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Abstract

We consider a certain type of rate independent elastoplastic constitutive laws
for nonlinear kinematic hardening which include the models of Frederick-Armstrong,
Bower and Mróz. We prove results concerning existence, uniqueness and continuous
dependence for the stress-strain evolution considered as a function of time (but not
of space). As an auxiliary result, we also prove a theorem concerning the Lipschitz
continuity of the vector play operator.

1 Introduction

Depending on the material a solid body is made of, the relation between load and deforma-
tion may vary greatly in character. Any deeper understanding requires an analysis of the
governing physical and molecular processes which take place on a microscopic scale. On
the other hand, a study of the macroscopic behaviour, in particular numerical simulation,
eventually has to rely upon some continuum model. One may analyze microscopic and
macroscopic models separately, or concentrate on their interaction. Within this paper,
we restrict ourselves to macroscopic models which are rate independent and assume small
strains . Such a type of behaviour is typical e.g. for the elastoplastic deformation of com-
monly used ductile steels at room temperature. To model the elastoplastic stress-strain
law, we use an operator formulation, namely

ε = F(σ) , σ = G(ε) , (1.1)

which automatically distinguishes between the stress controlled and the strain controlled
situation. Here, the operators F and G map certain spaces of functions, defined on
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some time interval [t0, t1] with values in some tensor space, into each other. In the rate
independent case considered here, such operators are often called hysteresis operators .
We consider the stress-strain law in isolation, that is, we concentrate on the evolution in
time according to (1.1) at a single point; thus, the balance laws which specify the space
interaction do not play any role here. We study the question whether the stress-strain law
is well posed in the space W 1,1(t0, t1;Td) , that is, whether the operators F respectively
G are well defined and continuous with respect to the norm

‖θ‖1,1 = |θ(t0)|+
∫ t1

t0
|θ̇(t)| dt . (1.2)

Here, we discuss models which are of pure kinematic hardening type. The basic model,
usually termed linear kinematic hardening , is due to Melan [27] and Prager [33]; during
the last 40 years, many modifications and refinements have been developed in order to
cope, for one thing, with the experimentally observed phenomenon of ratchetting . We
refer to [7], [8], [9], [16], [17], [36] and [20] for discussions and comparisons. We show in
this paper that some of these, in particular the models of Armstrong and Frederick [1],
Bower [2] and Mróz [29] can be reduced to a differential equation of the type

u̇ = θ̇ +M(θ, u)|ξ̇| . (1.3)

Here, θ stands for σ or ε , depending on whether we consider the stress controlled or
the strain controlled case; u represents an artificial function and M denotes a certain
operator, for each of the models considered. We will not require M to possess any
monotonicity or convexity properties. The function ξ is related to u through the vari-
ational inequality which expresses the principle of maximum dissipation or, equivalently,
the normality rule. The reduction to (1.3) as well as the wellposedness of the initial value
problem for (1.3) constitutes the main content of this paper and is discussed in Sections
2 and 3. Some additional material related to the Mróz model is presented in Section 4.
The appendix includes a result concerning the Lipschitz dependence of ξ upon u .
From the standpoint of mechanics, a proposal of a stress-strain law will be meaningful
only if it is compatible with the second law of thermodynamics. For the isothermal case
considered here, this means that the energy dissipation rate has to be nonnegative, that
is

ε̇σ − U̇ ≥ 0 (1.4)

has to hold along any possible trajectory of the system; here, U denotes the internal
energy. For systems with memory, however, the construction of a suitable nonnegative
U can be a tricky and nontrivial business. To tackle this problem in a somewhat general
manner, the notion of a dissipation potential has been introduced. Within that framework,
it is shown in [14] that for a certain class of standard generalized materials the second
law is satisfied. We refer to [26] and [24] for an exposition and for remarks concerning
the relation to the models treated here; we will be satisfied with a different explicit
construction of U for those models, in form of a hysteresis operator.
We do not study multisurface models, except for some remarks. The Chaboche model
will be treated in a subsequent paper.
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2 Kinematic Hardening Models

In order to fix our notation, we start with a brief review of the ingredients of kinematic
hardening models. We denote by T the space of symmetric N × N tensors endowed
with the usual scalar product and the associated norm

〈τ, η〉 =
N∑

i,j=1

τijηij , |τ | =
√
〈τ, τ〉 , (2.1)

For τ ∈ T , we define its trace Tr τ and its deviator τd by

Tr τ =
N∑

i=1

τii = 〈τ, δ〉 , τd = τ − Tr τ

N
δ , (2.2)

where δ = (δij) stands for the Kronecker symbol. We denote by

Td = {τ : τ ∈ T , Tr τ = 0} , T⊥
d = {τ : τ = λδ , λ ∈ IR} , (2.3)

the space of all deviators respectively its orthogonal complement. Since we study the
stress-strain law in isolation and do not discuss the spatial coupling described by the
balance equations, we consider stress and strain as functions defined on some fixed time
interval [t0, t1] . Most of our results concerning wellposedness will refer to the space of
absolutely continuous functions, so we will usually consider

σ, ε ∈ W 1,1(t0, t1;T) := {τ |τ : [t0, t1] → T , ‖τ‖1,1 = |τ(t0)|+
∫ t1

t0
|τ̇(t)| dt < ∞} . (2.4)

In operator form, the stress-strain law becomes

ε = F(σ) , σ = G(ε) , (2.5)

depending on whether we study the stress controlled or the strain controlled case. The
operators F and G will usually be defined on some subset DF respectively DG of
W 1,1(t0, t1;T) , generically denoted by D (note that we already used T indiscriminately
for stress and strain tensors). To ensure compatibility with the second law of thermody-
namics, we require the existence of operators UF defined on DF respectively UG defined
on DG , called internal energy operators , such that UF (σ) ≥ 0 respectively UG(ε) ≥ 0
in W 1,1(t0, t1; IR) and

〈 d

dt
F(σ), σ〉 − d

dt
UF (σ) ≥ 0 , a.e. in (t0, t1) , (2.6)

respectively

〈 d

dt
ε,G(ε)〉 − d

dt
UG(ε) ≥ 0 , a.e. in (t0, t1) , (2.7)

hold for all admissible arguments. Note that the left hand side of (2.6) respectively (2.7)
represents the rate of dissipation of the energy.
In terms of rheological models , all the models studied below have the structure

E − (R|K ) , (2.8)

3



that is, a linear elastic element E is connected in series with the parallel combination of
a rigid plastic element R and a “kinematic” element K ; essentially, R defines the form
of the yield surface, while K describes its movement. The rheological structure (2.8) is
reflected in the decomposition

ε = εe + εp , σ = σe + σp , (2.9)

of the stress and strain tensor into an “elastic” and a “plastic” part, see Figure 1. (In
order to conform with general usage, we write σe for the stress along K , instead of the
more proper notation σk , although K is not really an elastic element in the case of the
Bower and the Mróz model below.)

E : εe, σ

K : εp, σe

R : εp, σp�
Figure 1: The rheological model for kinematic hardening.

