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1 Introduction
A very important problem of biomechanics consists in finding reasonable mechanical models
of studied tissues. These models should be not only realistic but appropriately simple and
robust so that the number of ”free” parameters (usually very problematic to be determined
experimentally) be minimal. A typical tissue whose realistic mechanical model is very needed
is the muscle tissue [1], [2].
In this paper, we present a very simple mechanical model of muscular work within the

urethral tissue being able to close the urethra when stimulated and to open it when tending
to a passive state. The model is based on the so called scale dependent continuum approach
[3], [4], [5] in which the continual quantities are supposed to depend on the scale at which they
are studied. The approach allows us to formulate the continuum theory simultaneously at
least at two scales – a ’micro’ one at which individual contractile units are simply modelled
by using just two real parameters λi and the standard (macroscopic) scale at which we
study the macroscopic deformation of the urethral pipe. We model ’strain’ energy of these
contractile elements by using the idea of simple thermodynamic systems which have, in
the simplest case, the only one volume variable [6]. To define the change of the volume of
individual particles we introduce not only the standard deformation gradient but also that
defined at the lower scale. Though the tissue may be supposed to be incompressible from
the macroscopic point of view we shall show that a compressibility at the micro-scale plays
the crucial role. Namely it enables the living tissue to relax, i.e. find out a ”low” minimum of
energy at the microstructural level. This relaxation mechanism is very sensitive on a change
of microstructural parameters (such as changes of protein conformations within contractile
units) and, as a result, it allows to control effectively the stiffness of tissue at the macroscopic
level. When ”switching off” this mechanism (”dead” tissue) a striking change of mechanical
properties happens.
We formulate the model and propose a simple transformation of the Young modulus

measured on a dead tissue [7] to a crucial energetic parameter of the model of living tissue.
Then we find out a simple (two dimensional) model of the urethral wall enabling us to
explain two typical states of the urethra (the closed and open one) as just a result of some
microstructural changes within contractile units. The model gives correct values of pressure
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being measured at those states without using any additional ”free” parameter than that
above mentioned one, which is fully fixed by the measurement.

2 A simple scale dependent model
The continuum description identifies some parts of a deformable body – usually called the
particles – with material points. These points form a continuous structure modelling the body
so that an (actual) configuration of the body can be described by a vector function x : Ω→
Rn, i.e. x(X). In our approach each particle is understood to be a simple thermodynamic
system [6]. It means that it can exchange energy with its surrounding and has own state
variables (in standard continuum description the energy and state is connected only with a
relative position of particles). We ignore thermal effects and thus we can use the simplest
thermodynamic description in which the energy of the system is a function of its volume,
namely E(V ). We will study only elastic deformations and the energy E is understood to
be the strain energy stored in the particle as a result of its deformation. Since we work in
continuum description we introduce the relative change of volume, v ≡ V/Vr, where Vr is
the volume of the particle in the reference configuration, and, similarly, we will work with
the specific strain energy per unit mass, e, instead of E. Both quantities are scalar fields, i.e.
v(X) and e(X).
In continuum mechanics, the relative change of local volume is defined as v0 = | detF|.

However, understanding the particle as an infinitesimal thermodynamic system, v0 cannot
be a relative change of the volume of this system. We need more such systems (particles)
’surrounding’ that to determine v0 (F describes a relative change of positions of particles)
[8]. Generally, the field v can be different from v0. The crucial step of our approach is based
on the idea of the so called scale dependent continuum description: We suppose that the
deformation gradient is scale dependent, i.e. F can be understood as a function F(l), where
l is a characteristic length – scale. Moreover we assume that there is a scale lm at which
the deformation gradient F(lm) ≡ Fm describes inner deformations of individual particles so
that the relative change of the particle’s volume v is defined as

v = | detFm|. (1)

In what follows, the symbol F denotes the deformation gradient at some fixed scale l0,
l0 > lm, at which the macroscopic deformation of the body is studied.
The total specific strain energy is given by the sum of the deformation energy of individual

particles, e(v), and the strain energy coming from mutual interactions of individual particles.
The second one depends not only on the deformation gradient F because there is also an
influence of own deformations of particles. Namely the energy connected with couplings
of particles can be increased or decreased only by changing their own deformations – see
Fig. 1. This influence may be estimated by a correction ∼ M · (Fm − F) to the standard
deformation gradient, where the tensor M describes a measure of influence of the shape of
individual particles and will be called the microstructural tensor in what follows. Thus we
express the specific strain energy w as a function

w = W (Fef , v), (2)

where
Fef = F+M · (Fm − F) (3)

2



Figure 1: The interaction energy of particles can be changed by changing the size of particles
while the relative position of particles (described by the field F) is fixed.

