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Abstract. We consider the wave equation with Preisach hysteresis and Riemann initial data
as a model for wave propagation in hysteretic (e. g. elastoplastic) media. The main result
consists in proving that in the convex hysteresis loop domain, there exists a unique self-similar
locally Lipschitz continuous solution. In other words, smooth rarefaction waves propagate in
both directions from the initial jump discontinuity.

Introduction
Wave propagation in media with Preisach hysteresis (elastoplastic, ferromagnetic, piezoelectric,
etc.) has some very particular features. The propagation speed is bounded above by the speed
corresponding to the linearized system, see [5]. Unlike the viscosity, the hysteresis dissipation
thus slows down the wave propagation. Moreover, regular scalar Preisach constitutive operators
admit a nontrivial convexity domain (−h, h) , which is manifested by the fact that if the input
function moves between −h and h for all times, then all increasing hysteresis branches are
convex and all decreasing branches are concave, see Figure 2. Some classes of operators
(including the so-called Prandtl-Ishlinskii operators arising in elastoplasticity, see [7]) are globally
convex with h = ∞ . In [6, Chapter III] it is shown how this convexity property implies the
validity of a higher order energy inequality, which can be used in turn to derive results on
existence and long time behavior of regular solutions to the wave equation with hysteresis.
Shocks thus do not appear under convex hysteresis if the data are smooth. A generalized form
of the convexity-based higher order energy inequality has been exploited in [2] in the context of
magnetohydrodynamic flow with hysteresis.

We prove here that in fact, even for discontinuous Riemann data, the solution in the convexity
domain becomes Lipschitz continuous for all positive times, that is, rarefaction waves propagate
in both directions. Only in the hysteresis output term, a stationary discontinuity at x = 0 may
persist for t > 0 .

This is in agreement with the observation made in [8], that maximally dissipating solutions
to the Riemann problem without hysteresis have the tendency to follow a convex/concave shock
path along the constitutive graph. Here, since smooth convex/concave paths are available due to
the hysteretic constitutive law, shocks have no reason to occur. Indeed, things will be different
if we leave the convexity domain. Then rarefaction waves will be followed by shocks and the
analysis will have to take into account additional “hysteresis entropy” conditions. This, however,
goes beyond the scope of this paper.

1 On leave at WIAS Berlin, Mohrenstr. 39, 10117 Berlin, Germany, E-mail krejci@wias-berlin.de.



The following text is divided into three sections. In Section 1, we state the problem and
the main existence and uniqueness result. Section 2 is devoted to an overview of properties of
the Preisach hysteresis model and a detailed proof of the convexity/concavity property of small
amplitude loops. The proof of the main result is given in Section 3.

1. Main result
Consider the problem of wave propagation in media with hysteresis governed by the system

{
vt = ux

(u + w)t = vx
(1.1)

in the halfplane (x, t) ∈ R × R+ , with a hysteretic constitutive relation between u and w of
the form

w(x, t) = F [λ(x, ·), u(x, ·)](t) , (1.2)

where F a Preisach operator defined in (2.1) below, with initial memory configuration λ .
System (1.1) can be interpreted as a dimensionless 1D problem for longitudinal elastoplastic

waves, where v is the velocity, u is the stress (identified with the linear elastic strain component),
and w is the plastic strain component.

The Riemann problem consists in choosing the initial conditions

v(x, 0) =
{

V+ for x > 0,
V− for x < 0,

u(x, 0) =
{

U+ for x > 0,
U− for x < 0,

(1.3)

where V±, U± are given constants, and the initial memory configuration

λ(x, r) =
{

λ+(r) for x > 0,
λ−(r) for x < 0,

(1.4)

for some elements λ± from the set

Λ =
⋃

h>0

Λh , Λh = {λ ∈ W 1,∞(R+) : λ(r) = 0 for r > h, |λ′(r)| ≤ 1 a. e.} . (1.5)