The linear elastic element E relates the total stress σ and the elastic strain εe by

σ = Aεe , (2.10)

where A = (Aijkl) is assumed to be constant in time and symmetric as well as positive
definite with respect to the scalar product 〈·, ·〉 . The rigid plastic element R is charac-
terized by a closed convex set Z ⊂ T which specifies the admissible values of the plastic
stress, i.e. it is required that

σp(t) ∈ Z , for all t ∈ [t0, t1] . (2.11)

Its boundary ∂Z is called the yield surface. Plastic flow occurs according to the principle
of maximum plastic work rate, that is, the plastic strain rate ε̇p has to satisfy the evolution
variational inequality

〈ε̇p(t), σp(t)− σ̃〉 ≥ 0 , ∀ σ̃ ∈ Z , a.e. in (t0, t1) , (2.12)

which implies that ε̇p = 0 as long as σp ∈ Int Z , while ε̇p points in the direction of the
(or, in case of nonuniqueness, an) outward normal if σp ∈ ∂Z , see Figure 2.
For all models considered below, the plastic strain is volume invariant, that is,

Tr εp(t) = 〈εp(t), δ〉 = 0 , εp
d(t) = εp(t) , for all t ∈ [t0, t1] . (2.13)

In view of the normality rule (2.12), condition (2.13) requires Z to have the form

Z = Zd ⊕T⊥
d , Zd ⊂ Td closed, convex . (2.14)
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We will restrict ourselves to the von Mises yield condition

Zd = Br(0) ∩Td = {τ : τ ∈ Td , |τ | ≤ r} . (2.15)

Since 0 ∈ Int Zd , the plastic work rate is always nonnegative, and there can be no plastic
deformation if the plastic stress vanishes.

σe(t)

σ(t)

ε̇p(t)

Z∗(t)�
Figure 2: The normality rule.

The movement of the yield surface is related to the elastic stress σe(t) , commonly also
called backstress , as follows. Since σp(t) ∈ Z if and only if σ(t) ∈ σe(t) + Z =: Z∗(t) ,
the set

∂Z∗(t) = σe(t) + ∂Z (2.16)

represents the position of the yield surface within stress space at any given time t . Since
∂Z = ∂Zd⊕T⊥

d , only the movement in the deviatoric part plays any role, so one requires
that

σe(t) = σe
d(t) ∈ Td , for all t ∈ [t0, t1] . (2.17)

In fact, for all models treated below, the requirement σe(t0) ∈ Td implies that (2.17)
holds. We may write the time evolution of σe in operator form as

σe = HF (σ) , resp. σe = HG(ε) ; (2.18)

the operators HF respectively HG are called the hardening rule.
The decomposition (2.9) introduces memory into the constitutive law; thus, the initial
state of the memory has to be specified if one wants any stress or strain controlled evolution
to be uniquely determined. Throughout this paper, we choose to prescribe the initial
values

εp(t0) = εp
0 ∈ Td , σp

d(t0) = σp
0d ∈ Td , |σp

0d| ≤ r . (2.19)

The second condition fixes the initial position of the yield surface with respect to the initial
stress σd(t0) . Once either σ(t0) or ε(t0) are given, the initial values for all variables in
(2.9) are determined by (2.9), (2.10), (2.17) and (2.19). (In the case of linear kinematic
hardening, equation (2.20) below replaces one of the two initial conditions.)
We now discuss specific choices for the kinematic element K .
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2.1 The model of Melan and Prager.

In this model, also referred to as linear kinematic hardening , one simply sets

σe = Cεp , (2.20)

where C > 0 is a constant. By (2.13), there holds σe = σe
d a.e., and the evolution

variational inequality (2.12) becomes

〈σ̇d − σ̇p
d, σ

p
d − σ̃d〉 ≥ 0 , ∀ σ̃d ∈ Zd , a.e. in (t0, t1) , (2.21)

σp
d(t) ∈ Zd , for all t ∈ [t0, t1] . (2.22)

It is well known that (2.21), (2.22) has a unique solution σp
d for a given function σd and

initial condition σp
d(t0) = σp

0d ∈ Zd ; in our terminology, there holds

σp
d = S(σd ; σp

0d) , (2.23)

where
S : W 1,1(t0, t1;Td)× Zd → W 1,1(t0, t1;Td) (2.24)

denotes the stop operator with the characteristic Zd as described in Definition A.2 of the
appendix, with the choice X = Td . Since σe = σe

d , the hardening rule can be written as

σe(t) = σd(t)− σp
d(t) = P(σd ; σp

0d)(t) , (2.25)

where P denotes the play operator with the characteristic Zd (again, we refer to the
appendix). The stress-strain law in stress controlled form becomes

ε(t) = (F(σ))(t) = A−1σ(t) +
1

C
P(σd ; σp

0d)(t) . (2.26)

Thus, the wellposedness of F – with respect to a given pair of norms in stress and strain
space – is equivalent to the wellposedness of the evolution variational inequality (2.21),
(2.22). In particular, the estimate

|σp
d(t)− σ̄p

d(t)| ≤ |σp
0d − σ̄p

0d|+
∫ t

t0
|σ̇d(τ)− ˙̄σd(τ)| dτ , (2.27)

which lies at the root of the theory initiated by Lions and Brézis (see [3] and [25] and the
literature cited there), yields the Lipschitz continuity of

F : W 1,1(t0, t1;T) → C([t0, t1];T) . (2.28)

If one couples linear kinematic hardening with the balance equations of linearized elastic-
ity, the resulting boundary value problem fits well into the framework of convex analysis,
and the estimate (2.27) usually leads to uniqueness in a natural manner. We refer to [12],
[14] and [32] for the general approach and to [13], [15], [19] and [31] for results concerning
linear kinematic hardening.
In contrast to that, our proof of wellposedness of the models below requires stronger
continuity properties of the operator P , to be discussed in the appendix. By (2.26),
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those results also furnish stronger results on continuous dependence for the Melan-Prager
constitutive law.
Its compatibility with the second law follows from the inequality

〈ε̇, σ〉 = 〈A−1σ̇, σ〉+
1

C
〈σ̇e, σe〉+ 〈ε̇p, σp〉 ≥ 1

2

d

dt

(
〈A−1σ, σ〉+

1

C
|σe|2

)
. (2.29)

Thus, if we define an internal energy operator by

UF (σ) =
1

2
〈A−1σ, σ〉+

1

2C
|σe|2 , (2.30)

we see that (2.6) holds along arbitrary stress paths σ ∈ W 1,1(t0, t1;T) .

2.2 The Armstrong-Frederick model.

Armstrong and Frederick [1] proposed a modification, usually termed nonlinear kinematic
hardening , of the model of Melan and Prager, namely

σ̇e = γ(Rε̇p − σe|ε̇p|) , (2.31)

σe(t)

σd(t)

σ̇e(t) ε̇p(t)

r

O

R
r
σp

d(t)

R�
Figure 3: The model of Armstrong and Frederick.

where γ, R > 0 are constants. Obviously, (2.13) implies that (2.17) holds if σe(t0) ∈ Td .
Since

|σe| d
dt
|σe| = d

dt

1

2
|σe|2 = γ(R〈ε̇p, σe〉 − |σe|2|ε̇p|) ≤ γ|ε̇p|(R− |σe|)|σe| , (2.32)

there holds |σe(t)| ≤ R for all t if it holds for t = t0 , and the yield surface will always
lie inside the sphere of radius R + r . The restriction

|σe(t0)| ≤ R (2.33)
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thus appears to be natural, because otherwise the initial condition would not be reachable
from the zero state. Since the normality rule in the von Mises case implies that

ε̇p =
1

r
σp

d |ε̇p| , (2.34)

we can rewrite (2.31) in the form

σ̇e = γ|ε̇p|
(

R

r
σp

d − σe
)

, a.e. in (t0, t1) . (2.35)

In particular, the vector σ̇e(t) points in the direction of the vector (R/r)σp
d(t) − σe(t)

during plastic flow, see Figure 3.
To derive the wellposedness of the Armstrong-Frederick model, we employ a suitably
chosen auxiliary variable. For the stress controlled case, we consider

u = γRεp + σp
d . (2.36)

