetric modes as

tan
(
l(1)z kd

)
A− tan

(
l(3)z kd

)
B = 0, (3)

and for antisymmetric modes as

cot
(
l(1)z kd

)
A− cot

(
l(3)z kd

)
B = 0. (4)

For φ = 0◦

A =
(
c13 α

(1)
x + c33 α

(1)
z l

(1)
z

) (
α
(3)
x l

(3)
z + α

(3)
z

)
,

B =
(
c13 α

(3)
x + c33 α

(3)
z l

(3)
z

) (
α
(1)
x l

(1)
z + α

(1)
z

)
,

α(n)x = −(c13 + c55)l
(n)
z , α(n)z = c11 + c55l

(n)2
z − ρv2 for n = 1, 3.

and for φ = 90◦

A =
(
c23 α

(1)
x + c33 α

(1)
z l

(1)
z

) (
α
(3)
x l

(3)
z + α

(3)
z

)
,

B =
(
c23 α

(3)
x + c33 α

(3)
z l

(3)
z

) (
α
(1)
x l

(1)
z + α

(1)
z

)
,

α(n)x = −(c23 + c44)l
(n)
z , α(n)z = c22 + c44l

(n)2
z − ρv2 for n = 1, 3.
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The dispersion formula for SH modes is very simple,

sin
(
2 l(5)z kd

)
= 0 ⇒ l(5)z = Nπ/2kd for N = 0, 1, 2, . . . (5)

2. Direction of wave propagation 0◦ < φ < 90◦

The dispersion formula can be written for symmetric modes as

cot
(
l(1)z kd

)
A+ cot

(
l(3)z kd

)
B + cot

(
l(5)z kd

)
C = 0, (6)

and for antisymmetric modes as

tan
(
l(1)z kd

)
A+ tan

(
l(3)z kd

)
B + tan

(
l(5)z kd

)
C = 0, (7)

where

A =
(
D
(3)
x D

(5)
y −D

(5)
x D

(3)
y

) [
D
(1)
z +

(
E
(1)
x − E

(1)
y

)
cosφ (c13 − c23)

]
c44c55,

B =
(
D
(5)
x D

(1)
y −D

(1)
x D

(5)
y

) [
D
(3)
z +

(
E
(3)
x − E

(3)
y

)
cosφ (c13 − c23)

]
c44c55,

C =
(
D
(1)
x D

(3)
y −D

(3)
x D

(1)
y

) [
D
(5)
z +

(
E
(5)
x − E

(5)
y

)
cosφ (c13 − c23)

]
c44c55,

D
(n)
x = α

(n)
x l

(n)
z + α

(n)
z ,

D
(n)
y = α

(n)
y l

(n)
z ,

D
(n)
z = α

(n)
z l

(n)
z c33 + α

(n)
x c23,

E
(n)
x = α

(n)
x cosφ,

E
(n)
y = α

(n)
y sinφ,

α
(n)
x = c33 g1 l

(n)4
z + (g1 g2 + c33 g3 − g24) l

(n)2
z + g2 g3,

α
(n)
y = −c33 g5 l

(n)4
z + (g4 g6 + c33 g7 − g2 g5) l

(n)2
z + g2 g7,

α
(n)
z =

(
(g4 g5 − g1 g6) l

(n)2
z − (g3 g6 + g4 g7)

)
l
(n)
z ,



for n = 1, 3, 5

g1 = sin2 φ c55 + cos2 φ c44,
g2 = sin2 φ c44 + cos2 φ c55 − ρ v2,
g3 = sin2 φ cos2 φ (c11 − 2 c12 + c22 − 4 c66) + c66 − ρ v2,
g4 = sinφ cosφ (c23 − c13 + c44 − c55) ,
g5 = sinφ cosφ (c44 − c55) ,
g6 = sin2 φ (c23 + c44) + cos2 φ (c13 + c55) ,
g7 = sinφ cosφ (c12 − c22 + 2 c66 + (c11 − 2 c12 + c22 − 4 c66) cos2 φ) .

The planes of symmetry (φ = 0◦ and 90◦) were investigated at first. In this case, the SH
modes are uncoupled from the symmetric and antisymmetric modes. The dispersion relations
for direction of wave propagation are shown for φ = 0◦ in fig. 2 and for φ = 90◦ in fig. 5.
The dispersion formulae for direction of wave propagation φ = 30◦ are displayed in fig. 3 and
for φ = 60◦ in fig. 4.

