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Introduction
There are many problems of physics, which are modelled by the familiar diffusion
equation, namely
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where A is the Laplace operator. This equation describes not only the diffusion processes but
also many other phenomena such as heat conduction and others.

From a pure physical point of view, however, this equation is a little problematic because
it allows an infinite speed of propagation. This problem — well-known especially in connection
with the heat conduction — comes from the fact that the equation (1) is a parabolic one. Thus
from the physical point of view the propagation should be rather described by hyperbolic
equation, say
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where the correction 7 0°F/ot*, however small, changes essentially the character of solution.
This equation is usually called the telegrapher equation [1].

The correction leading to the telegrapher equation, however, completely violates an easy
physical explanation of the diffusion equation (1). Namely the equation (1) can be
straightforwardly derived from a simple statistical model based on a “random walk™ in space —
this is, in fact, the essence of diffusion. The key problem of a physical derivation of the
telegrapher equation (2) is a lack of a clear statistical interpretation of the process described by
(2).

In this paper we will present the famous work of M. Kac [2], in which statistical
interpretation of (2) is given. By using cellular automata [3] we will directly model the Kac’s
stochastic process and show thus the essential features of solutions of the telegrapher equation
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Cellular automata

Cellular automata can be characterised by the following fundamental properties [4]: They
consist of a regular discrete lattice of cells. Each cell is characterised by the state, which is
chosen from a finite set of states. The state of all cells are updated in discrete time steps
simultaneously and independent of one another. Each cell evolves according to the same rule,
which depends only on the state of the cell and the states of a finite number of neighbouring
cells. The neighbourhood is local and uniform.
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Figure 1: Definition of typical neighbourhoods which can be used in CA-simulations
(a) von Neumann, (b) Moore, (c) hexagonal [5].

There are many choices of the lattice definition. In two-dimensions, there are three
regular lattices, namely, square, triangular and hexagonal. There is no general restriction
concerning the size and the type of neighbourhood. The only restriction is that the size of
neighbourhood must be much smaller than the size of lattice. Let us define some formulas of
typical neighbourhoods in square lattice. For the nearest neighbourhood, the von Neumann
neighbourhood is described (see Figure 1a) by

Niy=ikD) e L[ k—i|+[l-j[<1}. 3)

Another common neighbourhood is the Moore neighbourhood composed from first and second
nearest neighbours (see Figure 1b)

Nij={(k)eL;|k-i[<1&|I-j|<1}. 4
The hexagonal neighbourhood is describe (see Figure 1c) by

DNy={kD) el |k—-i|<1&|l-j|<1&(k-i)(]-j)<l1}, (5)
DNy={kheLl;|k-i|<1&|l-j|<1&(k-i)(]l-j)>-1},

One of these neighbourhoods is used in odd times and the other is used in even times or vice
versa.
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A random walk model leading to the telegrapher equation

Following the work [2] we will consider a very simple stochastic model, a random walk,
which has very interesting features and leads not to a diffusion equation but to a hyperbolic one.
The problem is following: Suppose you have a lattice of points. We mean discrete, equidistant
points as in Figure2.

Figure 2: The spacing of the problem

Now we start a particle from the original x = 0 and the particle always moves with speed v. It can
move either in a positive direction or in the negative direction. We flip a coin, let’s say, to
determine which. Each step is of duration Az and covers a distance Ax. So we have Ax = vAt.
Each time you arrive at a lattice point there is a probability of reversal of direction. We assume
that aAt is to be this probability. Then, of course, 1 - aAf is the probability that the direction of
motion will be maintained. What is wanted is the probability that after certain time ¢ the particle
is at a certain interval.

Let x now stand only for abscissas of discrete points, the lattice points. And let us call the
displacement after time nAz. Now we will take a function ¢(x), an “arbitrary” function. And we
will ask for the average (p(x + S,)). This will really give us all we want — for example ¢@(x) could
be the characteristic function of an interval. In that case this average will simply be probability of
finding the particle in that interval after » steps if it started at the point x. But instead of talking
such a special function we will take more general one.