Multiplying (2.12) by γR , we see that

〈u̇− σ̇p
d, σ

p
d − σ̃d〉 ≥ 0 , ∀ σ̃d ∈ Zd , a.e. in (t0, t1) , (2.37)

has to be satisfied. In operator notation,

σp
d = S(u ; σp

0d) , εp =
1

γR
P(u ; σp

0d) . (2.38)

The hardening rule becomes

σe = σd − σp
d = σd − S(u ; σp

0d) , (2.39)

and the stress-strain law takes on the form

ε = A−1σ +
1

γR
P(u ; σp

0d) . (2.40)

We replace σp
d in (2.36) by σd − σe , form the time derivative and evaluate σ̇e according

to (2.31). Using (2.38) and (2.39) we obtain the stress controlled differential equation for
the unknown function u ,

u̇ = σ̇d +
1

R
(σd − S(u ; σp

0d))
∣∣∣ d

dt
P(u ; σp

0d)
∣∣∣ , (2.41)

which we have to solve subject to the initial condition

u(t0) = γRεp
0 + σp

0d . (2.42)

We will prove the wellposedness of this problem in Section 3.
A similar procedure works in the strain controlled case. We assume Hooke’s law for the
linear elastic part (2.10), that is,

σ = Aεe = 2µεe + λ(Tr εe)δ , (2.43)
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holds with the Lamé constants λ, µ > 0 . Consequently, we have

σe = σe
d = 2µεe

d − σp
d = 2µεd − (2µεp + σp

d) . (2.44)

We now choose the auxiliary function

v = (2µ + γR)εp + σp
d . (2.45)

For the same reason as above, (2.37) continues to hold if we replace u by v , so

σp
d = S(v ; σp

0d) , εp =
1

2µ + γR
P(v ; σp

0d) . (2.46)

We form the time derivative in (2.45) and obtain

v̇ = γRε̇p + (2µε̇d − σ̇e) = 2µε̇d + γσe|ε̇p| . (2.47)

On the other hand, combining (2.44), (2.45) and (2.46) we get

σe = 2µεd − v + ρP(v ; σp
0d) , ρ :=

γR

2µ + γR
. (2.48)

Putting together (2.47) and (2.48) we finally arrive at the strain controlled differential
equation

v̇ = 2µε̇d +
γ

2µ + γR
(2µεd − v + ρP(v ; σp

0d))
∣∣∣ d

dt
P(v ; σp

0d)
∣∣∣ . (2.49)

with the initial condition
v(t0) = (2µ + γR)εp

0 + σp
0d . (2.50)

The thermodynamical consistency of the Armstrong-Frederick model follows from the
inequality

〈ε̇, σ〉 = 〈A−1σ̇, σ〉+
1

γR
〈σ̇e, σe〉+

1

R
|σe|2|ε̇p|+ 〈ε̇p, σp〉 ≥ 1

2

d

dt

(
〈A−1σ, σ〉+

1

γR
|σe|2

)
.

(2.51)

2.3 Bower’s model.

In order to improve the description of ratchetting effects which occur during the elasto-
plastic deformation of railway rails, Bower [2] refined the Armstrong-Frederick model as

σ̇e = γ(Rε̇p − (σe − σβ)|ε̇p|) , (2.52)

σ̇β = c(σe − σβ)|ε̇p| , (2.53)

where c > 0 is an additional constant and

σβ(t0) = σβ
0 ∈ Td (2.54)

is given.
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σe(t)

σd(t) σ̇e(t)

ε̇p(t)

r

O

R
r
σp

d(t)

R

σe(t)− σβ(t)

σβ(t)

σ̇β(t)�
Figure 4: The model of Bower.

We have
σ̇e − σ̇β = γRε̇p − (γ + c)(σe − σβ)|ε̇p| , (2.55)

and the same argument as in (2.32) yields the natural restriction

|σe(t0)− σβ
0 | ≤

γR

γ + c
. (2.56)

Combining (2.52) and (2.53) we obtain

σβ(t) = σβ
0 + cR(εp(t)− εp

0)−
c

γ
(σe(t)− σe(t0)) . (2.57)

This enables us to eliminate σβ in (2.52), and we obtain

σ̇e = γRε̇p −
(
(γ + c)σe − γcR(εp − εp

0)− cσe(t0)− γσβ
0

)
|ε̇p| . (2.58)

We now proceed similarly as we did for the Armstrong-Frederick model. In the stress
controlled case, we put

u(t) = γR(εp(t)− εp
0) + σd(t0)− σp

0d +
γ

c
σβ

0 + σp
d(t) , (2.59)

so
P(u ; σp

0d) = γR(εp − εp
0) + σd(t0)− σp

0d +
γ

c
σβ

0 , S(u ; σp
0d) = σp

d . (2.60)

Differentiating in time and inserting (2.58) we get the identity

u̇− σ̇d = ((γ + c)(σd − σp
d)− c(u− σp

d))|ε̇p| , (2.61)
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and thus obtain

u̇ = σ̇d +
1

R

((
1 +

c

γ

)
(σd − u) + P(u ; σp

0d)

) ∣∣∣ d

dt
P(u ; σp

0d)
∣∣∣ , (2.62)

with the initial condition
u(t0) = σd(t0) +

γ

c
σβ

0 . (2.63)

In the strain controlled case, we consider the auxiliary function

v(t) = (2µ + γR)εp(t) + σp
d(t) + c0 , (2.64)

where

c0 =
c(2µ + γR)

2µ(γ + c) + γcR

(
2µεd(t0)− σp

0d − (2µ + γR)εp
0 +

γ

c
σβ

0

)
. (2.65)

We differentiate (2.64) and obtain, assuming again that (2.43) holds,

v̇ = 2µε̇d +
γ + c

2µ + γR

(
(2µεd − v) +

γ

γ + c
· γR

2µ + γR
P(v ; σp

0d)

) ∣∣∣ d

dt
P(v ; σp

0d)
∣∣∣ , (2.66)

with the initial condition

v(t0) =
1

2µ(γ + c) + γcR

(
(2µ + γR)(2µ(cεd(t0) + γεp

0) + γσβ
0 ) + 2µγσp

0d

)
. (2.67)

The thermodynamical consistency is implied by the inequality

〈ε̇, σ〉 = 〈A−1σ̇, σ〉+ 〈ε̇p, σp〉+
1

γR
〈σ̇e, σe〉+

1

cR
〈σ̇β, σβ〉+

1

R
|σe − σβ|2|ε̇p|

≥ 1

2

d

dt

(
〈A−1σ, σ〉+

1

γR
|σe|2 +

1

cR
|σβ|2

)
. (2.68)

Without further information, and in particular for the zero initial state, the natural initial
value for σβ will be σβ

0 = 0 . It turns out, however, that with the specific choice

σβ
0 = cRεp

0 −
c

γ
σe(t0) , (2.69)

the kinematic element K becomes identical with a parallel combination of an Armstrong-
Frederick element and a Melan-Prager element; in this manner, a special case of the two
surface Chaboche model is obtained. To this end, we decompose the backstress σe as

σe = σa + σm , (2.70)

where
σa =

γ

c + γ
(σe − σβ) , (2.71)

σm =
c

c + γ

(
σe +

γ

c
σβ

)
. (2.72)

From (2.52) - (2.56) and (2.69) one easily computes that

σ̇a = (c + γ)

(
γ2R

(c + γ)2
ε̇p − σa|ε̇p|

)
, (2.73)

σm =
γcR

c + γ
εp . (2.74)
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2.4 The model of Mróz.

