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1 Introduction

The relationship between the number of species and the area sampled is one of the
oldest and best-documented patterns in community ecology. A species-area relationship
(SAR) describes the dependence of the number of species found in a censused patch of
habitat on the area of that patch. It is conventional to use power law of an SAR,

S(A) = cAz, (1)

where S is the number of species found in an area A, and c and z are constants [1].
The exponent z is close to 0.25 for several theoretical models and much field data
[2], but there are also data where z is less than 0.25 (e.g. with smaller, plant-sizes
quadrants [3]), and data where the slope is greater than 0.25 (e.g. on islands, and
at large scales generally). In general, z may take on different values at very different
spatial scales. The equation (1) is interesting and useful if z is constant across a large
range of areas; an enormous amount of experimental evidence [2] suggests this power-
low form is indeed often valid over a range of at least one or two orders of magnitude
of area. If the fraction of species in area A that are also found in one-half of that area
is independent of A, distribution of species is self-similar. It can be easily shown that
the self-similarity gives the power law (1) with a constant z [4].
Any concrete distribution of species over an area is influenced by an enormous

amount of effects: How many individuals belong to individual species, what is character
of landscape and niches they live in, how individuals and species interact each other
because of their entanglement into an extremely complicated net of mutual relations
(such as food chains), how they move, migrate and so on. From this point of view,
such an extremely simple law as (1) with a constant z looks like a miracle. A striking
fact is an (at least approximate) self-similarity, which calls for an explanation based on
some simple, fundamental principles. The problem, however, is that we have no some
basic ”ecological” laws (such as those in physics) and thus we do not know what ideas
(physical laws?) should be important for such considerations.
In this paper we use only geometrical ideas to formulate an extremely simple model

of a species distribution. A big advantage of this model is its formulation in an infinite
plane which guarantees scale invarianceand enables us to find results in a pure self-
similar form. We neglect all complications and imagine individuals of any species as
points randomly distributed over an infinite plane. In fact, the ”infinite plane” means
that the area where a species is studied is much larger than a characteristic region of
a typical ”cluster” formed by individuals of this species.
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2 Randomly distributed points on a plane

The body of the problem of distribution of species lies in the following question [4]:
If we know that an individual of a species is in a rectangle what is a probability p that
we can find an individual of the same species in a given half (e.g. right) of the rectangle.
If this probability does not depend on the size of rectangle, we obtain the power law
(1) and the relation between p and z is [4]

p = 2−z. (2)

In fact, this dependence describes an area relationship for one species. The question
whether it can model a species-relationship will not be solved here.
Let us imagine individuals of one species as points randomly distributed over an

(infinite) plane in which a rectangle R with sides L and
√
2L is located. The above

problem can be formulated for this situation as well: If we know that there is a point
in R what is a probability p that there is a point in its right half RR (a rectangle
L× L/

√
2).

However, the infinity of plane makes a problem: The probability of a concrete dis-
tribution of points on infinite plane is ill-defined (there is no probability measure to
define it). On the other hand, the infinity of plane guarantees a manifest self-similarity.
Indeed, there is no length parameter connected with an infinite plane and thus the pro-
bability p (whatever its mathematical meaning may be) cannot depend on L. In other
words, if we use a rectangle with sides L′,

√
2L′ the probability of finding a point in

its left half must be the same as when using the previous one.
Therefore we must formulate the previous problem much more carefully. Let us

imagine a concrete cluster of N points in an infinite plane and a (”blind”) observer
having only one more information about this cluster (excepting the fact that it includes
N points): namely, that there is at least one point somewhere within the rectangle. The
observer may denote this (unknown) point a and think as follows: Surely there is a
(unique) square with sides parallel to the sides of the rectangle having a at its center
so that
1. all points of the cluster are within this square,
2. there is at least one point laying on the border of the square.
The observer denotes this (unknown) point b and the side of the square by an (unknown)
positive real number l (see Fig. 1). The crucial idea of our consideration consists in
the fact that the observer can determine the probability of finding a point in right half
of the rectangle with respect to the parameter l. In other words, though he does not
know this parameter he can calculate the probability P = f(N, l, L) as a function of
this parameter.
Let us calculate the probability P . Denoting by c an arbitrary point different from

a and b (see Fig. 1) the probability P is defined as follows

P = P (a ∈ RR)+P [(a 6∈ RR) ∧ (b ∈ RR)]+P [(a 6∈ RR) ∧ (b 6∈ RR) ∧ (c ∈ RR)], (3)

