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Modelling of singularities in elastoplastic materials with fatigue

Pavel Krejč́ı, Praha

Introduction
The aim of this paper is to propose a model for the accumulation of fatigue in elastoplastic materials

that enables us to predict the apparition of singularities (in space and time) as a result of oscillatory loading.
The idea is based on the mathematical identification of the accumulated microscopical damage with the
dissipation of energy. This hypothesis is experimentally justified by the so-called rainflow method of damage
evaluation which is one of the most efficient and most successful engineering methods of estimation of material
fatigue ([12]). It has been shown in [4] that the rainflow method is based on a law of accumulation of relative
damage (Palmgren-Miner linear damage accumulation law) which is identical to the standard dissipation
law resulting from the second principle of thermodynamics.

The rainflow method is a scalar method. Its extension to the vector (tensor) case seems to be rather
difficult (cf. [1]). Even in the scalar case, the rainflow method does not explain the following experimental
facts (cf. [11]).
• the elasticity modulus decreases during the accumulation of fatigue,
• singularities (cracks) occur after some critical time.

Our model consists in introducing a constitutive operator ε = F (σ) between the stress and strain tensors
σ, ε, respectively, such that F depends implicitly on the dissipated energy (identified with the accumulated
fatigue). This constitutive law satisfies the requirements above, in particular it can develop singularities in
a finite time. Moreover, the operator F is a hysteresis operator (it is causal and rate independent) which is
continuous with respect to the uniform convergence.

We pay special attention to the uniaxial (scalar) case. We introduce a dimensionless fatigue characteristic
number Q depending only on material constants. It turns out that for small values of Q, closed hysteresis
loops produced by a uniaxial loading and unloading are convex in the corresponding σ − ε plane. This is
exactly what we need (cf. [10]) for solving for instance the equations of forced longitudinal or torsional
oscillations of a beam

(1)





vt = σx + g(x, t)
εt = vx

ε = F (σ)

with a given forcing term g and with suitable initial and boundary conditions. Let us note that the problem
of convexity of the hysteresis operator F is related to the so-called strong form of the second principle of
thermodynamics used in the theory of plasticity (see [2]).

System (1) is hyperbolic in the sense of bounded speed of propagation. The only singularities which
occur are those due to the fatigue (no shocks!). Here again (as in [10]), the convexity of loops (ε follows a
convex path when σ increases and a concave path when σ decreases) prevents the system from the formation
of shocks.
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I. A model of elastoplasticity with kinematic hardening

We start with a standard elastoplastic model with kinematic hardening defined by the relations ([11],
[13])

(2)





ε = εp + εe, σ = σp + σe,

εp = Aσe, εe = Bσ,

σp ∈ Z,
〈
ε̇p, σp − σ̃

〉 ≥ 0 ∀σ̃ ∈ Z,

where εe, σe, εp, σp are the elastic and plastic components of the strain and stress tensor, respectively, A,B
are given positive definite symmetric matrices over the space of symmetric tensors T, Z ⊂ T is a given
convex closed constraint, 0 ∈ Int Z (its boundary ∂Z represents the yield surface) and dot denotes the time
derivative. The hardening rule σ 7→ σe is then defined by the variational inequality

(3)





σ = σe + σp,

σp ∈ Z,〈
Aσ̇e, σp − σ̃

〉 ≥ 0 ∀σ̃ ∈ Z,

σp(0) = σp
o ∈ Z given.

Let us note that the relation
〈
ξ, η

〉
A

: =
〈
Aξ, η

〉
defines another scalar product

〈 ·, · 〉
A

in T. The
following result is an easy application of the standard technique of evolution variational inequalities.

Proposition 1.1 . ([8]) Let σ ∈ W 1,1(0, T ;T) be given. Then the problem (3) has a unique solution
σe ∈ W 1,1(0, T ;T).

The solution operator σe = `(σ) is called multidimensional play ([6]). The constitutive relation σ 7→ ε
defined by (2) can then be written in the form

(4) ε = Bσ + A`(σ).

Theorem 1.2 . ([6], [8], [9]). The operator `
(i) is continuous in W 1,1(0, T ;T),
(ii) admits a continuous extension to C([0, T ];T),
(iii) maps C([0, T ];T) into C([0, T ],T) ∩BV (0, T ;T).
(iv) If σn → σ uniformly, σn, σ ∈ C([0, T ];T), then Var `(σn) ≤ const.
(v) If moreover Z is bounded and ∂Z is smooth, then Var `(σn) → Var `(σ).

II. A model of fatigue

In the constitutive relation (4) we modify the elastic law by putting

(5) ε(t) = (1 + αq2(t))Bσ(t) + A`(σ)(t),

(the spatial variable x plays the role of a parameter), where q(t) is the dissipated energy during the interval
[0, t] and α > 0 is given constant.

The motivation for (5) is very transparent. As mentioned in the introduction, the elasticity modulus
decreases during the accumulation of fatigue. Having identified the accumulated fatigue with the dissipated
energy q, we are led quite naturally to the assumption that the elasticity modulus is a decreasing function
of q. The quadratic expression αq2 has been chosen as a first guess because of its simplicity.
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We define the internal energy U in a standard form ([14])

(6) U : =
1
2
(
〈
εe, σ

〉
+

〈
εp, σe

〉
) =

1
2
[(1 + αq2)

〈
Bσ, σ

〉
+

〈
A`(σ), `(σ)

〉
].

The rate of dissipation q̇ is defined by the formula

(7) q̇ =
〈
ε̇, σ

〉−U̇ = αqq̇
〈
Bσ, σ

〉
+

〈
A`(̇σ), σ − `(σ)

〉
.

This yields the following ordinary differential equation for q

(8)
{

q̇(1− αq
〈
Bσ, σ

〉
) =

〈
A`(̇σ), σ − `(σ)

〉
,

q(0) = 0.

The second principle of thermodynamics requires q̇ to be nonnegative.

Obvious observation.

1. The constitutive relation (5) is well defined provided q is a solution of (8).
2. The expression

〈
A`(̇σ), σ − `(σ)

〉
is nonnegative a.e. for σ ∈ W 1,1(0, T ;T) by definition (3) of

the multidimensional play `; therefore, the second principle of thermodynamics is satisfied provided
αq(t)

〈
Bσ(t), σ(t)

〉
< 1.

3. A singularity occurs as soon as αq(t)
〈
Bσ(t), σ(t)

〉
= 1.

4. The relationship σ 7→ q (and consequently also σ 7→ ε) is rate independent.
More precisely, the following easy statement holds.