In contrast to the models above, the hardening rule σe = HF (σd) of the Mróz model [29]
is not based upon a formula involving the plastic strain rate ε̇p ; instead, it employs a
certain geometric construction involving an auxiliary surface, namely the sphere ∂BR(0)
with the radius R > r around 0. (We will not treat the case of several auxiliary surfaces
as in the original paper [29], nor the version with a one parameter family of surfaces
discussed in [10], [11] and [4].) Assume that there holds

|σd(t)| < R , t ∈ (t0, t1) . (2.75)

The Mróz hardening rule is defined by

σ̇e(t) = µ(t)
(R

r
σp

d(t)− σd(t)
)
, (2.76)

where µ(t) ≥ 0 , if |σp
d(t)| = r and 〈σ̇d(t), σ

p
d(t)〉 > 0 , and µ(t) = 0 and hence σ̇e(t) = 0

otherwise. The actual value of µ(t) during plastic flow can be determined from the
condition |σp

d(t)| = r . Moreover, in the case of the sphere, σp
d points into the direction of

the outward normal if |σp
d| = r ; consequently, the vector σ̇e(t) defined by (2.76) points

into the direction of the line which connects σd(t) to the point having the same normal
as σd(t) on the auxiliary surface ∂BR(0) , see Figure 5.

σe(t)

σd(t)

σ̇e(t)
ε̇p(t)

r

O

R
r
σp

d(t)

R

�
Figure 5: The Mróz hardening rule.

We now show how this construction is related to the stress controlled differential equation

u̇ = σ̇d +
σd

R
|ξ̇| , ξ = P(u ; σp

0d) . (2.77)

12



To this end, let us first assume that the function µ is determined as described above. Let
the auxiliary function u solve the equation

u̇(t) = σ̇d(t) + µ(t)σd(t) . (2.78)

From (2.76) we obtain

u̇− σ̇p
d = σ̇e + µσd = µ

R

r
σp

d , (2.79)

so that
〈u̇− σ̇p

d, σ
p
d − σ̃d〉 ≥ 0 , ∀ σ̃d ∈ Br(0) , a.e. in (t0, t1) . (2.80)

By definition of the stop operator we get, setting ξ = P(u ; σp
0d) ,

σp
d = S(u ; σp

0d) , ξ̇(t) = u̇(t)− σ̇p
d(t) = µ

R

r
σp

d(t) , (2.81)

so that Rµ(t) = |ξ̇(t)| , and (2.77) holds. Conversely, if u solves (2.77) and if we define

µ(t) = R−1|ξ̇(t)| , σp
d = S(u ; σp

0d) , σe = σd − σp
d , (2.82)

we see that (2.76) is satisfied. Thus, (2.77) characterizes the Mróz hardening rule. The ini-
tial condition for u can be chosen arbitrarily, for example as u(t0) = σp

0d . The normality
rule (2.12) requires that the plastic strain rate satisfies

ε̇p(t) = λ(t)σp
d(t) , (2.83)

where λ(t) ≥ 0 and λ(t) = 0 if |σp
d(t)| < r . The choice of λ is discussed in [24]; we only

add the following remark concerning the thermodynamical consistency. If we solve (2.77)
for σ̇d , we obtain

σ̇e = σ̇d − σ̇p
d = ξ̇ − σd

R
|ξ̇| . (2.84)

Let t be such that |σp
d(t)| = r and that the derivatives exist at t . Then there holds

〈σ̇d(t), σ
p
d(t)〉 = 〈σ̇e(t), σp

d(t)〉+ 〈σ̇p
d(t), σ

p
d(t)〉 ≤ 〈σ̇e(t), σp

d(t)〉 , (2.85)

hence 〈σ̇d(t), σ
p
d(t)〉 > 0 and |σp

d(t)| = r imply that ξ̇(t) 6= 0 . Consequently, if we assume
that there is no plastic deformation for unloading or neutral loading, that is, if

ε̇p(t) 6= 0 ⇒ 〈σ̇d(t), σ
p
d(t)〉 > 0 , (2.86)

we must have ξ̇(t) 6= 0 if λ(t) 6= 0 , so we can find a nonnegative function α such that

ε̇p(t) = α(t)ξ̇(t) . (2.87)

We may combine (2.84) and (2.87) to obtain

ασ̇e = ε̇p − σd

R
|ε̇p| , a.e. in (t0, t1) . (2.88)

This enables us to estimate the rate of mechanical work from below as

〈ε̇, σ〉 = 〈A−1σ̇, σ〉+
|σd|2
R

|ε̇p|+ 〈ασ̇e, σd〉

≥ 1

2

d

dt
〈A−1σ, σ〉+ α〈σ̇e, σe〉 . (2.89)

13



Thus, the choice
α(t) = G(|σe(t)|2) , (2.90)

where G is a positive integrable function (in particular, it may be chosen as a constant)
ensures the thermodynamical consistency of the model.
It is known that the Armstrong-Frederick model can be considered as a special case of the
Mróz model. In the framework above, we see this if we select the function α in (2.87) to
be a constant; in that case, (2.88) becomes

σ̇e =
1

αR

(
(R− r)ε̇p − σe|ε̇p|

)
. (2.91)

3 Existence, Uniqueness and Regularity Results

In this section we study the wellposedness of the Cauchy problem

u̇(t) = θ̇(t) +M(θ, u)(t)|ξ̇(t)| , a.e. in (t0, t1) , (3.1)

ξ(t) = P(u ; x0)(t) , t ∈ [t0, t1] , (3.2)

u(t0) = u0 . (3.3)

The unknown functions are u and ξ , whereas the initial conditions u0, x0 as well as
a source (or input) function θ are given. By P we denote the play operator with the
characteristic Z = Br(0) , r > 0 , as defined in the appendix. The operator M may have
a rather general form, but it is required that all values M(θ, u)(t) are uniformly smaller
than 1 in absolute value. To be more precise, we consider

M : Θ× C([t0, t1]; X) → C([t0, t1]; X) , (3.4)

where X is a finite dimensional Hilbert space, and Θ denotes a set of admissible input
functions. In fact, M may also depend upon the initial value x0 ; however, for simplicity
we will suppress this dependence in the notation except in the statement and proof of
Theorem 3.3. The operator M has to be causal , that is, it holds M(θ1, u1) = M(θ2, u2)
on [t0, t] whenever (θ1, u1) = (θ2, u2) on [t0, t] , if t ∈ [t0, t1] . Thus, M generates a
family of operators

Mt : Θt × C([t0, t]; X) → C([t0, t]; X) , Θt = {θ
∣∣∣[t0, t] : θ ∈ Θ} , t ∈ [t0, t1] , (3.5)

but we will usually drop the index t in the sequel. Since we will use the method of the
retarded argument for the proof of the basic existence theorem, we also require Θ to be
shift invariant , that is, τ δθ ∈ Θ for every θ ∈ Θ and δ > 0 , where the shift τ δf of a
function f defined on [t0, t1] is given by

(τ δf)(t) =

{
f(t− δ) , t0 + δ ≤ t ≤ t1 ,
f(t0) , t0 ≤ t ≤ t0 + δ ,

(3.6)

Assumption 3.1 Let Θ ⊂ W 1,1(t0, t1; X) be shift invariant, let M : Θ×C([t0, t1]; X) →
C([t0, t1]; X) be causal and continuous with respect to the maximum norm. Moreover,
assume that u0 ∈ X , x0 ∈ Br(0) and κ > 0 are given such that

sup
s∈[t0,t]

|M(θ, u)(s)| ≤ 1− κ (3.7)

14



holds for every t ∈ [t0, t1] , θ ∈ Θt and every u ∈ W 1,1(t0, t; X) with u(t0) = u0 and

|u̇(τ)| ≤ 1

κ
|θ̇(τ)| , a.e. in (t0, t) . (3.8)

We present the basic existence theorem.