Now we introduce co-ordinate x, y of point a in the left half of rectangle RL, further-
more we mark by B(x, y) the intersection of our square with the right half of rectangle
RR and the intersection of the border of square with the right half of rectangle by
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Figure 1: A square area with side l includes N = 6 individuals, one individual a is in
the center, the individual b is on the border and the others N − 2 individuals c are
inside the square.

h(x, y) (see Fig. 2). The probability that at least one of N individuals (which are in

square with the area l2) falls into the patch B is 1−
(

l2−B
l2

)N

.

Figure 2: B - the intersection of square with area l2 with the right half of rectangle
RR, h - the intersection of the border of the square with the right half of rectangle RR,
x, y co-ordinates of point a in the left half of rectangle RL.

The equation (3) can be written in the form:

P =
1
2
+

1
2

L∫
0

L/
√
2∫

0

h(x, y)
4l

√
2dxdy

L2
+ (4)

+
1
2

1− L∫
0

L/
√
2∫

0

h(x, y)
4l

√
2dxdy

L2

 L∫
0

L/
√
2∫

0

(
1−

(
1− B(x, y)

l2

)N−2
) √
2dxdy

L2
,

where B(x, y) and h(x, y) depend on L,l and a concrete position of the point a, i.e. on
the coordinates x, y:
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(L ≥ l)

B(x, y) = (l/2− x)(y + l/2), h(x, y) = l − x+ y
if x ∈ (0, l/2), y ∈ (0, l/2)

B(x, y) = l(l/2− x), h(x, y) = 2(l − x)
if x ∈ (0, l/2), y ∈ (l/2, L− l/2)

B(x, y) = (l/2− x)(L− y + l/2), h(x, y) = l + L− x− y
if x ∈ (0, l/2), y ∈ (L− l/2, L)

B(x, y) = 0, h(x, y) = 0
if x ∈ (l/2, L/

√
2), y ∈ (0, L)

(5)

(L < l <
√
2L)

B(x, y) = (l/2− x)(y + l/2), h(x, y) = l − x+ y
if x ∈ (0, l/2), y ∈ (0, L− l/2)

B(x, y) = L(l/2− x), h(x, y) = L
if x ∈ (0, l/2), y ∈ (L− l/2, l/2)

B(x, y) = (l/2− x)(L− y + l/2), h(x, y) = l + L− x− y
if x ∈ (0, l/2), y ∈ (l/2, L)

B(x, y) = 0, h(x, y) = 0
if x ∈ (l/2, L/

√
2), y ∈ (0, L)

(6)

(
√
2L < l < 2L)

B(x, y) = (y + l/2)L/
√
2, h(x, y) = L/

√
2

if x ∈ (0, l/2− L/
√
2), y ∈ (0, L− l/2)

B(x, y) = L2/
√
2, h(x, y) = 0

if x ∈ (0, l/2− L/
√
2), y ∈ (L− l/2, l/2)

B(x, y) = (L− y + l/2)L/
√
2, h(x, y) = L/

√
2

if x ∈ (0, l/2− L/
√
2), y ∈ (l/2, L)

B(x, y) = (l/2− x)(y + l/2), h(x, y) = l − x− y

if x ∈ (l/2− L/
√
2, L/

√
2), y ∈ (0, L− l/2)

B(x, y) = L(l/2− x), h(x, y) = L

if x ∈ (l/2− L/
√
2, L/

√
2), y ∈ (L− l/2, l/2)

B(x, y) = (l/2− x)(L− y + l/2), h(x, y) = l + L− x− y

if x ∈ (l/2− L/
√
2, L/

√
2), y ∈ (l/2, L)