The set Λ is the state space for the Preisach model and r is the memory variable.
If F is the usual superposition operator F [λ, u] = g(u) with a monotone Lipschitz continuous

function g , then Problem (1.1)–(1.3) is invariant with respect to the one-parametric semigroup
of transformations

Pα : (u, v) 7→ (uα, vα) : uα(x, t) = u(αx, αt) , vα(x, t) = v(αx, αt) ,

parameterized by α > 0 . Invariant solutions with respect to {Pα : α > 0} are called self-
similar and can be represented by functions of one variable z = x/t . We will show in the
next sections that the invariance of (1.1)–(1.4) with respect to {Pα : α > 0} is preserved in
the case of Preisach hysteresis, too. However, hysteresis is an irreversible phenomenon, and the
concept of self-similar solution is meaningful only if we pass to the “forward self-similar” variable
τ = 1/|z| = t/|x| separately for x > 0 and x < 0 . The common boundary condition at x = 0 is
one of the unknowns of the problem and has to be identified. The same irreversibility argument
has been applied in [8] to the maximal entropy solutions of the p -system without hysteresis.

We state the main result of this paper in the following form.
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Theorem 1.1 Let F be the Preisach operator (2.1) and let Hypothesis 2.1 hold. Let (−h, h)
be the convexity domain of F , and let the numbers U+, U−, 1

2(U+ + U− + V+ − V−) belong to
(−h, h) . Then there exists a unique pair (u, v) of self-similar solutions to Problem (1.1)–(1.4),
which are Lipschitz continuous at any positive distance from the origin.

In the next Section 2, we give more details about the Preisach operator. We specify in
particular sufficient conditions for the existence of a nontrivial convexity interval.

There is no reason to expect that also w(x, t) be continuous across x = 0. In general, we have
w(0−, t) 6= w(0+, t) , so that a stationary shock in w persists for all times. In the aforementioned
applications to elastoplasticity, it is natural to admit that on the contact between the domains
x > 0 and x < 0 with different loading histories, only the velocities and stresses coincide, while
the strain may exhibit a jump.

2. The Preisach operator
We denote by C[0,∞) the set of continuous functions [0,∞) → R , and fix a function g satisfying
the following hypothesis.

Hypothesis 2.1 The function g maps R+ × R into R and

(i) is locally Lipschitz continuous in both variables, g(r, 0) = 0 ;
(ii) The partial derivative ∂g(r, v)/∂v is Lipschitz continuous in v ;
(iii) There exist m > 0 and c > 0 such that ∂g(r, v)/∂v ≥ m > 0 for r + |v| ≤ c .

For a function û ∈ C[0,∞) and initial memory configuration λ ∈ Λh (cf. (1.5)), we define
the output value ŵ(t) = F [λ, û](t) of the Preisach operator F at time t by the formula

ŵ(t) = F [λ, û](t) :=
∫ ∞

0
g(r, pr[λ, û](t)) dr , (2.1)

where pr : (λ, û) 7→ ξr for a fixed r > 0 is the solution mapping of the variational inequality

(i) |û(t)− ξr(t)| ≤ r ∀t > 0,

(ii)
∫ T
0 (û(t)− ξr(t)− y(t)) dξr(t) ≥ 0 ∀T > 0 ∀y ∈ C([0, T ]; [−r, r]) ,

(iii) ξr(0) = λ0(r) := max{û(0)− r,min{λ(r), û(0) + r}}.
(2.2)

The integral in (ii) is to be interpreted as the Stieltjes integral. This definition is meaningful,
since ξr|[0,T ] ∈ C[0, T ] ∩ BV (0, T ) for every r > 0 and T > 0 , and ξr(t) = 0 for r sufficiently
large. The mapping pr is called the play operator , see Figure 1, and has the following properties
(for a proof, see [6, Section II]).

Lemma 2.2 Let λi ∈ Λ , ûi ∈ C[0,∞) , i = 1, 2 be given.

(i) For all t > 0 we have

|pr[λ1, û1](t)− pr[λ2, û2](t)| ≤ max{|λ1(r)− λ2(r)|,max{|û1(s)− û2(s)| : s ∈ [0, t]}}.