and v is given by (1). Let us notice that if there are no scale effects, i.e. F = Fm, we
obtain the strain energy in a form w = W (F, detF), which corresponds with some useful
constitutive laws of standard continuum mechanics [9].
Let us restrict our discussion to elastic materials whose possible configuration minimizes

the integral

I =
∫
Ω
w(X)dnX (4)

within a suitable class of functions x(X) respecting boundary conditions. When solving the
problem of minimizing the integral (4) we can obtain two different solutions:
1. The microstructural tensor is fixed and we obtain a solution of (4) explicitly dependent
on microstructure.
2. We suppose that the structure at lower scale lm relaxes so that it minimizes the local
stored energy at any point X while F has a fixed value (we look for the shape of particle
minimizing the strain energy while positions of surrounding particles are fixed). In other
words, finding the minimal value over all possible tensors Fm (with fixed F) we obtain an
effective strain energy w0 defined at the scale l0, i.e.

w0(F,X) = min
Fm
W(Fef , detFm). (5)

Then the energy w0 instead of w is used in the minimizing problem (4).

3 Deformation of elastic, isotropic, uniform pipes
Let us study radial deformation of a pipe whose deformation is supposed to be the same
along the pipe. The pipe with radii Ra (inner) and Rb (outer) is exposed to the pressures
pa (internal) and pb (external) so that ∆p ≡ pa − pb > 0. Since the deformation is supposed
to be uniform (the same along the pipe) and radial we can describe it by the function r(R)
where R is the point in reference configuration. The principal values of the (macroscopic)
strain tensor F are r′ (≡ dr/dR) and r/R. Concerning the microstructure we suppose that,
in the cylindrical coordinate system, the tensor is diagonal too, i.e. we have

F =

(
r′ 0
0 r/R

)
, Fm =

(
α1 0
0 α2

)
. (6)
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The microstructural tensor is supposed to be of the form

M =

(
− λ1
1−λ1

0
0 − λ2

1−λ2

)
. (7)

Taking into account that the strain energy has its minimum at the reference configuration

Figure 2: A simple spring model with deformable particles

we can choose its quadratic approximation as follows

w(λi, αi, E,K) ≡
E

2

(r′ − α1λ1
1− λ1

− 1
)2
+

(
r/R− α2λ2
1− λ2

− 1
)2+K (α1α2 − 1)2 . (8)

where E and K are physical parameters, which should be determined by an experiment. In
fact, this model describes a simple model consisting of deformable particles interconnected
by linear springs so that λi = ∆X

p
i /∆Xi – see Fig. 2.

Living tissues may be supposed to be incompressible [1]. It means that there is no volume
change at the (macro) scale l0, i.e.

r′
r

R
= 1. (9)

If we study only the deformations with r ≥ R the condition (9) has the solutions

r(R) =
√
R2 + C, (10)

where the constant C depends on the pressure difference ∆p and the solution of the problem
reduces to specification of this dependence. As known ([5]), the minimizing problem leads
to the integral relation

∆p =
∫ Rb

Ra

1
r

(
ψ2 −

(
R

r

)2
ψ1

)
dR, (11)

where ψ1, ψ2 are partial derivatives (with respect to r′ and r/R respectively) of the strain
energy function. That can be defined by (8) or, by accepting the relaxation of microstructure,
it is defined by (5) at each point R, i.e.

ψ = min
α1,α2

w(λi, αi, E,K). (12)
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4 An identification of coefficients
To apply the model to a urethra we have to explain in which way we understand the model so
that the coefficients and parameters were correctly identified. In fact, the energy w depends
not only on some material coefficients, E and K, but also on the microstructural parameters
λi. As explained in [12] a change of these parameters can lead to an extremal change of
the energy (12) yielding a broad spectrum of mechanical properties of the studied material.
This is exactly what muscle tissue does. Thus we expect a deeper connection between these
parameters and some parameters describing muscle stimulation. It implies that the passive
state of muscle is defined by such λ’s giving the softest tissue.
Nevertheless, what happens if a piece of a tissue is not involved in living processes but it

is removed from the tissue and used as a measuring sample. May we identify its state as a
state having muscle tissue in a passive state? This question is extremely important because
we, in fact, measure mechanical properties on such a ”dead” tissue. A simple calculation
reveals that we cannot identify dead tissue with that in a passive state: A measurement of
the Young modulus of urethral tissue has been done [7] with the result EY ≈ 0.25MPa (it is
in a good agreement with other measurements given in various works). Calculating a small
deformation of an incompressible pipe with the Young modulus EY exposed by the pressure
difference ∆p we obtain the displacement

u(R) =
3
2
E−1

Y (R
−2
a −R−2

b )
−1R−1∆p. (13)