(7)

(2L < l < 2
√
2L)

B(x, y) = L2/
√
2, h(x, y) = 0

if x ∈ (0, l/2− L/
√
2), y ∈ (0, L)

B(x, y) = L(l/2− x), h(x, y) = L

if x ∈ (l/2− L/
√
2, L/

√
2), y ∈ (0, L)

(8)
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(4L < l)
B(x, y) = L2/

√
2, h(x, y) = 0

if x ∈ (0, L/
√
2), y ∈ (0, L) (9)

For simplification we use notation as follows:

r =
L

l
α =

x

l
, β =

y

l
, σ(α, β) =

B(x, y)
l2

, λ(α, β) =
h(x, y)

l
(10)

Denoting

Iλ =

r∫
0

r/
√
2∫

0

λ(α, β)dαdβ, Iσ =

r∫
0

r/
√
2∫

0

(
1− (1− σ(α, β))N−2

)
dαdβ (11)

we can write (4) in the form:

P =
1
2
+

1

4
√
2r2

Iλ +
1√
2r2

(
1− 1

2
√
2r2

Iλ

)
Iσ. (12)

After a straightforward integration, we obtain:
if r ≥ 1

Iλ =
3r − 1
4

, (13)

Iσ =
1
2
− 2
(N − 1)

N−1∑
i=1

3i − 2i

i 4i
+
(r − 1)

(
N − 3 + 22−N

)
2 (N − 1)

, (14)

if 1/
√
2 < r < 1

Iλ =
3r − 1
4

, (15)

Iσ =
r

2
− 2
(N − 1)

N−1∑
i=1

3i − 2i(2− r)i

i 4i
+
(1− r)

(
r − 2 + 2

(
1− r

2

)N)
r (r − 2) (N − 1)

, (16)

if 1/2 < r < 1/
√
2

Iλ = −r3 +
r2

2

(
4
√
2 + 1

)
− 3r
4

(√
2 + 1

)
+
1
4
, (17)

Iσ =
r2√
2
+

√
2(1−

√
2r)

r(N − 1)

[(
1− r2√

2

)N−1

−
(
1− r

2
√
2

)N−1
]

(18)

−1− r(
√
2 + 1) +

√
2r2

2

(
1− r2√

2

)N−2

− 2
N − 1

n−1∑
k=1

(
N − 1

k

)
1
4k k

[(
2r
(√
2r − 1

))k

−
(√
2r − 1

)k

+
(
−
√
2r
)k

−
(
−2
√
2r2
)k
]

+
r − 1

r (N − 1)

[(
1− r

2
+

r2√
2

)N−1

−
(
1− r2√

2

)N−1]
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if 1/2
√
2 < r < 1/2

Iλ = r2
(√
2r − 1

2

)
, (19)

Iσ = r2
(√
2− 1√

2

)
− r

(
1
2
− r√
2

)(
1− r2√

2

)N−2

(20)

− 1
N − 1

[(
1− r

2
+

r2√
2

)N−1

−
(
1− r2√

2

)N−1]
(21)

and if r < 1/2
√
2

Iλ = 0, (22)

Iσ =
r2√
2

(
1−

(
1− r2√

2

)N−2)
. (23)

Substitution integrals Iλ, Iσ into (12), we get following values for separate r:

P(r≥1) =
1
2
+
3r − 1
24
√
2r2
+

1√
2r2

(
1− 3r − 1
23
√
2r2

)
s(N, r), (24)

where

s(N, r) =
1
2
− 2
(N − 1)

N−1∑
i=1

3i − 2i

i 4i
+
(r − 1)

(
N − 3 + 22−N

)
2(N − 1)

, (25)

P(1/
√
2<r<1) =

1
2
+
3r − 1
24
√
2r2
+

1√
2r2

(
1− 3r − 1
23
√
2r2

)
t(N, r), (26)

where

t(N, r) =
r

2
− 2
(N − 1)

N−1∑
i=1

3i − 2i(2− r)i

i 4i
−
(1− r)