Proposition 2.1 . For every σ ∈ W 1,1(0, T ;T) there exist T ∗ > 0 and a unique nondecreasing absolutely
continuous function q : [0, T ∗) → [0,∞) satisfying (8); the maximal value of T ∗ is

T ∗ = sup{t ∈ [0, T ]; αq(t)
〈
Bσ(t), σ(t)

〉
< 1}.

In order to pass to arbitrary continuous inputs σ we introduce for each σ ∈ W 1,1(0, T ;T) an auxiliary
function

(9) V (σ)(t) :=
∫ t

o

〈
A`(̇σ)(τ), σ(τ)− `(σ)(τ)

〉
dτ =

∫ t

o

〈
σ(τ)− `(σ)(τ), d`(σ)(τ)

〉
A

.

Proposition 2.2 . The operator V
(i) maps continuously W 1.1(0, T ;T) into W 1,1(0, T ),
(ii) admits a continuous extension C([0, T ];T) → C([0, T ]).

Proof . Part (i) is obvious. Part (ii) follows from Theorem 1.2. Indeed, the Stieltjes integral (9) is
well defined for each σ ∈ C([0, T ];T) and V (σ) is continuous, since `(σ) ∈ BV (0, T ;T) ∩ C([0, T ];T). Let
{σn} ⊂ C([0, T ];T) be a given sequence, σn → σ uniformly. By Theorem 1.2 we have Var `(σn) ≤ const.,
`(σn) → `(σ) uniformly, hence by Theorem II.15.3 of [5] we obtain V (σn)(t) → V (σ)(t) for all t ∈ [0, T ].
The sequence {V (σn)} is a sequence of nondecreasing continuous functions which converges pointwise to a
nondecreasing continuous function, hence V (σn) → V (σ) uniformly. ¥

Equation (8) can be rewritten in the form

(10) q(t) =
∫ t

o

1
1− αq(τ)

〈
Bσ(τ), σ(τ)

〉dV (σ)(τ).
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Proposition 2.3 . Let σ ∈ C([0, T ];T) be given. Put D : = {(t, q) ∈ [0, T )× [0,∞); αq
〈
Bσ(t), σ(t)

〉
< 1}.

Let (to, qo) ∈ D be given. Then there exists t1 > to and a unique solution q : [to, t1] → [0,∞) to the equation

(10 ∗) q(t) = qo +
∫ t

to

1
1− αq(τ)

〈
Bσ(τ), σ(τ)

〉dV (σ)(τ).

The function q is continuous and nondecreasing in [to, t1] and (t, q(t)) ∈ D for all t ∈ [to, t1].

Proof . Put δ : = 1
2 (1− αqo

〈
Bσ(to), σ(to)

〉
) > 0. We find t1 > to such that

(11) δαqo |
〈
Bσ(t), σ(t)

〉− 〈
Bσ(to), σ(to)

〉 |+ α
〈
Bσ(t), σ(t)

〉
(V (σ)(t)− V (σ)(to)) < δ2

for all t ∈ [to, t1].
We next define a (convex) closed set Uδ ⊂ C([to, t1]) and an operator A : Uδ → C([to, t1]) by the

formulae
Uδ : =

{
u ∈ C([to, t1]); u(to) = qo, 1− αu(t)

〈
Bσ(t), σ(t)

〉 ≥ δ ∀t ∈ [to, t1]
}

,

A(u)(t) : = qo +
∫ t

to

1
1− αu(τ)

〈
Bσ(τ), σ(τ)

〉dV (σ)(τ).

Using (11) we check easily that Uδ is nonempty (the constant function u(t) ≡ qo belongs to Uδ), and that A
is a contraction which maps Uδ into Uδ. The assertion now follows from a standard fixed point argument. ¥

Corollary 2.4 . For every σ ∈ C([0, T ];T) there exists T ∗ > 0 and a unique maximal continuous nonde-
creasing solution q : [0, T ∗) → [0,∞) to the equation (10), T ∗ = sup{t ∈ [0, T ];αq(t)

〈
Bσ(t), σ(t)

〉
< 1}.

The following Theorem is the most important result of this section. It states that q depends on σ
continuously with respect to the uniform convergence.

Theorem 2.5 . Let σ ∈ C([0, T ];T] be given and let q : [0, T ∗) → [0,∞) be the maximal solution to (10).
For an arbitrary η > 0 put

δ : =
1
2

max
[0,T∗−η]

(
1− αq(t)

〈
Bσ(t), σ(t)

〉)
> 0.

Let {σn} ⊂ C([0, T ];T) be a sequence, σn → σ uniformly in [0, T ], and let qn : [0, T ∗n) → [0,∞) be the
corresponding maximal solutions to (10). Then there exists no > 0 such that for all n ≥ no we have
(i) T ∗n > T ∗ − η,
(ii) 1− αqn(t)

〈
Bσn(t), σn(t)

〉 ≥ δ ∀t ∈ [0, T ∗ − η],
(iii) qn → q uniformly in [0, T ∗ − η].

Remark . We have in particular lim infn→∞ T ∗n ≥ T ∗. Time t = T ∗ will be called critical time for q. The
proof of Theorem 2.5 relies on Gronwall’s inequality in the following form.

Lemma 2.6 . Let w, U be nonnegative continuous functions in [0, T ], U(0) = 0, U nondecreasing, and let
M, N be nonnegative constants. Assume that

w(t) ≤ M + N

∫ t

o

w(τ)dU(τ) ∀t ∈ [0, T ].

Then
w(t) ≤ MeNU(t) ∀t ∈ [0, T ].

We just recall that Lemma 2.6 follows immediately from the integration-by-parts formula
∫ s

o

e−NU(t)w(t)dU(t) = N

∫ s

o

e−NU(t)

(∫ t

o

w(τ)dU(τ)
)

dU(t)

+ e−NU(s)

∫ s

o

w(t)dU(t).
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Proof of Theorem 2.5 . Let us assume that for some n there exists tn ∈ [0, T ∗n) ∩ [0, T ∗ − η] such that

(12) 1− αqn(tn)
〈
Bσn(tn), σn(tn)

〉
< δ.

Put T̂n : = min{t ∈ [0, T ∗n); 1− αqn(t)
〈
Bσn(t), σn(t)

〉 ≤ δ}. For t ∈ [0, T ∗ − η] put

Mn(t) : =

∣∣∣∣∣
∫ t

o

1
1− αq(τ)

〈
Bσ(τ), σ(τ)

〉dV (σn)(τ)−
∫ t

o

1
1− αq(τ)

〈
Bσ(τ), σ(τ)

〉dV (σ)(τ)

∣∣∣∣∣

+
α

2δ2

∫ t

o

| 〈 Bσn(τ), σn(τ)
〉− 〈

Bσ(τ), σ(τ)
〉 | q(τ)dV (σn)(τ)

and
N : =

α

2δ2
sup{〈Bσn(t), σn(t)

〉
; n ≥ 1, t ∈ [0, T ]}.