Taking into account characteristic values found in urethra (Ra ∼ 1mm, Rb ∼ 3mm, u(Ra) ∼
2mm) we see that the pressure must be in order of ∼ 105Pa. However, pressure measurements
[13] show that ∆p ∼ 5 · 103Pa! We see that living tissue seems to be softer that a ”dead”
one on which measurements are performed.
It motivates us to accept a hypothesis as follows: The ”living” tissue has a big ability

to relax, that means to ”find” the parameters αi solving the minimizing problem (12). The
”dead” one, in the contrary, has fixed fibers (living processes being stopped) and it cannot
relax and thus it seems to be much stiffer than the living one. This hypothesis allows us to
identify the parameters of our model. Let us calculate the deformation of a pipe having the
energy (8). The parameters αi are supposed to be near one (in fact they, when being fixed,
do not play an important role) and we obtain the displacement for small deformations

u(R) = 2E−1((1− λ1)
2 + (1− λ2)

2)−1(R−2
a −R−2

b )
−1R−1∆p. (14)

Taking an average value over all λ’s (0 < λi < 1) we obtain after comparing with (13)

E ≈ 2
3

(
1− π

4

)
EY , (15)

where EY is the measured Young modulus, EY = 0.25MPa, i.e. E ≈ 0.036MPa.

5 Numerical results
We solved numerically the minimizing problem (12) with E defining by (15) for various λ1 and
λ2. The coefficientK describing some micro-compressibility and must be high enough but it is
not determined. Nevertheless, numerical calculations show that forK ≥ 1MPa the results are
almost independent on K. Geometrical parameters of the urethra cross section at the closing

5



state and the state of full opening during micturition were defined as follows: ra(closed) =
1.5mm, ra(open) = 2.81mm as explained at Fig. 3. The only problem was to choose a suitable
reference configuration – we estimated Ra = 0.9mm. Since an effective thickness of the

Figure 3: The innermost part of the urethra (painted in grey) is a soft, ”forming” matter
whose inner energy seems to be negligible with that of muscular tissue. Thus it only ”trans-
ports the pressure” but its concrete shape may be neglect (it behaves like an incompressible
fluid – in open state it forms a thin layer).

urethral wall being important for its deformation (a white annulus at Fig. 3) is about 2.4mm
the parameter C is defined at the both states: C(open) = 7.09mm2, C(closed) = 1.44mm2.
Calculating numerically the minimizing problem (12) and then finding the pressure difference

Figure 4: Pressure difference in dependence on microstructural parameters. Roughly spea-
king, the ”flat parts” correspond to passive states, the rapidly increasing areas to stimulated
ones. An averaged value of ∆p over passive parts is around 5kPa.

(11) we obtain the ”landscape” of various micro-states – Fig. 4. We see that an average value
of pressure is around 7kPa, which corresponds to pressures measured at these two states:
∆p(open) = 5kPa, ∆p(closed) = 9kPa [13]. We can find precise values of micro-structural
parameters λi which gives the correct values of pressure at these states. Supposing λ1 is fixed
(because it describes the microstructural change at radial direction) we can estimate it to
be λ1 ∼ 0.1 because around this value we can find λ2’s corresponding to the both states.
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6 Conclusion

The model presented in this paper is based on a quadratic approximation of the strain energy.
In spite of that it gives a nontrivial non-linear model. The reason consists in the fact that
the energy is defined at some microscopic level and its macroscopic value is determined by
”relaxing” microscopic parameters to obtain a local minimum at each point of (macroscopic)
continua. However, this relaxation is not possible for any material – it seems as to be typical
for living tissue. By accepting this hypothesis we obtain correct results when modelling the
pressure dependence on deformation of urethra. We use the Young modulus measured on
”dead” samples of the tissue and by interpreting it in the above way we obtain the model
giving results in a good agreement with experiments and enabling us to model simulations
within muscle tissue. We would like to emphasis that this model has no free parameter, which
(being chosen ”properly”) could adjust the model so that it gives ”only” correct results (the
only problematic parameter is the reference radius Ra, nevertheless computer simulations
show that its choice influences the results only very small). That is why be believe that it
might lead to a better understanding of behaviour of tissue from the mechanical point of
view and be useful in formulating some more precise models taking into account a layered
structure of tissue and so on.
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Resume
A scale-dependent model of the urethral tissue is proposed. The model uses the deformation
gradient defined at two scales. A relaxation at micro-scales leads to an essential decreasing
of an effective Young modulus, which seems to be a typical feature of living tissues. It is
confirmed by our model of the urethral pipe in which that relaxation enables as to interpret
correctly the measured data of the tissue’s Young modulus and give a realistic model of
opening and closing the urethra in a good agreement with experiments.
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