(ii) For û ∈ C[0,∞) and α > 0 set ûα(t) = û(αt) . Then pr[λ, ûα](t) = pr[λ, û](αt) for all
t ≥ 0 and λ ∈ Λ .
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(iii) If ûi are absolutely continuous, then so are pr[λi, ûi] , and the inequality

d
dt

(pr[λ1, û1]− pr[λ2, û2])
+ (t) ≤ H(û1(t)− û2(t))

d
dt

(pr[λ1, û1]− pr[λ2, û2]) (t)

holds a. e., where y+ = max{y, 0} for y ∈ R , and H is the left continuous Heaviside
function

H(y) =
{

0 for y ≤ 0 ,
1 for y > 0 .

Property (i) is the Lipschitz continuity of the play with respect to the sup-norm, property
(ii) is called the rate independence, and (iii) is the Hilpert inequality established originally in [3].

0

−r
r û

ξ
r

Figure 1. A hysteresis diagram of the play operator.

Formula (2.1) has been established in [5] as an equivalent variational reformulation of the
original Preisach construction in [10], which is much more popular in the literature, see [4, 9].
The variational character of (2.1) turns out to be useful for the investigation of the qualitative
behavior of solutions to evolution equations with hysteresis.

As an immediate consequence of the Hilpert inequality, we have the implications




û(t) > û(t0) for t ∈ (t0, t1) =⇒ pr[λ, û](t1) ≥ pr[λ, û](t0) ,

û(t) < û(t0) for t ∈ (t0, t1) =⇒ pr[λ, û](t1) ≤ pr[λ, û](t0) .
(2.3)

Indeed, we use Lemma 2.2 (iii) with û1(t) = û(t) , û2(t) = û(t) for t ∈ [0, t0] , û2(t) = û(t0) for
t > t0 . Then pr[λ, û2](t) = pr[λ, û](t0) in [t0, t1] , and it suffices to integrate over [t0, t1] .

If û in monotone (nonincreasing or nondecreasing) in an interval [0, T ] , then ξr admits the
representation formula

ξr(t) = max{û(t)− r,min{λ0(r), û(t) + r}}, (2.4)

cf. Figure 1. On monotone inputs, the operator F thus behaves like a superposition operator

ŵ(t) = F [λ, û](t) = ϕ(û(t)) (2.5)

with a function ϕ given by the formula

ϕ(u) =

{ ∫∞
0 g(r,max{λ0(r), u− r}) dr for u ≥ û(0),

∫∞
0 g(r,min{λ0(r), u + r}) dr for u ≤ û(0).

(2.6)

We give here a simple proof of the following result.
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Lemma 2.3 There exist h > 0 and κ > 0 such that if λ ∈ Λh , then

ϕ′(u1)− ϕ′(u2)
u1 − u2

≥ κ if − h < û(0) < u2 < u1 < h , (2.7)

ϕ′(u1)− ϕ′(u2)
u1 − u2

≤ −κ if − h < u2 < u1 < û(0) < h . (2.8)

The meaning of Lemma 2.3 is the following. Increasing branches of hysteresis loops in the
interval (−h, h) are strictly convex, and decreasing branches are strictly concave, see Figure 2.

F [λ, û]

û

−h h

0

Figure 2. Preisach diagram with convexity domain (−h, h) .

Proof. For u ∈ R set
M(u) = inf{r ≥ 0 : |u− λ0(r)| ≤ r} .

The definition of M is meaningful, since λ0(r) vanishes for large r . We have in particular
λ0(0) = û(0) , hence M(û(0)) = 0 .