A straightforward computation shows that the inequality

|qn(t)− q(t)| ≤ Mn(t) + N

∫ t

o

|qn(τ)− q(τ)|dV (σn)(t)

holds for all t ∈ [0, T̂n].
Lemma 2.6 then yields

(13) |qn(t)− q(t)| ≤ ||Mn||[0,T∗−η]e
NV (σn)(t)

for all t ∈ [0, T̂n]. We have indeed ||Mn||[0,T∗−η] → 0 as n →∞, hence (13) implies in particular

α||qn

〈
Bσn, σn

〉−q
〈
Bσ, σ

〉 ||[0,T̂n] < δ

for n sufficiently large. This shows that condition (12) can hold only for finitely many n. Consequently, for
n sufficiently large we have

1− αqn(t)
〈
Bσn(t), σn(t)

〉 ≥ δ ∀t ∈ [0, T ∗ − η]

and the uniform convergence of qn to q follows from (13). ¥

III. The scalar case
In this section we study in detail particular properties of the constitutive relation (4) when ε, σ are

scalar-valued functions. It is natural to assume that the material was not subject to any plastic deformation
in the past. If `h is the scalar play operator defined by (3) for Z = [−h, h], where h > 0 is a given constant,
the above requirement means

(14) |σ(0)| < h, `h(σ)(0) = 0.

The constitutive relation (4) has the form ε = F (σ) with

(15) F (σ) : =
1
E

(1 + αq2)σ + A`h(σ),

where q is the solution of the equation

(16) q̇(t) =
AE

E − αq(t)σ2(t)
(σ(t)− `h(σ)(t)) `h(̇σ)(t) =

EAh

E − αq(t)σ2(t)
|`h(̇σ)(t)|.
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We will see below that in the one-dimensional case and under appropriate assumptions, the operator F has a
particular convexity property which plays a crucial role in the theory of hyperbolic equations with hysteresis
(cf. [10]).

Proposition 3.1 . Let σ ∈ C([0, T ]) be given such that ||σ||[0,T ] ≤ 2h and (14) holds, and let q : [0, T ∗) →
[0,∞) be the corresponding maximal solution of (16) in the sense of Corollary 2.4. Let us assume that σ is
monotone in an interval [t1, t2] ⊂ [0, T ∗). Then one of the following cases occurs :
(i) σ is nondecreasing and there exists a convex increasing function Φ+ : [σ(t1), σ(t2)] → R1 such that

Φ′+(ξ) ≥ 1
E for almost all ξ ∈ (σ(t1), σ(t2)) and F (σ)(t) = Φ+ (σ(t)) for all t ∈ [t1, t2];

(ii) σ is nonincreasing and there exists a concave increasing function Φ− : [σ(t2), σ(t1)] → R1 such that
Φ′−(ξ) ≥ 1

E for almost all ξ ∈ (σ(t2), σ(t1)) and F (σ)(t) = Φ−(σ(t) for all t ∈ [t1, t2].

Remark 3.2 . Condition ||σ||[0,T ] ≤ 2h in the case σ ∈ W 1,1(0, T ) is necessary and sufficient for the validity
of the strong version of the second law of thermodynamics (see [2])

(17) ε̇p · σ ≥ 0 a.e.

Indeed, it suffices to notice that we have here εp = A`h(σ) and (cf. [6])

(18) ||`h(σ)||[0,T ] = max{0, ||σ||[0,T ] − h}, and

(19) `h(̇σ)(t) > 0 ⇒ `h(σ)(t) = σ(t)− h, `h(̇σ)(t) < 0 ⇒ `h(σ)(t) = σ(t) + h.

Further discussion about the condition (17) in the context of Mróz’ model can be found in [3].

Proof of Proposition 3.1 . We consider just the case of σ nondecreasing using an alternative definition
of `h(σ) (see [6]), namely

`h(σ)(t) = max{`h(σ)(t1), σ(t)− h} for t ∈ [t1, t2].

In particular, there exists a point τ ∈ [t1, t2] such that

(20) `h(σ)(t) =
{

`h(σ)(t1), t ∈ [t1, τ ],
σ(t)− h, t ∈ (τ, t2].

We next define an auxiliary function R : [σ(t1), σ(t2)] → [0,∞) as the solution of the problem

(21)
{

R(s) = q(t1) for s ∈ [σ(t1), σ(τ)]
dR
dS = EAh

E−αs2R for s ∈ (σ(τ), σ(t2)].

The case τ = t2 is trivial. In the nontrivial case τ < t2 we have σ(τ) = `h(σ)(τ) + h, hence σ(τ) ≥ 0 by
(18).

Comparing (21) to (16) and using (20) we see that we have

q(t) = R(σ(t)) for all t ∈ [t1, t2].

Condition [t1, t2] ⊂ [0, T ∗) guarantees that the solution R of (21) is defined in [σ(t1), σ(t2)].
This enables us to give an explicit formula for Φ+, namely

(22) Φ+(s) =
1
E

(1 + αR2(s))s + A max{`h(σ)(t1), s− h}

for s ∈ [σ(t1), σ(t2)].
The rest of the proof is an easy exercise of differentiation. ¥
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We now formulate a sufficient condition for the validity of the strong version (17) of the second law of
thermodynamics in terms of material constants.

We first introduce the set

(23) Ω : = {(s, r) ∈ R1 × [0,∞); αrs2 < E, −So(r) ≤ s ≤ So(r)},

where So : [0,∞) → [0,∞) is the solution of the problem

(24)
dSo

dr
=

1
EAh

(E − αrS2
o), So(0) = h.

Let us note that the equation αrS2
0(r) = E has a unique solution ro > 0, hence Ω = Ω− ∪ Ω+, where

Ω− = {(s, r) ∈ R1 × [0, ro]; |s| ≤ So(r)}

Ω+ = {(s, r) ∈ R1 × [ro,∞); αrs2 < E}.
The function So is increasing in [0, ro]. This implies in particular

(25) Ω ⊂ [−So(ro), So(ro)]× [0,∞).

Lemma 3.3 . Let σ ∈ C([0, T ]) be given such that (14) holds and let q : [0, T ∗) → [0,∞) be the maximal
solution of (16) in the sense of Corollary 2.4. Then the following statements hold for all t ∈ [0, T ∗).
(i) q(t) < ro ⇒ h− So(q(t)) ≤ lh(σ)(t) ≤ So(q(t))− h,
(ii) (σ(t), q(t)) ∈ Ω.