Now let us analyse the problem by introducing the following random variable:

| 1 with probability 1-aAt, ©)
~|-1 with probability Az,
and we consider a sequence of such independent random variables €, €3, ..., €,.1. Each of them

has the distribution (6) and they are all independent. In other words, we have a coin, an
extremely biased coin and the €’s are now the result of » independent tosses. Now we can very

easily write out the displacement. If we start in the positive direction from the origin then it will
be

S,=vAt(1+e€, teie; +e€1€3...€ ). (7)

Indeed, the first step will certainly take us a distance vAf in the positive direction. Now
we must toss our coin and find what will happen to velocity. It will change from v into €v, i.e.,
it will be maintained or reverse according to the outcome of the toss. So in the next step we will
move an additional distance €;v Af. And so it goes on, and you see how (7) comes about. If we
had started in the negative direction then the displacement would have been
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S,,‘Z-vAt(lJrel +ee; tejer...€p)=-S,. (8)
Now, let us consider the two functions

E,'(x) = (@(x + Sy)). (€))

Fy (x) = (@(x - Spn)). (10)
and write a recursion formula. First of all, let us write

F,f(x) =(@[x + vAt + vAte(1+ertesest...+er€e3...€,1)] ). (11)

Let us notice we have factored out €;. Now the averaging is really just a weighted sum over all
possible sequences of €’s. The weight are dictated by the probability distribution. But we can
perform the averaging in two different steps. We can first perform the average on €;, and then
on all the remaining €’s. So let us first of all average on €. This variable can assume the value —
1 with probability aA¢; and it can assume the value +1 with probability 1- aAz. So we can simply
write

F, (x) = aAt (@[x + VAt - vAt (1+erterest+..)]) (12)
+ (1- aAt) (p[x + VAt + VAt (1+erterest. )] ).

The averages have exactly the same form as before — except that x is replaced by x + vAf and 7 is
replaced by n-1. This gives us the formula

F, (x) = aAt F_1(x+ vA?) + (1 - aAf) F',_1(x+ vA?). (13)
In exactly the same way we can obtain another relation using F,". It is
F, (x) = aAt F',1(x- vAD) + (1 - aAf) Fy - 1(x- vAL). (14)

So now we have a system of recursion relations.
Now the standard way is to pass from these difference equations to a differential equation
in the limit Az —0. In order to pass from the discrete to continuous, notice first of all that »

measures time. Actually, n is the number of steps and nAf is the equal to our time z. Now let us
rewrite relation (13):

F,(0)-F_ () _FL(+vA)-F (%)
At At

—aF’ (x+VvAt)—aF,  (x+vAt).  (15)

And now we can pass to the limit to get
oF"  OF"

=V

ot Oox

—aF" +aF". (16)

There is no n anymore, because we went to the limit. From the other relation, (14), we get in a
similar way
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ai:—vai-i-aFJ'—aF_. (17)
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Now, these two linear equations of first order can be combined into a hyperbolic equation. For
this purpose we will introduce two new functions:

F=1(F +F") and G=3(F -F). (18)
Now, add up equations (16) and (17). Then we get, in this notation,

oF _, 96 (19)
ot Oox

Now subtract (17) from (16) to get

@:vai—ZaG. (20)
ot ox

Now the problem is to eliminate G. To do this, differentiate (19) with respect to ¢ and (20) with
respect to x. Everything then becomes obvious, and we obtain

2 2
10°F_ O'F 2a0F o
v Ot ox v Ot

This is a nothing but the telegrapher equation (2) in one dimension. A generalisation for more
dimensional space can be done in a straightforward way — we obtain the Laplace operator instead
of the second derivative in (21).

Let us discuss a few points. First of all, there is one limiting case, which is extremely
easy. That is when a = 0. Then, of course, the probability of reversing direction is zero. If you
start moving in one direction, you never stop. What would F(x, #) be? There are no reversals of
direction and no random variables. So from (9) we see that F, (x) = ¢(x + nvAf) and from (10)
that F, (x) = o(x - nvAf). So it follows that

F(x.0) = o(x+vt) ;— o(x —vt) ‘ (22)

And that, of course, is a well-known classical case of the vibrating string.