Using the fact that λ0 ∈ Λ, we obtain for u > û(0) that

ϕ(u) =
∫ M(u)

0
g(r, u− r) dr +

∫ ∞

M(u)
g(r, λ0(r)) dr ,

hence, by Fubini’s theorem,

ϕ(u)− ϕ(û(0)) =
∫ M(u)

0
(g(r, u− r)− g(r, λ0(r))) dr =

∫ u

û(0)

∫ M(v)

0

∂g

∂v
(r, v − r) dr dv . (2.9)

For s ≥ 0 set

ψ+(s) =
∫ s

0

∂g

∂v
(r, λ0(s) + s− r) dr . (2.10)

Then ϕ′(u) = ψ+(M(u)) for a. e. u > û(0) . The function ψ+ is continuously differentiable
and ψ′+(0+) = ∂g/∂v(0, û(0)) . If |û(0)| ≤ c/2 , we infer from Hypothesis 2.1 that there exists
σ+ > 0 such that

ψ+(s1)− ψ+(s2)
s1 − s2

≥ m

2
for 0 < s2 < s1 < σ+ . (2.11)

As a counterpart of (2.9), we obtain for u < û(0) the representation formula

ϕ(u)−ϕ(û(0)) =
∫ M(u)

0
(g(r, u+r)−g(r, λ0(r))) dr = −

∫ û(0)

u

∫ M(v)

0

∂g

∂v
(r, v+r) dr dv . (2.12)
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As above, we define for s ≥ 0 the function

ψ−(s) =
∫ s

0

∂g

∂v
(r, λ0(s)− s + r) dr , (2.13)

so that ϕ′(u) = ψ−(M(u)) for a. e. u < û(0) . Assuming still that |û(0)| ≤ c/2 , we conclude
that there exists σ− > 0 such that

ψ−(s2)− ψ−(s1)
s2 − s1

≥ m

2
for 0 < s1 < s2 < σ− . (2.14)

We now put h = min{c/2, σ−, σ+} , and assume that λ ∈ Λh and |û(0)| ≤ h . For û(0) < u2 <
u1 < h set si = M(ui) , i = 1, 2 . Then u1 − u2 = λ0(s1)− λ0(s2) + s1 − s2 ≤ 2(s1 − s2) , hence

M(u1)−M(u2) ≥ 1
2
(u1 − u2). (2.15)

We have λ0(σ+) = 0 , hence h ≤ λ0(σ+) + σ+ , which yields that 0 < s2 < s1 < σ+ . As a
consequence of (2.11) and (2.15), we obtain the inequality

ϕ′(u1)− ϕ′(u2)
u1 − u2

≥ m

4
. (2.16)

For −h < u2 < u1 < û(0) and si = M(ui) , i = 1, 2 , we now have s2 > s1 and
u1 − u2 = λ0(s1)− λ0(s2)− s1 + s2 ≤ 2(s2 − s1) . Hence,

M(u2)−M(u1) ≥ 1
2
(u1 − u2). (2.17)

The formula ϕ′(ui) = ψ−(si) yields

ϕ′(u1)− ϕ′(u2)
u1 − u2

≤ −m

4
, (2.18)

and it suffices to put κ = m/4 . ¥

3. Self-similar solutions
Consider first a general identity

θt = χx (3.1)

between two locally integrable functions θ, χ : R× (0,∞) → R . The weak formulation of (3.1)
reads ∫ ∞

−∞

∫ ∞

0
(θ %t − χ%x)(x, t) dt dx = 0 (3.2)

for all Lipschitz continuous test functions % with compact support in R× (0,∞) . Following [1],
we assume that θ, χ are self-similar of the form

θ(x, t) = θ̂
(x

t

)
, χ(x, t) = χ̂

(x

t

)
. (3.3)

We have the following characterization for θ̂, χ̂ .
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Lemma 3.1 Let θ, χ be as in (3.3). Then Eq. (3.2) holds if and only if the function
z 7→ zθ̂(z) + χ̂(z) is absolutely continuous and the identity

(zθ̂(z) + χ̂(z))′ = θ̂(z) (3.4)

holds almost everywhere, where prime denotes the derivative with respect to z = x/t .