Proof . It suffices to assume that σ is absolutely continuous and piecewise monotone; the general case then
follows from Theorem 2.5.

We prove (i) by induction. Let 0 = t̂o < t̂1 < · · · < t̂N = T ∗ be a partition of [0, T ∗) such that σ is
monotone in [t̂k−1, t̂k], k = 1, . . . , N . The assertion holds for t = 0. We prove the following implication:

If (i) holds for t = t1 and σ is monotone in [t1, t2] ⊂ [0, T ∗), then (i) holds for t = t2.
It suffices again to consider the case of σ nondecreasing. Using (2), (21) we see that `h(σ), q are constant

in [t1, τ ], hence (i) holds. In the nontrivial case τ < t2 we have `h(σ)(t) = σ(t) − h and q(t) = R(σ(t)) for
t ∈ [τ, t2].

The function R is increasing in [σ(τ), σ(t2)] and the inverse function

S : = R−1 : [q(τ), q(t2)] → [σ(τ), σ(t2)]

satisfies

(26)
dS

dr
=

1
EAh

(E − αrS2),

(27) σ(t) = S(q(t)), t ∈ [τ, t2].

We therefore have `h(σ)(t) = S(q(t))− h for t ∈ [τ, t2], and S(q(τ)) = σ(τ) = `h(σ)(τ) + h ≤ So(q(τ)).
The uniqueness property of the equation (26) guarantees

`h(σ)(t) + h = σ(t) = S(q(t)) ≤ So(q(t))

for all t ∈ [τ, t2], and (i) is proved.
Part (ii) is an easy consequence of (i). Indeed, for q(t) < ro we have

|σ(t)| ≤ |`h(σ)(t)|+ h ≤ So(q(t)).
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For t < T ∗ and q(t) ≥ ro we have by definition E − ασ2(t)q(t) > 0.
Lemma 3.3 is proved. ¥

Let us introduce a dimensionless fatigue characteristic number Q defined by the formula

(28) Q : =
E

Aαh4
.

An ”almost necessary and sufficient” condition for the validity of the strong version of the second law of
thermodynamics reads as follows.

Proposition 3.4 . Let the assumptions of Lemma 3.3 hold. If Q ≤ 192
31 , then ||σ||[0,T∗] < 2h.

Conversely, if Q ≥ 64
e2+1 then for σ(t) = t we have ||σ||[0,T∗] = T ∗ > 2h.

Proof . By Lemma 3.3 and (25), it suffices to prove the implications

(29) Q ≤ 192
31

⇒ So(ro) < 2h,

(30) Q ≥ 64
e2 + 1

⇒ So(ro) > 2h.

We first transform the equation (24) into a dimensionless form by introducing new variables

y(x) : = aSo(bx), a : =
(

Aαh

E

)1/3

, b : =
E

α
a2.

The function y is the solution of the problem

(31)
{

y′(x) = 1− xy2(x),
y(0) = Q−1/3.

Let us first assume Q ≤ 192
31 . Putting xo = 1

b ro and yo = y(xo) we check easily that xoy
2
o = 1.

For x ∈ (0, xo) we have
y′′(x) = − (

y2(x) + xy(x)y′(x)
)

< 0,

hence
y(x) > Q−1/3 +

x

xo
(yo −Q−1/3),

and (31) yields
y′(x) < 1− x[Q−1/3 +

x

xo
(yo −Q−1/3]2.

Integrating the last inequality from 0 to x0 we obtain

y0 −Q−1/3 < xo − x2
o

[
1
2
Q−1/3 +

2
3
Q−1/3(yo −Q−1/3) +

1
4
(yo −Q−1/3)2

]
.

We rewrite this inequality using the identity xoy
2
o = 1 and an auxiliary quantity c = yoQ

1/3 in the form

c4(c− 1) < Q

[
3
4
c2 − 1

6
c− 1

12

]
≤ 16

31
[9c2 − 2c− 1],

therefore
(c− 2)(31c4 + 31c3 + 62c2 − 20c− 2) < 0.
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This implies c < 2, hence (29) holds.
Let us assume now Q ≥ 64

e2+1 . The function z(x) : = 1
y(x) satisfies the equation

(32)
{

z′(x) + z2(x) = x,

z(0) = Q1/3,

hence z′′(x) = 1− 2z(x)z′(x) ≥ 1− 2zoz
′(x) for x ∈ (0, xo), where zo = z(xo) =

√
xo.

We have z′(xo) = 0, therefore

−z′(x) ≥ 1
2zo

(
e2zo(xo−x) − 1

)
for x ∈ (0, xo).

After integration from 0 to xo we obtain

2Q1/3

zo
− 1 ≥ e2z3

0 − 1
2z3

o

.

Assuming zo ≥ 1
2Q1/3 we infer from this inequality 3 ≥ e

Q
4 −1
Q
4

. The function f(p) = ep−1
p is strictly convex

and increasing in [0,∞); let po be the solution of the equation f(p) = 3. We have f(2) > 3, hence

Q

4
≤ po < 2− f(2)− 3

f ′(2)
=

16
e2 + 1

,

which is a contradiction. We must therefore have zo < 1
2Q1/3, hence (30) holds. ¥

Remark . Propositions 3.1 and 3.4 guarantee that the condition Q ≤ 192
31 is sufficient for the convexity of

the operator F . In fact, the convexity of F is preserved even beyond the domain of validity of the strong
version of the second law of thermodynamics. We conjecture (and this is to be verified by a detailed analysis
of the equation (21)) that there exists a precise upper bound for Q ensuring the convexity of F of the order
of Q ≈ 200.

Condition Q ≤ 192
31 can be interpreted as a lower bound for admissible values of α. In the case of A316

stainless steel (see [11]) we have for instance E = 196, 000[MPa], h = 260[MPa], 1
A = 2, 100[MPa], hence α

is not allowed to be smaller than approximately 1
70

[
(MPa)−2

]
.

The following energy-type inequality is a variant of Theorem 3.8 and Lemma 3.2 of [10].

Proposition 3.5 . Let us assume Q ≤ 192
31 and let σ ∈ W 1,∞(0, T ) be given. Let T ∗ be as in Proposition

2.1. Assume that F (σ) ∈ W 2,1(0, T̂ ) for some T̂ < T ∗ and put P2(σ)(t) : = 1
2F (̇σ)(t)σ̇(t) for t ∈ (0, T̂ ).

Then
(i) P2(σ) ∈ BV (0, T̂ ),
(ii) for all t1, t2 ∈ [0, T̂ ], t1 < t2, we have

∫ t2
t1

F (̈σ)(t)σ̇(t)dt ≥ P2(σ)(t2−)− P2(σ)(t1+).