We can get something different if we send a— o and v— o in such a way that 2a/A’
remains constant, say 1/D. This can always be done, and we are allowed to choose D anyway we
want to. This limiting case of equation (21) then becomes the diffusion equation (1) in one
dimension,

1o OF

DE—VGXZ . (23)
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The reason why we must let @ and v go to infinity is as follows: The diffusion can be looked on
as a random walk. But in the standard model the probability of a move to the right or left is one-
half. Now we see the probabilities in our model are either extremely small or extremely large.
The only way they can be brought to where they will be one-half and one-half is to let a
approach infinity as Az goes to zero. If @ does not go to infinity, there will always be a drift. We
know, also, from the random walk model that the velocity of a particle is infinite in limit. So we
have to let v also go to infinity.

The cellular automata model

We use the square lattice for our model. The neighbourhood is created by two neighbour
cells: left and right. Following properties of model were used for observation the largest number
of particles: Each of particles moves only in two directions, left and right. The motion of
separate particles is independent. Therefore we can understand one column of the lattice as a
cell. We choose 64000 particles to start walking from original cell (x = 0) in two directions - left
and right. The probability of motion in both direction is one half. It is our initial condition. Let
us choose the time step

At=1. (24)

It means that at each following time step any particle can reverse direction with probability a
(see (6)), 1.e. 1 - a is the probability that the direction of motion will be maintained. At each time
we observe the position of all particles. A distribution of particles then gives an approximate
solution of the telegrapher’s equation at time . We model this simulation for several different a.
Results are presented for a = 1/2, 1/7, 1/10, 1/15, 1/20,1/50. The choice a = 1/2 leads to diffusion
behaviour because the time step equals “one” and no continuum limit A¢# — 0 is done. When we
compare the dependence obtained by using various a we can see clearly the change of the
probability distribution (see Figure 3).

At the Figure 3 we can see six graphs for various probabilities of inverting the velocity
direction. At each graph there are ten curves modelling the distribution of particles after ten time
steps. That is the first curve corresponds to the distribution of particles after ten time steps and
the last one corresponds to that after one hundred time steps.

As seen from the graphs the distribution of particles during the time evolution is strongly
influenced by the probability of the velocity inversion, a. If this probability equals one half the
distribution of particles gives the Gaussian distribution. With decreasing value of the probability
a more and more particles move at the maximal distance which can be reached by the previous
steps (the probability of the velocity inverting is very small). This is nothing but a wave moving
with the velocity =1 (in our “one-one” space-time units). Thus we easily see the wave behaviour
“hidden” in the stochastic process (random walk) (6). The fact that the continuum limit of this
process gives the telegrapher equation is now clearer: a hyperbolic equation does not allow an
infinite speed of propagation of a pulse — any pulse cannot exceed the velocity

v=\/5 25)
T

In our model this maximal velocity equals 1. In fact, the solution of the telegrapher equation is a
combination of a wave motion and the diffusion “smearing out”. The combination of the both
processes can be also seen at graphs with an intermediate parameter a.
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Simulation for a = 1/2
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Figure 3. Comparison of behaviour of model for various probability of reverse direction.

Conclusion

In the paper we model a special one-dimensional random walk problem by using the
cellular automata. The “walk” corresponds to a process in which the direction of velocity can
immediately invert into the opposite one. As known, this process leads in the continuum limit
into the telegrapher equation. The use of the cellular automata, however, allows us to study
directly the stochastic process alone without a limit sending time and space steps into zero.
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The results show that by using 64000 particles we obtain perfectly stochastic behaviour.
The tendencies obtained by the cellular automata modelling correspond exactly with those
gained by a solution of the telegrapher equation. Moreover, the results are transparent and easily
explainable. It supports the idea being presented in many studies concerning the cellular
automata and other discrete methods that the continuum approach, regardless its enormous
power and applicability, is maybe more complicated than a discrete modelling because Nature
seems to be more discrete than continuous.
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Resume
The work deals with modeling a random walk procedure simulating the solution of the
telegrapher equation. The problem is formulated and solved by using the cellular automata.