(
r − 2 + 2

(
1− r

2

)N)
r (r − 2) (N − 1)

, (27)

P(1/2<r<1/
√
2) =

1
2
+

u(N, r)
16 r2

+
1√
2r2

(
1− u(N, r)

8 r2

)
v(N, r), (28)

where

u(N, r) = −2
√
2r3 + r2

(
8 +

√
2
)
− 1√
2

(
3r
(√
2 + 1

)
− 1
)

(29)

and

v(N, r) =
r2√
2
+

√
2(1−

√
2r)

r(N − 1)

[(
1− r2√

2

)N−1

−
(
1− r

2
√
2

)N−1
]

(30)

−1− r(
√
2 + 1) +

√
2r2

2

(
1− r2√

2

)N−2

− 2
N − 1

n−1∑
k=1

(
N − 1

k

)
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1
4k k

[(
2r
(√
2r − 1

))k

−
(√
2r − 1

)k

+
(
−
√
2r
)k

−
(
−2
√
2r2
)k
]

+
r − 1

r (N − 1)

[(
1− r

2
+

r2√
2

)N−1

−
(
1− r2√

2

)N−1]

P(1/2
√
2<r<1/2) =

1
2
+

√
2r − 1

2

4
√
2
+

1√
2r2

(
1−

√
2r − 1

2

2
√
2

)
w(N, r), (31)

where

w(N, r) = r2
(√
2− 1√

2

)
− r

(
1
2
− r√
2

)(
1− r2√

2

)N−2

(32)

− 1
N − 1

[(
1− r

2
+

r2√
2

)N−1

−
(
1− r2√

2

)N−1]
(33)

P(0<r<1/2
√
2) = 1−

1
2

(
1− r2√

2

)N−2

(34)

The result is pictured by a three-dimensional graph at Fig. 3 where N ∈ [3, 100]. Let us
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Figure 3: Probability of occurrence of at least one of N individuals in the right half
of rectangle area in dependence on number of individuals N and on the rate r = L/l.
The asterisk denotes its maximal value for a concrete N .

notice that, for each N , the probability reaches a maximal value at a concrete r = L/l,
see Figs. 3, 4. For our ”blind” observer knowing only N this maximal probability
is a significant number characterizing in a way the situation (without any additional
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Figure 4: Probability of occurrence of at least one of N = 15; 100 individuals in right
half of the rectangle.

knowledge). Moreover, this number does not depend on L and thus it describes the
situation in a clear self-similar way. In the diagram at Fig. 5 its dependence on N is
shown. Using the formula (2) we get also the dependence of the parameter z on N
(see the second diagram at Fig. 5). A meaning of this dependence with respect to a
species-area relationship is not clear. Having many species distributed over the plane
each of them have different number of individuals and the maximal probability for each
of them is different.

3 Conclusion

In this paper, we formulate a problem of finding a point at right half of a rectangle
located on an infinite plane when we know that at least one point from a group of
N randomly distributed points on the plane lies within the rectangle. Though the
problem is ill-defined we find a consistent formulation using the size l of a minimal
square including all N points. This length is eliminated at the end by studying only
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Figure 5: Maximal probability of occurrence of at least one of N individuals in right
half and z in dependence on N for r = 0.25; 0.5; 1; 2.

the maximal probability for each N .
This problem has a close relation to the typical problem in community ecology,

namely the relationship between the number of species and the area sampled. The
crucial question concerning this pattern is its evident self-similarity being valid at
a broad extent of scales. Therefore we have found the results concerning randomly
distributed points in a manifest self-similar way. Though we have not derived the
correct exponent of the power law (1) we outlined a way which might lead to such a
result. It needs, however, a clear interpretation of what the maximal probability mean
and how to manipulate correctly with number of individuals of various species.
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Resumé: V práci je navržen způsob, kterým je možno přistoupit k objasňování šká-
lového vztahu mezi počtem druhů a velikostí plochy, na níž se vyskytují. Metoda je
založena na náhodném rozložení bodů na ploše.
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