IV. Vibrations of a beam.

In this section we construct a solution to the system (1) with F given by (15). We prescribe initial and
boundary conditions

(33) σ(x, 0) = σo(x), v(x, 0) = vo(x), σ(0, t) = v(1, t) = 0.

We extend easily Corollary 2.4 to the case of functions σ : [0, 1] × [0, T ] → R1, where the spatial
variable x ∈ [0, 1] is considered as a parameter.
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Proposition 4.1 . Let σ ∈ C([0, 1]× [0, T ]) be given. Then there exists T ∗ ∈ (0, T ] and a unique continuous
function q : [0, 1]× [0, T ∗) → R1 such that

(34) q(x, t) =
∫ t

o

EAh

E − αq(x, t)σ2(x, t)
dτV (σ)(x, t),

where V (σ)(x, t) = Var
[0,t]

(lh(σ(x, .))).

Proof . Equation (34) is the integral form of (16). By Corollary 2.4, for each x ∈ [0, 1] there exists
T ∗(x) > 0 such that q(x, t) is defined for t ∈ [0, T ∗(x)). By Theorem 2.5, function x → T ∗(x) is lower
semicontinuous in [0,1], hence T ∗(x) attains its minimum T ∗ = min[0,1] T

∗(x) > 0.
The continuity of q follows also from Theorem 2.5. If xn → x, tn → t are arbitrary sequences, xn, x ∈

[0, 1], tn, t ∈ [0, T ∗), then in the triangle inequality

|q(xn, tn)− q(x, t)| ≤ |q(xn, tn)− q(x, tn)|+ |q(x, tn)− q(x, t)|

we have q(xn, .) → q(x, .) uniformly in [0, supk tk] and the assertion follows easily. ¥
Our main result for the system (1), (15), (33) reads as follows.

Theorem 4.2 . Let us assume Q ≤ 192
31 , g, gt ∈ L1(0, T ;L2(0, 1)) and let σo, vo ∈ W 1,2(0, 1) be given,

σo(0) = vo(1) = 0, ||σo||[0,1] < h. Then there exist T ∗ > 0 and functions σ, v continuous in [0, 1] × [0, T ∗)
such that
(i) σt, σx, vt, vx, εt ∈ L∞(0, T ∗ − δ;L2(0, 1)) for all δ ∈ (0, T ∗),
(ii) equations (1) are satisfied almost everywhere in (0, 1)× (0, T ∗),
(iii) conditions (33) hold for all x ∈ [0, 1] and t ∈ [0, T ∗),
(iv) we have either T ∗ = T or there exists x ∈ [0, 1] such that limt→T∗− αq(x, t)σ2(x, t) = E.

Remarks 4.3 .
(i) Hyperbolicity in the sense of bounded speed of propagation for the system (1), (15) can be proved

analogously as in [7].
(ii) Assertion (iv) of Theorem 4.2 says that the solution exists globally until a singularity due to the fatigue

occurs at some point x ∈ [0, 1].
(iii) We choose mixed boundary conditions in (33) in order to simplify the construction.

The rest of the paper is devoted to the proof of Theorem 4.2. The construction is somewhat awkward.
We first discretize the system (1), (15), (33) in space, and for constructing a solution of the system of ordinary
differential equations thus obtained, we discretize it in time. The time-space discrete system admits only
weak estimates which are nevertheless sufficient for passing to the limit with respect to the time step. The
space-discrete system enables us afterwards to obtain estimates of higher order (as in [10]) and to pass to
the limit with respect to the space step. The main difficulty here is that we have to maintain the time of
breakdown under control.

Space discretization

Let n > 0 be a given integer. For j = 1, . . . , n − 1 and t ∈ [0, T ] put gj(t) : = n
∫ j

n
j−1

n

g(x, t)dx. We

replace (1), (15), (33) by the system of equations for j = 1, . . . , n− 1

(35) (i) F (̇σj)(t) = n (vj+1(t)− vj(t)),
(ii) v̇j(t) = n (σj(t)− σj−1(t)) + gj(t)

where dot denotes the derivative with respect to t, with unknown functions σ1, . . . , σn−1, v1, . . . , vn−1, σo =
vn ≡ 0. We prescribe for (35) natural initial conditions.

(36) σj(0) = σo

(
j

n

)
, vj(0) = vo

(
j

n

)
.
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One cannot simply refer to the results of [10]. We have here no a priori information about the domain
of definition of the solution and about the inverse of F . The method we choose here is based on a time
discretization of the system (35), (36).

Time discretization
For a fixed integer m > 0 and for all k = 0, 1, . . . , m we put η : = T

m , gk
j : = gj(kη), j = 0, . . . , n. Our

system has the form

(37) (i) 1
η

(
εk+1

j − εk
j

)
= Ak+1n

(
vk

j+1 − vk
j

)
,

(ii) 1
η

(
vk+1

j − vk
j

)
= Ak+1

(
n(σk

j − σk
j−1) + gk

j

)
,

(iii) vo
j = vj(0), σo

j = σj(0), σo
j = 1

E σo
j , Ao = 1, vk

n = σk
o = 0,

k = 0, . . . , m− 1, j = 1, . . . , n− 1.

We have to couple the system (37) with an algorithm for determining the values of σk+1
j and Ak+1.

Let us suppose that vi
j , σ

i
j , ε

i
j , Ai are known for all j = 1, . . . , n− 1, i = 0, . . . , k and that Ai = 1 for all

such i.
For t ∈ [iη, (i + 1)η) and j = 1, . . . , n− 1 put

(38) σ
(m)
j (t) = σi

j +
1
η
(t− iη)(σi+1

j − σi
j).

Let q
(m)
j be the solution of (16) for σ = σ

(m)
j . We stop the algorithm as soon as the critical quantity

C
(m)
j (t) := αq

(m)
j (t)

(
σ

(m)
j (t)

)2

attains the value E for some j.

We therefore assume C
(m)
j (kη) < 1 for all j = 1, . . . , n− 1.

The induction hypothesis is complete if we assume

(39) εi
j = F (σ(m)

j )(iη), j = 1, . . . , n− 1, i = 0, . . . , k.

Let us note that the choice of initial data guarantees (cf. (14)) that q
(m)
j (0) = C

(m)
j (0) = 0 and (39)

holds for k = 0.

Algorithm
1. Try Ak+1 = 1 and compute εk+1

j from (37) (i).
2. Try to find the solution s to the equation εk+1

j = Φj
+(s) if εk+1

j ≥ εk
j (and εk+1

j = Φj
−(s) if εk+1

j < εk
j )

where Φj
± are the functions from Proposition 3.1 for t1 = kη and σ = σ

(m)
j , and put σk+1

j : = s.

