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 We use the microcontinual approach [1] in description of 
a hyperelastic material whose actual state at the macroscopic 
scale is characterized by a minimal value of its (macroscopic) 
stored-energy. That means that each "particle" (a material 
point of the standard continuum description) is a deformable, 
elastic corpuscle whose micro-deformation is supposed to be 
homogeneous. The (macroscopic) deformation gradient, F, 
thus describes a relative change of distances of surrounding 
particles while a micro-deformation gradient Gmic describes 
own deformations of individual particles – see Fig. 1.  
 

 

Figure 1 
Individual particles can move and deform independently. 
Their relative displacements are described by the 
(macroscopic) deformation gradient F, their own deformation 
by a micro-deformation gradient Gmic and their relative 
volume change (which is independent on the macroscopic 
volume change, det F) by the term det Gmic. 
 
 
To guarantee stability of these micro-deformations the elastic 
energy stored in each corpuscle has to be a quasiconvex 
function [2], [3] of its micro-deformation gradient Gmic. It 
leads to an explicit dependence of the density of a microscopic 
stored-energy wmic (i.e. energy stored within individual 
particles and their mutual interactions defined at the 
microscopic scale) on a relative change of the volume of 
individual particles, det Gmic , i.e. 
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(there is also a dependence on F because of the dependence of 
wmic on mutual positions of particles). It is worth stressing that 
this volume change need not be constant if the material is 
incompressible at macroscopic scales. The occurrence of the 
term det Gmic then yields a nontrivial nonlinear behaviour in 
dependence on the way in which the microstructure 
"communicates" with changes at macroscopic scales. In the 
concrete, if the microstructure is fixed (no reaction on a 
change of the microstructure exists) the macroscopic stored-
energy, w, is defined by 
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and  the dependence on microstructure (as well as the term  
det Gmic alone) plays only a role of some “constant” 
correction. For example, in a quadratic approximation of the 
microscopic stored-energy the material behaves as a kind of 
the Neo-Hooke one.  

 However, when the microstructure can flexible adapt to  
changes of macroscopic conditions it continually minimizes 
its microscopic energy compatible with varying macroscopic 
arrangement, i.e. the macrosocpic stored-energy may be 
defined as follows 
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Then the ‘micro-volume’ term plays the crucial role even in a 
simplest quadratic approximation of wmic. In the concrete, it 
leads to an essential decreasing of macroscopic stiffness of the 
material [4] and, in turn, macroscopic behaviour of such a 
material is extremely sensitive on a change of microstructural 
parameters, which is a typical feature of muscle tissues.  
  To illustrate the approach we form a model of a 
deformable pipe from a (macroscopically) incompressible 
material approaching by its geometrical parameters the human 
(female) urethra. Let us approximate the cross-section of the 
urethra as an annulus with radii Ra (inner) and Rb (outer) 
exposed to pressures pa (internal) and pb (external) so that ∆p 
≡ pa − pb  > 0. Since the deformation is supposed to be radial 
we can describe it by the function r(R) where R is the point in 
the reference configuration. The principal values of the 
(macroscopic) strain tensor are  r' (≡ dr/dR)  and r/R.  The 
model is formed at microscopic scales by finding a reasonable, 
quasiconvex microscopic stored-energy – in fact, the energy 
coming from structural arrangements of individual fibers of 
the urethral tissue. It depends on some microstructural 
parameters describing approximately the arrangement of 
collagen fibers and actin and myosin filaments – see Fig. 2. 
 
 

Figure 2 
The structure of smooth muscular cells with actin and myosin 
filaments whose mutual movement control the muscular work. 
The microstructural parameters of our models are introduced 
to describe, at least approximately, these arrangement. 
 
For example, the  simplest case of such a quasiconvex micro-
energy function in two-dimensional case is a quadratic 
function including the quadratic dependence on det Gmic, say 
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where microstructural parameters λi correspond in a way to 
the actin-myosin relative displacement within individual 
muscle cells in radial and circular directions, αi are principal 
values of the micro-deformation gradient Gmic and E, K are 
some parameters which should be determined by mechanical 
measurements (it is worth noting that the last term coming 
from  the dependence of the micro-volume deformation  plays 
the crucial role in our model). However, mechanical 
measurements are usually done on samples of “dead” tissue. 
To overcome this problem we accept the hypothesis that the 
microstructure of a living tissue is rather adaptable to 
macroscopic changes while the "dead" one is approximately 
fixed – it corresponds to a fixation of some fibers when living 
processes were stopped1. Then, by using the model (1) with 
fixed microstructure, we are able to find correct values of the 
parameters E, K (by comparing the results obtained on the 
model with fixed microstructure with experimental data) as a 
function of the measured mechanical parameters (such as the 
Young's modulus) and, then, use them in the model describing 
the living tissue.  
 If now the microstructure is supposed to fully adapt a 
macroscopic arrangement by finding a value of micro-
deformation (given by the variables α i) minimizing the energy 
wmic at each (macroscopic) point (for any macroscopic 
deformation F) we use the model (2) and obtain a nontrivial, 
nonlinear (macroscopic) stored-energy w(F). Using this 
energy in the numerical solution of the pressure dependence 
on the pipe deformation we obtain an interesting dependence 
of the pressure in the urethra on the microstructural 
parameters λi.  
 

 

Figure 3 
The dependence of the pressure ∆p on the micro-structural 
parameters λ1 and λ2 for two deformation cases corresponding 
to the open state of the urethra (during micturition) and the 
closed one for fixed values of the mechanical coefficients E 
and K (E = 0.17 MPa and K = 1 MPa for the both figures).  
 
 

                                                                 
1 This assumption is supported by the measuring results themselves: 
A measurement of the Young modulus on a sample of "dead" urethral 
tissue gives the Young’s modulus EY  ≈ 0.25 MPa. Taking into 
account characteristic values of the urethra deformation found in 
urethral dynamics (Ra ~ 1mm, Rb ~ 3mm, deformation ~ 2mm) we get 
by a simple calculation that the pressure ∆p in a pipe from such a 
material must be in order of ~ 105 Pa. However, pressure 
measurements [5] show that ∆p ~ 5 ⋅ 103 Pa!  We see that the living 
tissue must be essentially softer that a sample of material removed 
from the tissue. 

This dependence was calculated especially at two states – that 
one describing the state when the urethra is closed and that 
corresponding to the opening of the urethra during micturition 
− see Fig. 3. Thus for the both states we could find the 
microstructural parameters λi giving the measured values of 
the pressure [5].  
 We form a more complicated models both postulating 
more general microscopic stored-energy functions (e.g. 
working with more microstructural parameters) and taking 
into account the layered structure of the urethral wall with 
different orientations of the actin filaments. These results 
enable us to study the effect of microstructural changes within 
the urethral tissue (e.g. during the muscle stimulation or after 
some pathological changes) on macroscopic, mechanical 
behavior of the urethra.  
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