Theorem 3.2 Let Assumption 3.1 hold, let θ ∈ Θ be given. Then there exists a solution
(u, ξ) of the Cauchy problem (3.1) - (3.3) such that u, ξ ∈ W 1,1(t0, t1; X) and

‖M(θ, u) ‖∞ ≤ 1− κ , (3.9)

as well as

|u̇(t)| ≤ 1

κ
|θ̇(t)| , a.e. in (t0, t1) . (3.10)

Moreover, every solution which satisfies (3.9) also satisfies (3.10).

Proof. We first consider the Cauchy problem

u̇(t) = θ̇(t) + f(t)|ξ̇(t)| , a.e. in (a, a + η) , (3.11)

ξ(t) = P(u ; xa)(t) , u(a) = ua , ξ(a) = ua − xa , (3.12)

on some interval [a, a + η] ⊂ [t0, t1] , where ua ∈ X , xa ∈ Br(0) , f ∈ L∞(a, a + η)
are given. We claim that (3.11), (3.12) has a unique solution u, ξ ∈ W 1,1(a, a + η; X)
satisfying (3.10), if

‖ f ‖∞ ≤ 1− κ ,
∫ a+η

a
|θ̇(t)| dt ≤ κ2r√

2
. (3.13)

This follows from the fact that the operator T defined by

(Tu)(t) = ua + θ(t)− θ(a) +
∫ t

a
f(s)|ξ̇(s)| ds (3.14)

is a contraction on the subset

B = {u : u ∈ W 1,1(a, a + η; X) , |u̇(t)| ≤ 1

κ
|θ̇(t)| a.e. , u(a) = ua} (3.15)

of W 1,1(a, a + η; X) . Indeed, T maps B into itself since (Tu)(a) = ua and, since
|ξ̇| ≤ |u̇| holds pointwise a.e. by (A.12),

∣∣∣ d

dt
(Tu)(t)

∣∣∣ ≤ |θ̇(t)|+ (1− κ)|u̇(t)| ≤ 1

κ
|θ̇(t)| . (3.16)

Moreover, if we apply Theorem A.5 and the estimate (A.4) on [a, a + η] , we obtain for
any u, v ∈ B

∫ t

a

∣∣∣ d

dt
(Tu)− d

dt
(Tu)

∣∣∣(s) ds ≤

≤ (1− κ)

[∫ t

a
|u̇− v̇|(s) ds +

√
2

r

∫ t

a
|u̇(s)||S[u ; xa]− S[v ; xa]|(s) ds

]

≤ (1− κ)

[∫ t

a
|u̇− v̇|(s) ds +

√
2

rκ

∫ t

a
|θ̇(s)|

∫ s

a
|u̇− v̇|(σ) dσ ds

]

≤ (1− κ2)
∫ t

a
|u̇− v̇|(s) ds . (3.17)
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In the second step, we consider the Cauchy problem

u̇(t) = θ̇(t) +M(τ δθ, τ δu)(t)|ξ̇(t)| , a.e. in (t0, t1) , (3.18)

ξ(t) = P(u ; x0)(t) , u(t0) = u0 . (3.19)

Since the constant η in (3.13) can be chosen independently from a , for every δ ∈ (0, η)
we can use the result of the first step as well as Assumption 3.1 to construct an absolutely
continuous solution (uδ, ξδ) of (3.18), (3.19) successively on the intervals [t0, t0 + δ] ,
[t0 + δ, t0 + 2δ] , . . . , such that

|u̇δ(t)| ≤ 1

κ
|θ̇(t)| (3.20)

holds almost everywhere. By (3.20), the family {u̇δ : 0 < δ < η} is equiintegrable in
L1(t0, t1; X) and {uδ} is equicontinuous and uniformly bounded in C([t0, t1]; X) . By
the Dunford-Pettis and the Arzelà-Ascoli theorems, there exists a u ∈ W 1,1(t0, t1; X)
and a sequence {uδk

} with δk → 0 , denoted by {uk} , such that uk → u uniformly in
C([t0, t1]; X) as well as

lim
n→∞

∫ t1

t0
〈u̇k − u̇, w〉 dt = 0 , for all w ∈ L∞(t0, t1; X) . (3.21)

Setting

Vk(t) = Var[t0,t] ξk =
∫ t

t0
|ξ̇k(s)| ds , ξk = P(uk ; x0) , (3.22)

we can rewrite (3.18), (3.19) in terms of a Stieltjes integral as

uk(t) = u0 + θ(t)− θ(t0) +
∫ t

t0
M(τ kθ, τ kuk)(s) dVk(s) , τ k := τ δk . (3.23)

Since the sequence {Vk} by Proposition A.9 converges pointwise (and, hence, uniformly)
to

V (t) =
∫ t

t0
| d
dt
P(u ; x0)(s)| ds , (3.24)

and since obviously τ kuk → u uniformly, the continuity of M enables us to pass to the
limit in (3.23), so (u, ξ) with ξ = P(u ; x0) yields a solution of (3.1) - (3.3). 2

If the operator M is Lipschitz continuous, the solutions of the Cauchy problem (3.1) -
(3.3) depend Lipschitz continuously upon the data (and, in particular, are unique), as the
following theorem shows.

Theorem 3.3 Let two sets of data (θ1, x
0
1, u

0
1) , (θ2, x

0
2, u

0
2) with θi ∈ Θ , u0

i ∈ X and
x0

i ∈ Br(0) be given, let (u1, ξ1) and (u2, ξ2) be corresponding solutions in W 1,1(t0, t1; X)
of the Cauchy problem (3.1) - (3.3) which satisfy (3.9) and (3.10) for some κ > 0 .
Assume that

max
s∈[t0,t]

|M(θ1, u1; x
0
1)(s)−M(θ2, u2; x

0
2)(s)| ≤ A

(
|x0

1 − x0
2|+

+ |u1(t0)− u2(t0)|+
∫ t

t0
|u̇1 − u̇2| ds + |θ1(t0)− θ2(t0)|+

∫ t

t0
|θ̇1 − θ̇2| ds

)
. (3.25)

holds for all t ∈ [t0, t1] . Then there holds

‖u1 − u2 ‖1,1 ≤ L(|x0
1 − x0

2|+ |u0
1 − u0

2|+ ‖ θ1 − θ2 ‖1,1) . (3.26)
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where L depends only upon A, κ, r and

c := max{‖ θ1 ‖1,1 , ‖ θ2 ‖1,1} . (3.27)

Proof. From the differential equation (3.1) and from (3.9) we obtain, a.e. in (t0, t1) ,

|u̇1(t)− u̇2(t)| ≤ |θ̇1(t)− θ̇2(t)|+ (1− κ)|ξ̇1(t)− ξ̇2(t)|+
+ |ξ̇1(t)||M(θ1, u1; x

0
1)(t)−M(θ2, u2; x

0
2)(t)| . (3.28)

Theorem A.5 states that there holds, for every t ∈ [t0, t1] ,
∫ t

t0
|ξ̇1 − ξ̇2| ds ≤ |x0

1 − x0
2|+

∫ t

t0
|u̇1 − u̇2| ds +

√
2

r

∫ t

t0
|u̇1||x1 − x2| ds , (3.29)

where xi = S(ui ; x
0
i ) , i = 1, 2 . By (A.12) and (3.10) we have

|ξ̇1(t)| ≤ |u̇1(t)| ≤ 1

κ
|θ̇1(t)| . (3.30)