The domain of definition of Φj
+, Φj

− is the interval Dj = [σk
j , s+

j ) (Dj = (s−j , σk
j ], respectively) which

is the maximal interval of existence of the solution R±j to the equation

(40) (i)
dR+

j

ds = EAh
E−αs2R+

j

d
ds max

{
`h(σ(m)

j )(kη), s− h
}

,

(ii)
dR−

j

ds = −EAh
E−αs2R−

j

d
ds min

{
`h(σ(m)

j )(kη), s + h
}

,

(iii) R±j (σk
j ) = q

(m)
j (kη).

By definition, the expression αs2R±j (s) tends to E as s → s±j .
Functions Φj

± are increasing and continuous in Dj , hence there are two possibilities:

a) εk+1
j ∈ Φj

±(Dj) for all j = 1, . . . , n− 1.

Then σk+1
j are determined uniquely by the relation εk+1

j = Φj
±(σk+1

j ). By construction, (39) holds
for i = k + 1. The values of vk+1

j are given by (37) (ii). We have as in the proof of Proposition 3.1
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q
(m)
j (t) = R±j

(
σ

(m)
j (t)

)
for t ∈ [kη, (k + 1)η], hence C

(m)
j ((k + 1)η) < E and the procedure can continue for

i = k + 2.

b) εk+1
j /∈ Φj

±(Dj) for some j.

For j = 1, . . . , n− 1 put

ε̂k+1
j : =

{
Φj

+(s+
j −) if εk+1

j ≥ εk
j ,

Φj
−(s−j +) if εk+1

j < εk
j ,

Bk+1 : = max

{
εk+1

j − εk
j

ε̂k+1
j − εk

j

; j = 1, . . . , n− 1

}
.

We now update Ak+1, ε
k+1
j by putting Ak+1 : = 1

Bk+1
, εk+1

j being the solution of (37) (i) for this new

value of Ak+1 for all j = 1, . . . , n−1. We have by hypothesis Ak+1 ∈ (0, 1]. The values σk+1
j are then defined

by the equations εk+1
j = Φj

+(σk+1
j −) if εk+1

j ≥ εk
j and εk+1

j = Φj
−(σk+1

j +) if εk+1
j < εk

j . For at least one

j ∈ {1, . . . , n− 1} we have by construction σk+1
j = s±j and limt→(k+1)η− αq

(m)
j (t)

(
σ

(m)
j (t)

)2

= E.

We now stop the algorithm by putting Ai : = 0, εi
j = εk+1

j , σi
j = σk+1

j , vi
j = vk+1

j for all j = 1, . . . , n−
1, i = k + 2, . . . , m.

We have in fact proved the following result.

Proposition 4.4 . For each choice of integers m,n > 0 there exist piecewise linear functions σ
(m)
j ∈

C([0, T ]), j = 1, . . . , n− 1 such that
(i) (38) holds for all i = 0, . . . ,m− 1, j = 1, . . . , n− 1,
(ii) there exists nT ∗(m) ∈ (0, T ], nT ∗(m) = (k∗ + 1)η, such that the solution q

(m)
j of (16) corresponding to σ

(m)
j

exists in [0, nT ∗(m)) for all j = 1, . . . , n−1 and we have either nT ∗(m) = T or there exists jo ∈ {1, . . . , n−1}
such that limt→nT∗(m)− αq

(m)
jo

(t)
(
σ

(m)
jo

(t)
)2

= E,

(iii) for k ≤ k∗ there exist
{
εk
j , vk

j , Ak; j = 1, . . . , n− 1
}

such that Ak = 1, εk
j = F (σ(m)

j )(kη) for all j =
1, . . . , n− 1 and (37) holds,

(iv) for k > k∗ there exist
{
εk
j , vk

j , Ak; j = 1, . . . , n− 1
}

such that Ak∗+1 ∈ (0, 1], Ak = 0 for k ≥ k∗+ 2 and
(37) holds.

We now pass to the limit as m →∞ keeping n fixed.

Estimates I.
We multiply (37) (i) by (σk+1

j − σk
j ) and (37) (ii) by (vk+1

j − vk
j ). This yields

1
η

n−1∑

j=1

m−1∑

k=0

[
(εk+1

j − εk
j )(σk+1

j − σk
j ) + (vk+1

j − vk
j )2

] ≤

≤ n

n−1∑

j=1

m−1∑

k=0

[
(|vk

j+1|+ |vk
j |)|σk+1

j − σk
j |+ (|σk

j |+ |σk
j−1|+

1
n
|gk

j |)|vk+1
j − vk

j |
]

.

We have by Proposition 3.1 (εk+1
j − εk

j )(σk+1
j − σk

j ) ≥ 1
E (σk+1

j − σk
j )2 and from the elementary Young

inequality ab ≤ 1
2ca2 + c

2b2 we infer

(41)





1
η

∑n−1
j=1

∑m−1
k=0

[
1
E (σk+1

j − σk
j )2 + (vk+1

j − vk
j )2

]

≤ 1
η

∑n−1
j=1

∑m−1
k=0

[
(εk+1

j − εk
j )(σk+1

j − σk
j ) + (vk+1

j − vk
j )2

]

≤ 2η
∑n−1

j=1

∑m−1
k=0

[
2n2E|vk

j |2 + 4n2|σk
j |2 + |gk

j |2
]
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Estimates II.
We multiply (37)(i) by σk

j and (37)(ii) by vk
j , k = 0, 1, . . . , k∗. Using the identities

(vk+1
j − vk

j )vk
j =

1
2
(|vk+1

j |2 − |vk
j |2)−

1
2
(vk+1

j − vk
j )2

and

(εk+1
j − εk

j )σk
j =

∫ (k+1)η

kη

F (̇σ(m)
j )(t)σ(m)

j (t)dt− 1
η

∫ (k+1)η

kη

F (̇σ(m)
j )(t)(σk+1

j − σk
j )(t− kη)dt

≥
∫ (k+1)η

kη

F (̇σ(m)
j )(t)σ(m)

j (t)dt− (εk+1
j − εk

j )(σk+1
j − σk

j )

we obtain for each ` ∈ {0, . . . , k∗}.

(42)





∑n−1
j=1

[∫ (`+1)η

o
F (̇σ(m)

j )(t)σ(m)
j (t)dt + 1

2 |v`+1
j |2

]

≤ 1
2

∑n−1
j=1 |vo

j |2 + η
∑n−1

j=1

∑`
k=0 |gk

j ||vk
j |+

+
∑n−1

j=1

∑`
k=0

[
(εk+1

j − εk
j )(σk+1

j − σk
j ) + 1

2 (vk+1
j − vk

j )2
]
.