In particular, under the hypotheses of Lemma 3.1, we have the following “Rankine-Hugoniot
condition for stationary shocks”

χ(0−, t) = χ(0+, t) . (3.5)

Proof. Let (3.4) hold, and let % be an arbitrary admissible test function. In the left hand side
of (3.2), we substitute z = x/t , and put

η(z) =
∫ ∞

0
%(tz, t) dt (3.6)

for z ∈ R . We obtain the integral
∫ ∞

−∞
(θ̂(z) (zη(z))′ + χ̂(z) η′(z)) dz , (3.7)

which equals to 0 by virtue of (3.4). Conversely, for an arbitrary test function η with compact
support in R we can find % such that (3.6) holds. Indeed, it suffices to put

%(x, t) = η
(x

t

) µ(t)
t

with a nonnegative function µ with compact support in (0,∞) such that
∫∞
0 µ(t) dt = 1. By

the same substitution, we thus conclude that (3.2) implies (3.4). ¥

As already mentioned in Section 1, hysteretic processes cannot go backward in time. We
therefore look for self-similar solutions to Problem (1.1)–(1.4) in the form

{
u(x, t) = u

(
1, t

x

)
, v(x, t) = v

(
1, t

x

)
for x > 0 ,

u(x, t) = u
(−1,− t

x

)
, v(x, t) = v

(−1,− t
x

)
for x < 0 .

(3.8)

By virtue of the rate independence, the operator F is compatible with the self-similar structure.
For α > 0, x ∈ R, t ≥ 0 set uα(x, t) = u(αx, αt) , wα = F [λ±, uα] , and assume that u satisfies
(3.8). Then u = uα , and by Lemma 2.2 we have

w(x, t) = wα(x, t) = F [λ±, u(αx, ·)](αt) = w(αx, αt) ,

hence {
w(x, t) = w

(
1, t

x

)
for x > 0 ,

w(x, t) = w
(−1,− t

x

)
for x < 0 .

(3.9)

For τ ≥ 0 we now set




u+(τ) = u(1, τ), u−(τ) = u(−1, τ) ,

v+(τ) = v(1, τ), v−(τ) = v(−1, τ) ,

w+(τ) = w(1, τ), w−(τ) = w(−1, τ) .

(3.10)
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By (3.9), we have
w±(τ) = F [λ±, u±](τ) for τ ≥ 0 . (3.11)

In this setting, condition (3.5) becomes a boundary condition at τ = +∞ . By Lemma 3.1, we
derive for the unknown functions u±, v± in (3.10) of the forward variable τ = 1/|z| the system
of boundary value problems





d
dτ

(
1
τ
v+(τ) + u+(τ)

)
= − 1

τ2
v+(τ)

d
dτ

(
1
τ
(u+ + w+)(τ) + v+(τ)

)
= − 1

τ2
(u+ + w+)(τ)

(3.12)





d
dτ

(
−1

τ
v−(τ) + u−(τ)

)
=

1
τ2

v−(τ)

d
dτ

(
−1

τ
(u− + w−)(τ) + v−(τ)

)
=

1
τ2

(u− + w−)(τ)
(3.13)

with boundary conditions

u±(0) = U± , v±(0) = V± , u±(+∞) = U0 , v±(+∞) = V0 (3.14)

with unknown values of U0 , V0 that also have to be found. Eliminating v± from the above
equations, we obtain the system

d
dτ

(
1
τ2

(u± + w±)(τ)− u±(τ)
)

= − 2
τ3

(u± + w±)(τ) . (3.15)

The above considerations enable us to reduce the proof of Theorem 1.1 to the proof of the
following statement.

Proposition 3.2 Let h be as in Lemma 2.3, and let the numbers U+, U−, 1
2(U++U−+V+−V−)

belong to (−h, h) . Then there exists a unique Lipschitz continuous solution to Problem (3.12)–
(3.14).

