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Lecture:



• Deformation

= change in the shape and/or volume of a material under the action 

of applied force

• Fracture (ultimate mechanical behaviour)

= local separation of a material into 2 or more pieces under the

action of applied force

Macroscopic mechanical behaviour



Deformation

Whenewer a force is exerted on a solid material, the material will deform in 

response to the force.

•Tensile force •Compressive force •Shear force



Deformation – stress and strain
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Experimental supplement – tensile testing
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Experimental supplement – tensile testing

TENSION STRENGTH σσσσM - the maximum tensile stress sustained by the specimen during
a test (TS at yield, TS at break) 

YIELD STRESS σσσσy, YIELD STRAIN εεεεy - (YIELD POINT – the first point on the stress-strain
curve at which an increase in strain occurs without
an increase in stress)

STRESS AT BREAK σσσσb, STRAIN AT BREAK εεεεb

MODULUS OF ELASTICITY (YOUNG MODULUS) E – stiffness, ≈ slope of the stress-strain
curve in the elastic region
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Elasticity (linear)

•At low strains for all materials
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Straightening of molecular chains 

Deformation of bonds between chains



Temperature dependence of modulus

Ex. PS
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Elasticity (non-linear)

•At low stresses (but large deformations) for elastomers (rubber elasticity)
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Uncoiling, untwisting and 

straightening of the chains

∆S < 0

∆S > 0
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Viscoelasticity

•Load application
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•Mechanical response (Deformation)

•Solids - Elastic behaviour •Liquids – Viscous flow •Polymers – Viscoelastic behaviour



Viscoelasticity (linear)

Creep – deformation of a material over time due to the application of a constant 
load
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Relaxation – stress relaxation over time in a material deformed at a constant 
strain
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Viscoelasticity – Kelvin (Voight) model

Creep
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Viscoelasticity – Boltzmann superposition principle

Creep is a function of the entire past loading of the material

Each loading step makes an independent contribution to the final deformation –

the total deformation can be obtained by addition of all the contributions
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Viscoelasticity – Time/Temperature superposition

Shift factor aT : WLF (Williams, Landel, Ferry) Eq., Arhennius Eq.

Viscoelastic behaviour at one temperature can be related to that at another 
temperature by a change in the time-scale

Copy: IM Ward, Mech. Props of Solid Polymers



Viscoelasticity – Maxwell model
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Viscoelasticity – Multi-element models

Zener Tucket
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Viscoelasticity – dynamic mechanical measurements
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Viscoelasticity – dynamic mechanical measurements
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Viscoelasticity – dynamic mechanical measurements
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Viscoelasticity – dynamic mechanical measurements
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Ex. PP



High strain behaviour and failure
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Plasticity - high strain behaviour

•Viscoelasticity – changes in macromolecules’ conformations

•Plasticity – large, permatent morphological changes (chain orientation, 

lamelar → fibrillar morphology)

AMORPHOUS POLYMERS

• above Tg

•Chain stretching, rotating, disentagling, sliding



Plasticity - high strain behaviour

SEMICRYSTALLINE POLYMERS

Copy: WD Callister, Materials Sci and Engineering



Plasticity - high strain behaviour

SEMICRYSTALLINE POLYMERS

Copy: WD Callister, Materials Sci and Engineering



Necking – bulk plasticity
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Crazing – localized plasticity

craze

crack



Mechanical behaviour – effects of time and temperature

Mechanical characteristics are highly sesitive to:

•strain rate

•environment /thermal & chemical/ 

Ex. PMMA

Increasing temperature causes the same effect as decreasing strain rate

Copy: WD Callister, Materials Sci and Engineering



Fracture

TOUGHNESS – the ability of material to withstand the energy of a sudden impact

MODES OF FAILURE

BRITTLE FRACTURE

linear relationship between load and deformation

Ex. Ordinary window glass

highly localized crazing

DUCTILE FRACTURE

requires sufficient mobility of polymer chain segments

multiple crazing and/or shear yielding (plastic flow without 

crazing)

High impact strength does not necessarily imply ductile fracture, nor                         

does brittle fracture necessarily imply low impact strength!

Ex. Glass-reinforced polyester resin: extremely high impact strength, brittle failure

!



Experimental supplement – Charpy impact testing

unnotched impact strength au = impact energy/cross section [J.m-2]
notched impact strength an = impact energy/ligament area [J.m-2]

Copy: WD Callister, Materials Sci and Engineering



Experimental supplement – Fracture mechanics
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Experimental supplement – Fracture mechanics

Toughness as a resistance against unstable crack growth

•LEFM  (KIC, Gc)

•Stress intensity factor                                        [MPa.m-1/2]

•EPFM  (JIC, COD)

•J-integral [N.mm-1]

Toughness as a resistance against stable crack growth

•R curves J = f(∆ a)

aYK πσ 2=



Experimental supplement – Fracture mechanics

Courtesy of W. Grellmann



Effect of structure on mechanical behaviour

•Effect of monomer or bonding between chains

The type of monomer influences the bonding between chains and the ability of the chains to rotate and slide past one 

another

Ex. PE easy rotation and sliding, no strong polar bonds between chains → low strength, low stiffness

Larger atoms or groups (Cl, CH3, benzene group) → more difficult rotation and deformation of the chain →

higher strength and stiffness

•Effect of monomers on bonding within chains

Oxygen, Nitrogen, Sulphur and benzene rings → more difficult rotation and sliding of the chains → higher strength and 

stiffness 

•Degree of polymerization

Increase in chain length → more tangled chains → improved strength

•Branching

Branching reduces the density, strength and stiffness

•Tacticity

Very important: atactic PP – isotactic PP

•Crosslinking

Thermosets: highly crosslinked polymer chains that form a 3D network structure → the chains cannot rotate andor slide 

→ good strength, stiffness and poor ductility

•Crystallinity

Increasing crystallinity → higher density, strength and stiffness



Effect of structure on mechanical behaviour

H – PE (Tg: –120 °C; T m: 130 °C, σy: 20 MPa)

CH3 – PP (Tg: –20 °C; T m: 170 °C, σy: 35 MPa)

Cl – PVC (Tg: 75 °C; σy: 45 MPa)

Benzene ring – PS (Tg: 100 °C; σM: 50 MPa)



Effect of structure on mechanical behaviour

Reflects all levels of structural hierarchy!

Ex. Isotactic PP

Courtesy of M.Raab
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