The material parameters for computations were: c11 = 128.2 GPa, c22 = c33 = 14.95 GPa,
c44=3.81 GPa, c55= c66=6.73 GPa, c12= c13=6.9 GPa, c23=7.33 GPa and ρ=1580 kg/m3

(carbon composite), [3].
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Fig. 2. The dispersion curves for direction of wave propagation 0◦.
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Fig. 3. The dispersion curves for direction of wave propagation 30◦.
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Fig. 4. The dispersion curves for direction of wave propagation 60◦.
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Fig. 5. The dispersion curves for direction of wave propagation 90◦.
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2.2. False curves

During computing of the dispersion curves for orthotropic thick plate, we met the occurrence
of false dispersion curves. A plot of computed dispersion branches for symmetric modes for
direction of wave propagation φ = 45◦ is shown in fig. 7 - left. Two false nondispersion curves
are displayed by dashed lines in the figure. These curves intersect the other curves, that is in
conflict with theory. Since we were interested in the reason of false root occurrence, we plotted
the left-hand side of equation (6), see fig. 7 - right. The location of false roots is marked out
by arrows. The function intersects zero value as it is seen in the figure. Hence, the numerical
programme detected the intersections with zero as valid roots of dispersion curves. We had to
find some other method how to remove these false roots. We plotted graphs of parameters A, B,
and C from equation (6) in a vicinity of these false roots, see fig. 8 (real part is black, imaginary
is grey). It is clear from figure that all of three parameters A, B, and C are equal zero for the
false roots. Hence, the equation (6) is valid. The programme was updated for detection of the
false roots. The detection is based on finding zero values of all three parameters A, B, and C.

A plot of computed dispersion branches of antisymmetric modes is shown in fig. 9 - left for
direction of wave propagation φ = 45◦. Only one nondispersion curve appeared in the figure.
This curve intersects again the other curves. Left-hand side of equation (7) is plotted in fig. 9 -
right. From this figure, it is again clear that function intersects zero value. In the same way as
in symmetric case, the false root is caused by zero values of three parameters A, B, and C,
see fig. 8. Following analysis shows that displacements for symmetric as well as antisymmetric
modes vanish in these false roots.

The distributions of false roots (velocities) on direction of wave propagation for both modes
are shown in fig. 6.
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Fig. 6. False velocities for angle φ.
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Fig. 7. The dispersion curves for symmetric modes and φ = 45◦; plot of function (6).
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Fig. 8. Plot of parameters A, B, and C for φ = 45◦.
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Fig. 9. The dispersion curves for antisymmetric modes and φ = 45◦; plot of function (7).
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3. Displacements

The plate displacements were computed according to eq. (2). The displacements ux(z) and
uz(z) for direction of wave propagation φ = 30◦, φ = 45◦, and φ = 60◦ are shown for the first
ten dispersion curves in fig. 10. The displacements for symmetric modes are shown on the left
side of the figure and for antisymmetric modes on the right side of the figure.

Note the displacements ux(z) for symmetric modes and the displacements uz(z) for an-
tisymmetric modes are even functions of z. On the other hand, the displacements uz(z) for
symmetric modes and the displacements ux(z) for antisymmetric modes are odd functions of z.
It is in agreement with the theory.

symmetric modes antisymmetric modes︷ ︸︸ ︷ ︷ ︸︸ ︷

ux (z)

1

uz(z)

2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

ux (z)

uz(z)

ux (z)

uz(z)


30◦


45◦


60◦

Fig. 10. Displacements ux and uz for φ = 30◦, 45◦, and 60◦.
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4. Stresses

The stresses Txz, Tyz, and Tzz are shown for direction of wave propagation φ = 30◦, φ = 45◦,
and φ = 60◦ and the first ten dispersion curves in fig. 11. The stresses for symmetric modes are
shown on the left side of the figure and for antisymmetric modes on the right side of the figure.

The stresses Txz(z) and Tyz(z) for symmetric modes and the stresses Tzz(z) for antisymmetric
modes are odd functions of z, while the stresses Tzz(z) for symmetric modes and the stresses
Txz(z) and Tyz(z) for antisymmetric modes are even functions of z. Note that according to
boundary conditions (1) the stresses on the surfaces vanish.
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Fig. 11. Stresses Txz , Tyz , and Tzz for φ = 30◦, 45◦, and 60◦.
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5. Conclusion

The knowledge of the dispersion curves of orthotropic plates is very important for advanced
ultrasonic nondestructive method, for example the guided wave method. The distributions
of displacements and stresses across the plate thickness play important role in the location
of ultrasonic transducers on plate surface.

The analytical formulation of dispersion curves was used for obtaining of the state of stress
of thick plate for arbitrary direction of wave propagation in orthotropic plate. We used the system
for symbolic calculation Maple, [4], for derivation of dispersion curves. The computed dispersion
curves are presented for the unidirectional composite.

The false roots, appearing in the numerical computation of thick plate dispersion curves
from orthotropic materials, were mentioned and analyzed. The algorithm for removing of false
dispersion curves was included into programme for calculation of dispersion curves.

Displacements and stresses are presented for certain directions of wave propagation and for
the first ten dispersion curves at the end of the paper.

All calculation were performed in MATLAB, [5].
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