Since (A.4) implies that

|x1(s)− x2(s)| ≤ |x0
1 − x0

2|+
∫ s

t0
|u̇1 − u̇2| dτ , s ∈ [t0, t] , (3.31)

we obtain that
∫ t

t0
|ξ̇1 − ξ̇2| ds ≤

(
1 +

√
2

rκ

∫ t

t0
|θ̇1| ds

)
|x0

1 − x0
2|+

∫ t

t0
|u̇1 − u̇2| ds

+

√
2

rκ

∫ t

t0
|θ̇1(s)|

∫ s

t0
|u̇1 − u̇2| dτ ds . (3.32)

For a given t ∈ [t0, t1] , we integrate (3.28) over [t0, t] , estimate the derivatives of ξ with
the aid of (3.30), (3.32) and (3.27), rearrange and divide by κ to obtain

∫ t

t0
|u̇1 − u̇2| ds ≤ B +

1

κ2

(
A +

(1− κ)
√

2

r

) ∫ t

t0
|θ̇1(s)|

∫ s

t0
|u̇1 − u̇2| dτ ds , (3.33)

where B is the number given by

B =
1

κ

(
1 +

c

κ

)
‖ θ1 − θ2 ‖1,1 +

cA

κ2
|u0

1 − u0
2|+

1

κ

[
(1− κ)

(
1 +

c
√

2

rκ

)
+

c

κ

]
|x0

1 − x0
2| . (3.34)

We define the functions β and w by

β(t) =
1

κ2

(
A +

(1− κ)
√

2

r

)
|θ̇1(t)| , (3.35)

w(t) =
∫ t

t0
β(s)

∫ s

t0
|u̇1 − u̇2| dτ ds . (3.36)

In terms of those functions, (3.33) becomes

ẇ(t) ≤ β(t)(B + w(t)) , for all t ∈ [t0, t1] . (3.37)

Since w(t0) = 0 , Gronwall’s inequality implies that

w(t) ≤ B
[
exp

( ∫ t

t0
β(s) dx

)
− 1

]
. (3.38)

Inserting (3.38) into (3.37) we finally conclude that
∫ t1

t0
|u̇1 − u̇2| dt ≤ B exp

( c

κ2
(A + (1− κ)

√
2

r
)
)
. (3.39)

The proof is complete. 2
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We apply the results of Theorem 3.2 and of Theorem 3.3 to the models of Armstrong-
Frederick, Bower and Mróz. We begin with the Mróz model which is particularly easy
to treat, because in this case the operator M does not depend upon u . Let σ ∈
W 1,1(t0, t1;T) be given. According to Subsection 2.4, we have to solve the initial value
problem

u̇ = σ̇d +
σd

R
|ξ̇| , ξ = P(u ; σp

0d) , u(t0) = σp
0d ∈ Br(0) . (3.40)

Its solution (u, ξ) determines σe and σp by (2.78). The stress controlled constitutive
law

ε = FM(σ) = A−1σ + εp , (3.41)

turns out to be well posed for rather general flow rules, for example (see the discussion in
subsection 2.4)

ε̇p(t) = α(t)ξ̇(t) , α(t) = G(σe(t), σd(t)) , εp(t0) = εp
0 . (3.42)

Proposition 3.4 (Mróz model)
Let G : Td × Td → IR be locally Lipschitz continuous. Then the Mróz constitutive
operator FM given by (3.41) and (3.42) is well defined on the domain

DM = {σ : σ ∈ W 1,1(t0, t1;T) , ‖σd ‖∞ < R} (3.43)

and Lipschitz continuous with respect to the norm ‖ · ‖1,1 on every subset

Dκ,C
M = {σ : σ ∈ DM , ‖σd ‖∞ ≤ R(1− κ) , ‖σd ‖1,1 ≤ C} , 0 < κ < 1 , C > 0 . (3.44)

Proof. We choose X = Td and set

θ = σd , M(θ, u) =
1

R
θ , u0 = x0 = σp

0d . (3.45)

We fix κ ∈ (0, 1) and define Θ by

Θ = {θ : θ ∈ W 1,1(t0, t1; X), ‖ θ ‖∞ ≤ R(1− κ)} . (3.46)

Then Assumption 3.1 as well as (3.25) hold, the latter with A = R−1 . The assertion
follows from Theorems 3.2 and 3.3, since the assumption on G implies that the mapping
(u, σd) 7→ εp is Lipschitz continuous w.r.t. the norm of W 1,1 on the set of pairs (u, σd)
with solutions u for σd ∈ Dκ,C

M . 2

Proposition 3.4 does not cover the case when |σd| = R , i.e. when the value of the stress
reaches the boundary of the auxiliary surface. We will discuss that situation in Section 4.

For the Armstrong-Frederick and the Bower models, the operator M depends on u . To
find out whether and how the input function θ must be restricted in order to ensure that
‖M(θ, u) ‖∞ < 1 , one needs a priori estimates. We first consider the stress controlled
Armstrong-Frederick model. Here, problem (3.1) - (3.3) with θ = σd and x0 = σp

0d takes
on the form

u̇ = θ̇ +
1

R
(θ − x)|ξ̇| , u(t0) = u0 = γRεp

0 + x0 , (3.47)

where
ξ = P(u ; x0) , x = S(u ; x0) , (3.48)
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so in particular

M(θ, u) =
1

R
(θ − S(u ; x0)) . (3.49)

If we assume that R > r and restrict ourselves to stress inputs θ = σd satisfying
‖σd ‖∞ < R − r , then ‖M(σd, u) ‖∞ < 1 holds since we have ‖ S(u ; x0) ‖∞ ≤ r re-
gardless of the values of u , and we obtain the wellposedness of (3.47), (3.48) in the same
straightforward manner as for the Mróz model above in 3.4. (The continuity of M with
respect to u follows from (A.14).) However, from the model equations one would hope
the less stringent restriction

‖σd ‖∞ < R + r (3.50)

to suffice, since the Armstrong-Frederick equation (2.31) implies that |σe| ≤ R if we have
|σe(t0)| ≤ R ; on the other hand, the bound |σp

d| ≤ r is already part of the definition
of the plastic element. In fact, the following example (see [24], p. 222) shows that, in
proportional loading, the plastic strain tends to infinity as we enforce |σd| to approach
the value R + r .

Example 3.5 Let e ∈ Td be any tensor of unit norm, set

θ(t) = σd(t) = (r + t)e , x0 = re , t0 = 0 . (3.51)

Then one easily checks that the ansatz

x(t) = re , u̇(t) = ξ̇(t) , (3.52)

reduces (3.47) to

u̇ =
(
1 +

t

R
|u̇|

)
e , u(0) = re . (3.53)

From (3.53) we can compute the solution of (3.47) – uniqueness follows from Proposition
3.8 below – as

u(t) =
(
r + R log

R

R− t

)
e . (3.54)

As σp
d is bounded, (2.36) shows that εp tends to infinity as t approaches R .

The following development up to Proposition 3.8 shows that the restriction (3.50) gives
the correct bound also for arbitrary multiaxial loading.

Lemma 3.6 Assume that θ, u, x, ξ ∈ W 1,1(t0, b;Td) solve (3.47), (3.48) in [t0, b] and
that |θ(a) − x(a)| ≤ R(1 − κ) for some a ∈ [t0, b] and some κ > 0 . Assume moreover
that

‖ θ ‖∞ ≤ r + R(1− κ)2 . (3.55)

Then
|θ(t)− x(t)| ≤ R(1− κ) (3.56)

holds for all t ∈ [a, b] .