Energy inequality (6) entails for all τ ∈ (
0, (` + 1)η

)

∫ τ

o

F (̇σ(m)
j )(t)σ(m)

j (t)dt ≥ U
(m)
j (τ)− U

(m)
j (0),

where

U
(m)
j (τ) :=

1
2

[
1
E

(
1 + α(q(m)

j (τ))2
)(

σ
(m)
j (τ)

)2+A
(
`k(σ(m)

j )(τ)
)2

]

is the internal energy. We therefore have

U
(m)
j (τ) ≥ 1

2E

(
σ

(m)
j (τ)

)2
, U

(m)
j (0) =

1
2E

|σo
j |2.

Combining (41) and (42) we obtain

(43)





1
2

∑n−1
j=1

[
1
E |σ`+1

j |2 + |v`+1
j |2] ≤ ∑n−1

j=1

[
1
E |σo

j |2 + |vo
j |2

]
+

+η
∑n−1

j=1

∑`
k=0 |gk

j ||vk
j |+

+cnη2
∑n−1

j=1

∑m−1
k=0

[|vk
j |2 + |σk

j |2 + |gk
j |2

]
.

By cn we denote here and in the sequel any constant dependent possibly on n and independent of m.
Put

Vj : = max
{|vk

j |; k = 0, . . . , k∗ + 1
}

= max
{|vk

j |; k = 0, . . . , m
}

,

Sj : = max
{|σk

j |; k = 0, . . . , k∗ + 1
}

= max
{|σk

j |; k = 0, . . . ,m
}

.

We have obviously

η

n−1∑

j=1

m−1∑

k=0

|gk
j | ≤ (Tnη

n−1∑

j=1

m−1∑

k=0

|gk
j |2)1/2 ≤ cn,

hence (43) yields

1
2

n−1∑

j=1

1
E

S2
j + V 2

j ≤ cn


1 + max

j
Vj + η

n−1∑

j=1

(V 2
j + S2

j )


 .
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Taking m sufficiently large (i.e. η sufficiently small) we obtain the final estimates

(44)

{
maxk |σk

j |+ maxk |vk
j | ≤ cn

1
η

∑m−1
k=0

[
(σk+1

j − σk
j )2 + (vk+1

j − vk
j )2

] ≤ cn

for all j = 1, . . . , n− 1.

Convergence as m →∞
We now define the function v

(m)
j by a formula analogous to (38), namely

v
(m)
j (t) = vi

j +
1
η
(t− iη)(vi+1

j − vi
j)

for i = 0, . . . ,m− 1 and t ∈ [iη, (i + 1)η).
Estimates (44) show that the sequences {v(m)

j }∞m=1, {σ(m)
j }∞m=1 are bounded in W 1,2(0, T ) for each j.

Taking a subsequence, if necessary, we find σj , vj ∈ W 1,2(0, T ) such that σ
(m)
j → σj , v

(m)
j → vj weakly in

W 1,2(0, T ) and uniformly in C([0, T ]).
Functions σj , vj obviously satisfy initial conditions (36). Let qj be the solution of (16) for σ = σj and

let T ∗j be the critical time for qj ,
nT ∗ : = minj T ∗j . By Theorem 2.5, we have lim infm→∞ nT ∗(m) ≥ nT ∗ and

F (σ(m)
j ) converge to F (σj) in [0, nT ∗) locally uniformly as m →∞.
We want to show that vj , σj satisfy system (35) in [0, nT ∗). For t ∈ [kη, (k + 1)η) we define functions

ṽ
(m)
j (t) : = vk

j , σ̃
(m)
j (t) : = σk

k , g̃
(m)
j (t) : = gk

j ,

ε
(m)
j (t) := εk

j +
1
η
(t− kη)(εk+1

j − εk
j ), k = 0, . . . , k∗.

Let κ > 0 be arbitrarily chosen. System (37) can be rewritten for almost all t ∈ (0, nT ∗ − κ) and for m
sufficiently large in the form

(45)





ε̇
(m)
j (t) = n

(
ṽ
(m)
j+1(t)− ṽ

(m)
j (t)

)
,

v̇
(m)
j (t) = n

(
σ̃

(m)
j (t)− σ̃

(m)
j−1(t)

)
+ g̃

(m)
j (t),

v
(m)
j (0) = vj(0), σ(m)

j (0) = σj(0).

We just have to prove ε
(m)
j → F (σj), ṽ

(m)
j → vj , σ̃

(m)
j → σj , g̃

(m)
j → gj uniformly in [0, nT ∗ − κ] as m → ∞

for all j = 1, . . . , n− 1.
We have for instance for t ∈ [kη, (k + 1)η)

|σ̃(m)
j (t)− σj(t)| ≤ |σk+1

j − σk
j | ≤

(
m−1∑

k−0

|σk+1
j − σk

j |2
)1/2

≤ cnη1/2,

|g̃(m)
j (t)− gj(t)| ≤ n

∫ j+1
n

j
n

∫ (k+1)η

kη

|gt(x, t)|dtdx,

|ε(m)
j (t)− F (σj)(t)| ≤ |ε(m)

j (t)− ε
(m)
j (kη)|+ |F (σ(m)

j )(kη)− F (σj)(kη)|+
+ |F (σj)(kη)− F (σj)(t)|,

where

|ε(m)
j (t)− ε

(m)
j (kη)| ≤ |ε(m)

j

(
(k + 1)η

)− ε
(m)
j (kη)|

≤ |F (σ(m)
j )

(
(k + 1)

)
η)− F (σj)

(
(k + 1)η

)|+ |F (σ(m)
j )(kη)− F (σj)(kη)|+

+ |F (σj)
(
(k + 1)η

)− F (σj)(kη)|

14



and the convergence follows easily. We can summarize the results obtained so far in the following

Proposition 4.5 . Let n be a given integer and let σo, vo be given functions satisfying the hypotheses of
Theorem 4.2. Then there exists nT ∗ ∈ (0, T ] and absolutely continuous functions vj , σj : [0, nT ∗) → R1, j =
1, . . . , n−1 satisfying (35), (36) for t ∈ [0, nT ∗) and we have either nT ∗ = T or there exists j ∈ {1, . . . , n−1}
such that limt→nT∗− αqj(t)σ2

j (t) = E, where qj is the solution of equation (16) for σ = σj.

To finish the proof of Theorem 4.2, we apply now the standard technique of hyperbolic equations with
hysteresis (see e.g. [10]), namely estimates based on Proposition 3.5.