Proof. For simplicity, we denote by a dot the derivative with respect to τ . Absolutely continuous
solutions to (3.12)–(3.14) satisfy almost everywhere the identities

ẇ+(τ) = (τ2 − 1)u̇+(τ) , (3.16)

ẇ−(τ) = (τ2 − 1)u̇−(τ) . (3.17)

We first check that both u+, u− are monotone in (0,∞) . Assume for example that there exist
τ1 < τ2 such that u+(τ2) = u+(τ1) and u+(τ) > u+(τ1) for τ ∈ (τ1, τ2) . It follows from (2.3)
that w+(τ2) ≥ w+(τ1) . Integrating (3.16) over [τ1, τ2] yields

0 ≤ w+(τ2)− w+(τ1) = 2
∫ τ2

τ1

τ(u+(τ1)− u+(τ)) dτ < 0 ,

which is a contradiction. The other cases are similar.
On monotone inputs, we have the representation formula (2.5)–(2.6) for the Preisach operator.

Let ϕ± be the corresponding functions associated with w± . Using the chain rule, we rewrite
(3.16)–(3.17) as

(ϕ′±(u±(τ)) + 1− τ2) u̇±(τ) = 0 . (3.18)
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We have by hypothesis U+, U− ∈ (−h, h) . For U0 ∈ (−h, h) put τ± =
√

1 + ϕ′±(U±) ,
τ0± =

√
1 + ϕ′±(U0) . The unique absolutely continuous solution to (3.18) with boundary

conditions u±(0) = U± , u±(+∞) = U0 has the form of two rarefaction waves

u±(τ) =





U± for τ ∈ [0, τ±)
(ϕ′±)−1(τ2 − 1) for τ ∈ [τ±, τ0±)
U0 for τ ≥ τ0± .

(3.19)

By Lemma 2.3, (ϕ′±)−1 is Lipschitz continuous, and nondecreasing if U0 > U± , nonincreasing
if U0 < U± , hence formula (3.19) is meaningful. The functions v± are obtained by integrating
directly the equations (3.12)–(3.13), that is,

{
v+(τ̃) = V+ − τ̃u+(τ̃) +

∫ τ̃
0 u+(τ) dτ,

v−(τ̃) = V− + τ̃u−(τ̃)− ∫ τ̃
0 u−(τ) dτ

(3.20)

for every τ̃ ≥ 0 .
We now show that there is a unique way to choose U0 in such a way that v is continuous

across x = 0. Putting τ̃ = max{τ0
+, τ0−} in (3.20), we obtain

v+(τ̃)− v−(τ̃) = V+ − V− +
∫ τ̃

0
(u+(τ) + u−(τ)− 2U0) dτ . (3.21)

The continuity condition v+(+∞) = v−(+∞) thus reads

V+ − V− =
∫ τ0

+

0
(U0 − u+(τ)) dτ +

∫ τ0
−

0
(U0 − u−(τ)) dτ . (3.22)

We have
∫ τ0

+

0
(U0 − u+(τ)) dτ = τ0

+U0 − τ+U+ −
∫ τ0

+

τ+

(ϕ′+)−1(τ2 − 1) dτ =
∫ U0

U+

√
1 + ϕ′+(z) dz ,

and similarly
∫ τ0

−

0
(U0 − u−(τ)) dτ = τ0

−U0 − τ−U− −
∫ τ0

−

τ−
(ϕ′−)−1(τ2 − 1) dτ =

∫ U0

U−

√
1 + ϕ′−(z) dz .

The right hand side of the equation

V+ − V− =
∫ U0

U+

√
1 + ϕ′+(z) dz +

∫ U0

U−

√
1 + ϕ′−(z) dz (3.23)

is a continuous increasing function of U0 , hence U0 is in (3.23) uniquely determined. It remains
to check that U0 ∈ (−h, h) under our hypotheses. This is obvious if U0 is between U+ and
U− . Assume that U0 > max{U+, U−} . Then (3.23) yields V+ − V− ≥ 2U0 − U+ − U− , hence
2U0 ≤ V+ − V− + U+ + U− < 2h . Similarly, if U0 < min{U+, U−} , then

V− − V+ =
∫ U+

U0

√
1 + ϕ′+(z) dz +

∫ U−

U0

√
1 + ϕ′−(z) dz ,

hence V−−V+ ≥ U+ +U−−2U0 and 2U0 ≥ V+−V−+U+ +U− > −2h . The proof is complete.
¥
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