Proof. It suffices to prove that (3.56) holds for all t for which

d

dt
|θ(t)− x(t)|2 > 0 . (3.57)
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Assuming the latter, we get

0 < 〈θ̇(t)− ẋ(t), θ(t)− x(t)〉 = 〈ξ̇(t), θ(t)− x(t)〉 − 1

R
|ξ̇(t)||θ(t)− x(t)|2 , (3.58)

hence ξ̇(t) 6= 0 and 〈ξ̇(t), x(t)〉 = r|ξ̇(t)| by (A.16). We therefore conclude that

1

R
|θ(t)− x(t)|2 + r ≤

〈 ξ̇(t)

|ξ̇(t)| , θ(t)
〉
≤ r + R(1− κ)2 , (3.59)

whence (3.56) follows. 2

Lemma 3.7 Let θ ∈ W 1,1(t0, t1;Td) , u0 ∈ X and x0 ∈ Br(0) be given. Assume that
(3.55) as well as |θ(t0) − x0| ≤ R(1 − κ) hold for some κ ∈ (0, 1) . Then there exists
a solution (u, ξ) of the Cauchy problem (3.47), (3.48) such that u, ξ ∈ W 1,1(t0, t1;Td) ,
and every solution satisfies

‖M(θ, u) ‖∞ ≤ 1− κ , |u̇(t)| ≤ 1

κ
|θ̇(t)| , a.e. in (t0, t1) . (3.60)

Proof. We choose η > 0 such that there holds, for all a ∈ [t0, t1 − η] ,

∫ a+η

a
|θ̇(t)| dt <

Rκ2

4 + 2κ
. (3.61)

It suffices to prove that, given any a ∈ [t0, t1−η] and any solution (u, ξ) on [t0, a] which
satisfies

|θ(t)− x(t)| < R(1− κ) (3.62)

for t = a , that solution can be extended to a solution on [t0, a + η] , and any such
continuation satisfies (3.62) for all t ∈ [a, a + η] . To this end, we apply Theorem 3.2
on the interval [a, a + η] . We first show that (3.7), (3.8) hold with κ replaced by κ/2 .
Assume that ũ ∈ W 1,1(a, a + η;Td) satisfies ũ(a) = u(a) and

| ˙̃u(t)| ≤ 2

κ
|θ̇(t)| , a.e. in (a, a + η) . (3.63)

Setting x̃ = S(ũ ; x(a)) on [a, a + η] , we have | ˙̃x| ≤ | ˙̃u| a.e. and

|M(θ, ũ)(t)| =
1

R
|θ(t)− x̃(t)|

≤ 1

R

(
|θ(a)− x(a)|+

∫ a+η

a
|θ̇|+ | ˙̃x| ds

)

≤ (1− κ) +
1

R

(
1 +

2

κ

) Rκ2

4 + 2κ
= 1− κ

2
, (3.64)

for all t ∈ [a, a+η] . Hence, Theorem 3.2 implies that there exists a solution on [a, a+η] .
From Lemma 3.6 we conclude that (3.62) must hold on [a, a+η] for any such continuation
ũ . 2
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Proposition 3.8 (Stress controlled Armstrong-Frederick model)
The operator FAF of the stress controlled Armstrong-Frederick model is well defined on
the domain

DFAF = {σ : σ ∈ W 1,1(t0, t1;T) , ‖σd ‖∞ < R + r , |σd(t0)− σp
0d| < R} , (3.65)

and Lipschitz continuous with respect to the norm ‖ · ‖1,1 on every subset

Dα,C
FAF = {σ : σ ∈ DFAF , ‖σd ‖∞ ≤ R + r − α , |σd(t0)− σp

0d| ≤ R− α , ‖σd ‖1,1 ≤ C} .
(3.66)

Proof. This is a consequence of Lemma 3.7 and of Theorem 3.3 with Θ = Dα,C
FAF and M

given by (3.49); from the inequality (A.4) we see that M satisfies (3.25) with a constant
A which does not depend on θ and u . 2

The three remaining cases - the strain controlled Armstrong-Frederick model as well as
both versions of the Bower model - can be treated similarly. Moreover, the initial value
problem for the auxiliary variable arising from (2.49) respectively (2.62) or (2.66) takes
on a common form, namely

u̇ = θ̇ +
1

K
(θ − u + zξ)|ξ̇| , ξ = P(u ; x0) , u(t0) = u0 , (3.67)

for certain constants z ∈ (0, 1) and K > 0 , where x0 = σp
0d as before. In fact, the value

of the constants are

K = R +
2µ

γ
, z =

γR

2µ + γR
, u0 = x0 + (2µ + γR)εp

0 , (3.68)

for the strain controlled Armstrong-Frederick model,

K =
γR

γ + c
, z =

γ

γ + c
, u0 = θ(t0) +

γ

c
σβ

0 , (3.69)

for the stress controlled Bower model, and

K =
2µ + γR

γ + c
, z =

γ

γ + c
· γR

2µ + γR
, (3.70)

u0 =
1

2µ(γ + c) + γcR

(
(2µ + γR)(cθ(t0) + 2µγεp

0 + γσβ
0 ) + 2µγx0

)
. (3.71)

For (3.67), we have the following a priori estimate.

Lemma 3.9 Let 0 < z < 1 and K > 0 be given. Let u, θ, ξ ∈ W 1,1(t0, b;Td) be a
solution of (3.67), let a ∈ [t0, b] . If

|θ(t)− u(t) + zξ(t)| ≤ Kz (3.72)

holds for t = a , then (3.72) holds for all t ∈ [a, b] .
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Proof. It suffices to prove that, given any t ∈ (a, b) ,

d

dt
|θ(t)− u(t) + zξ(t)|2 > 0 (3.73)

implies that
|θ(t)− u(t) + zξ(t)| ≤ Kz . (3.74)

Assume that (3.73) holds for some t . We then have

0 < 〈θ̇(t)− u̇(t) + zξ̇(t), θ(t)− u(t) + zξ(t)〉
= − 1

K
|ξ̇(t)||θ(t)− u(t) + zξ(t)|2 + z〈ξ̇(t), θ(t)− u(t) + zξ(t)〉 , (3.75)

hence ξ̇(t) 6= 0 and

|θ(t)− u(t) + zξ(t)|2 < Kz
〈 ξ̇(t)

|ξ̇(t)| , θ(t)− u(t) + zξ(t)
〉

, (3.76)

so (3.74) holds. 2

Lemma 3.10 Let 0 < z < 1 , K > 0 , θ ∈ W 1,1(t0, t1;Td) , u0 ∈ X and x0 ∈ Br(0) be
given. Assume that |θ(t0)− (1− z)u0− zx0| ≤ Kz . Then there exists a solution (u, ξ) of
the Cauchy problem (3.67) such that u, ξ ∈ W 1,1(t0, t1;Td) , and every solution satisfies

‖M(θ, u) ‖∞ ≤ z , |u̇(t)| ≤ 1

1− z
|θ̇(t)| , a.e. in (t0, t1) . (3.77)

Proof. As ξ(t0) = u0−x0 , condition (3.72) holds at t = t0 . The proof is now completely
analogous to the proof of Lemma 3.7; we only sketch the pointwise estimate for

M(θ, u)(t) =
1

K
(θ(t)− u(t) + zξ(t)) . (3.78)