Estimates III.
Functions vj , σj , gj are absolutely continuous in [0, nT ∗), hence we can differentiate equations (35) with

respect to t. Then, multiplying the derivative of (35)(i) by σ̇j and the derivative of (35)(ii) by v̇j we obtain
from Propositions 3.5 and 3.1 for almost all t ∈ (0, nT ∗)

1
2n

n−1∑

j=1

(
1
E

σ̇2
j + v̇2

j

)
≤ 1

2n

n−1∑

j=1

(F (̇σj)(0)σ̇j(0) + v̇2
j (0)) +

1
n

n−1∑

j=1

∫ t

0

ġj(τ)v̇j(τ)dτ,

where

F (̇σj)(0)σ̇j(0) = E
(
F (̇σj)(0)

)2

= E

∣∣∣∣∣n
∫ j+1

n

j
n

vo(x)dx

∣∣∣∣∣

2

,

v̇2
j (0) =

∣∣∣∣∣n
∫ j

h

j−1
n

(
σo′(x) + g(x, 0)

)
dx

∣∣∣∣∣

2

and
n−1∑

j=1

∫ t

0

ġj(τ)v̇j(τ)dτ ≤



n−1∑

j=1

max
τ∈[0,t]

|v̇j(τ)|2



1/2 ∫ t

o




n−1∑

j=1

ġ2
j (τ)




1/2

dτ,

hence for all τ ∈ (0, nT ∗) we have

(46)
1
2n

n−1∑

j=1

(
σ̇2

j (t) + v̇2
j (t)

) ≤ c
(||vo||2W 1,2 + ||σo||2W 1,2 + ||g(·, 0)||L2 + ||gt||L1(0,T ;L2)

)
,

where c is a constant independent of n.

Estimate IV.
Analogously as in Estimate II, we multiply (35) (i) by σj and (35) (ii) by vj . After integration we obtain

from (6) for every t ∈ (0, nT ∗).

1
2n

n−1∑

j=1

(
1
E

σ2
j (t) + v2

j (t)
)
≤ 1

2n

n−1∑

j=1

(
1
E

σ2
j (0) + v2

j (0)
)

+
1
n

n−1∑

j=1

∫ t

o

gj(τ)vj(τ)dτ,

therefore

(47)
1
2n

n−1∑

j=1

(
1
E

σ2
j (t) + v2

j (t)
)
≤ c

(||σo||L2 + ||vo||L2 + ||g||L2(0,T ;L2)

)
.

Convergence as n →∞.
Estimate (46) shows that σj , vj are Lipschitz continuous in [0, nT ∗), hence they can be extended to

[0, T ] by putting σj(t) = σj(nT ∗−), vj(t) = vj(nT ∗−) for t ∈ [nT ∗, T ].
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We construct for x ∈ [
j
n , j+1

n

)
, t ∈ [0, T ], j = 0, . . . , n− 1 linear interpolates

σ(n)(x, t) : = σj(t) + n(x− j

n
)(σj+1)t)− σj(t)),

v(n)(x, t) : = vj(t) + n(x− j

n
)(vj+1(t)− vj(t)).

Sequences {σ(n)}, {v(n)}, {σ(n)
t }, {v(n)

t }, {σ(n)
x } are bounded in L∞(0, T ; L2(0, 1)). Passing to subsequences,

if necessary, we find functions v ∈ L∞(0, T ; L2(0, 1)), σ ∈ C([0, 1]× [0, T ]) such that the derivatives vt, σx, σt

belong to L∞(0, T ;L2(0, 1)) and v
(n)
t → vt, v(n) → v, σ

(n)
t → σt, σ

(n)
x → σx in L∞(0, T ;L2(0, 1)) weakly-star

and σ(n) → σ uniformly in C([0, 1]× [0, T ]).
Let q(x, t) be the solution of equation (34) and let T ∗ be the critical time corresponding to q. Using

once more Theorem 2.5 we infer that lim infn→∞ nT ∗ ≥ T ∗, hence equations (35) are satisfied in [0, T ∗ − δ]
for arbitrary δ > 0 for n sufficiently large. Moreover F (σ(n)) → F (σ) uniformly in [0, 1]× [0, T ∗ − δ].

For t ∈ [0, T ∗−δ] and x ∈ [ j
n , j+1

n ), j = 0, . . . , n−1 we introduce auxiliary functions ε̃(n)(x, t) := F (σj)(t),
ṽ(n)(x, t) := vj+1(t), g̃(n)(x, t) : = gj+1(t).

System (35) can be rewritten in the form

(48)

{
ε̃
(n)
t = v

(n)
x

ṽ
(n)
t = σ

(n)
x + g̃(n)

a.e. in (0, 1)× (0, T ∗ − δ).
Let q(n) be the solution of equation (34) for σ = σ(n). Since q(n) → q uniformly in [0, 1] × [0, T ∗ − δ]

and q(n)
(

j
n , t

)
= qj(t), j = 1, . . . , n− 1, we infer that there exists a constant c > 0 dependent possibly on δ

and independent of n such that

max
t∈[0,T∗−δ]
j=1,...,n−1

qj(t) ≤ c, max
t∈[0,T∗−δ]
j=1,...,n−1

1
E − αaj(t)σ2

j (t)
≤ c.

Relations (47), (15) then imply

max
t∈[0,T∗−δ]

∫ 1

o

|ε̃(n)
t (x, t)|2dx ≤ c, hence max

t∈[0,T∗−δ]

∫ 1

o

|v(n)
x (x, t)|2dx ≤ c.

Consequently, v(n) → v uniformly in [0, T ∗ − δ], v(n)
x → vx, ε̃

(n)
t → w in L∞

(
0, T ∗ − δ; L2(0, 1)

)
weakly-star

(we pass to a subsequence, if necessary).
To prove that w = F (σ)t a.e., it suffices to verify that ε̃(n) → F (σ) uniformly in [0, 1]× [0, T ∗ − δ]. We

have for x ∈ [
j
n , j+1

n

)

∣∣∣ε̃(n)(x, t)− F (σ(n))(x, t)
∣∣∣ =

∣∣∣∣F (σ(n))(
j

n
, t)− F (σ(n))(x, t)

∣∣∣∣

and the assertion follows from the uniform convergence F (σ(n)) → F (σ).
Mean Continuity Theorem yields

∫ T

o

∫ 1

o
|g̃(n)(x, t)− g(x, t)|dxdt → 0 as n →∞. It is easy to check that

σ, v satisfy initial and boundary conditions (33), hence v, σ are solutions to (1),(15),(33).
Let us note that δ > 0 has been chosen arbitrarily, hence the proof of Theorem 4.2 is complete.
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