Assume that u ∈ W 1,1(t0, a + η ;Td) solves (3.67) on [t0, a] for some a and satisfies

|u̇| ≤ 1

κ
|θ̇| , where κ =

1− z

2
, (3.79)

a.e. in (a, a + η) . On the latter interval, we obtain the estimate

|M(θ, u)(t)| ≤ |M(θ, u)(a)|+ 1

K

(
1 +

2(1 + z)

1− z

) ∫ a+η

a
|θ̇(t)| dt . (3.80)

If we choose η such that the second summand on the right hand side is bounded by κ
uniformly in a , Theorem 3.2 allows us to continue the solution up to t = a + η , and we
can use Lemma 3.9 to obtain |M(θ, u)(t)| ≤ z on [a, a + η] . We now continue as in the
proof of Lemma 3.7 to obtain the result. 2
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Proposition 3.11 (Strain controlled Armstrong-Frederick and Bower’s model)
The constitutive operators FB , GB and GAF for the stress controlled Bower, the strain
controlled Bower and the strain controlled Armstrong-Frederick model are well defined and
locally Lipschitz continuous with respect to the norm ‖ · ‖1,1 on the respective domains

DGAF = {ε : ε ∈ W 1,1(t0, t1;T) , |2µ(εd(t0)− εp
0)− σp

0d| ≤ R} , (3.81)

DFB = {σ : σ ∈ W 1,1(t0, t1;T) , |σd(t0)− σp
0d − σβ

0 | ≤
γR

γ + c
} , (3.82)

DGB = {ε : ε ∈ W 1,1(t0, t1;T) , |2µ(εd(t0)− εp
0)− σp

0d − σβ
0 | ≤

γR

γ + c
} , (3.83)

Proof. This follows from Lemma 3.10 and Theorem 3.3 in the same manner as above. 2

Remark 3.12 We note in particular that both versions of Bower’s model as well as
the strain controlled Armstrong-Frederick model are wellposed without any restriction
concerning the input, except for the natural conditions resulting from (2.33) and (2.56).

4 Boundary Behaviour of the Mróz Model

The Mróz hardening rule σe = HF (σd) determines the movement of the yield surface
∂Z∗(t) = σe(t) + Br(0) . We have shown in Subsection 2.4 that σe is related to the
auxiliary function u which solves the problem

u̇ = σ̇d +
σd

R
|ξ̇| , ξ = P(u ; σp

0d) , u(t0) = σp
0d , (4.1)

by
σp

d = S(u ; σp
0d) , σe = σd − σp

d . (4.2)

Moreover, we have proved the wellposedness of (4.1) in Theorem 3.4 under the assump-
tion that ‖σd ‖∞ < R , that is, the stress input lies always within the auxiliary sphere
∂BR(0) . Mathematical difficulties arise when |σd(t)| = R for some t ; however, that
situation naturally occurs in the multisurface version of the model of Mróz. Indeed, an
understanding of the case

|σd(t0)| = |σd(t1)| = R , |σd(t)| < R for all t ∈ (t0, t1) . (4.3)

appears to be crucial for the study of the multisurface model, compare Remark 4.5 below.
The inclusion property , often tacitly assumed to hold, states that the yield surface ∂Z∗(t)
always lies within BR(0) . We present a formal proof.

Lemma 4.1 Let σ ∈ W 1,1(t0, t1;T) and σp
0d ∈ Br(0) be given, assume that |σd(t)| < R

for all t > t0 and that
|σe(t0)| = |σd(t0)− σp

0d| ≤ R− r . (4.4)

Then for every solution (u, ξ, σp
d, σ

e) of (4.1) and (4.2) there holds the inclusion condition

|σe(t)| ≤ R− r , for all t ∈ [t0, t1] . (4.5)
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Proof. Assume that d/dt(|σe(t)|2) > 0 holds for some t > t0 . From (2.83) we obtain

0 < 〈σ̇e(t), σe(t)〉 = 〈ξ̇(t)− σd(t)

R
|ξ̇(t)|, σe(t)〉 , (4.6)

so in particular |ξ̇(t)| > 0 . Since σp
d = S(u ; σp

0d) and hence ξ̇ = r−1σp
d|ξ̇| , (4.6) implies

that

0 < 〈R
r

σp
d(t)−σd(t), σ

e(t)〉 = 〈R− r

r
σp

d(t)−σe(t), σe(t)〉 ≤ (R− r−|σe(t)|)|σe(t)| , (4.7)

so |σe(t)| < R− r . Thus, |σe(t)| > R− r cannot occur if |σe(t0)| ≤ R− r . 2

Lemma 4.2 Under the hypotheses of Lemma 4.1 we have

|σp
d(t)−

r

R
σd(t)|2 ≤ r

R

(
1− r

R

)
(R2 − |σd(t)|2) (4.8)

for all t ∈ [t0, t1] .

Proof. The algebraic identity

|σp
d −

r

R
σd|2 +

r

R

(
1− r

R

)
|σd|2 =

(
1− r

R

)
|σp

d|2 +
r

R
|σe|2 (4.9)

and Lemma 4.1 yield

|σp
d −

r

R
σd|2 +

r

R

(
1− r

R

)
|σd|2 ≤ r2

(
1− r

R

)
+

r

R
(R− r)2 , (4.10)

which is nothing but (4.8). 2

From Lemma 4.2 we see that the boundary values of σe and σp
d have to satisfy the

equations

σp
d(ti) =

r

R
σd(ti) , σe(ti) =

(
1− r

R

)
σd(ti) , i = 0, 1 . (4.11)

and that we might obtain solutions

σp
d, σ

e ∈ W 1,1
loc (t0, t1;Td) ∩ C([t0, t1];Td) . (4.12)

In fact, we can prove this only under the additional assumption of transversality ,

〈σ̇d(t0+), σd(t0)〉 < 0 , (4.13)

where σ̇d(t0+) = limt↓t0 σ̇d(t) is assumed to exist. We first prove that (4.13) implies pure
unloading near t0 = 0 .

Lemma 4.3 Let σd ∈ W 1,1(t0, t1;Td) be given such that (4.3) as well as (4.13) hold, set

σp
0d =

r

R
σd(t0) . (4.14)

Then there exists δ > 0 such that

u(t) = σd(t)−
(
1− r

R

)
σd(t0) , ξ̇(t) = 0 , (4.15)

constitute the unique solution (u, ξ) of problem (4.1) within the space

W 1,1
loc (t0, t0 + δ;Td) ∩ C([t0, t0 + δ];Td) . (4.16)
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Proof. By virtue of (4.13), we can choose δ > 0 such that the function u defined by
(4.15) satisfies 〈u̇(t), u(t)〉 < 0 for every t ∈ I := (t0, t0 + δ) . One then easily checks that
(4.14), (4.15) together with σ̇p

d = u̇ = σ̇d , ξ̇ = 0 , defines a solution of (4.1). Conversely,
let (u, ξ) be any solution of (4.1) with regularity (4.16). From Lemma 4.2 we see, making
δ smaller if necessary, that 〈σ̇d, σ

p
d〉 < 0 holds within I , hence (2.83) yields

〈σ̇p
d, σ

p
d〉 = 〈σ̇d, σ

p
d〉 − 〈ξ, σp

d〉+ 〈σd

R
, σp

d〉|ξ̇|

= 〈σ̇d, σ
p
d〉 − |ξ̇|

(
r − 〈σd

R
, σp

d〉
)

, (4.17)

so 〈σ̇p
d, σ

p
d〉 < 0 and therefore

|σp
d| < r , ξ̇ = 0 , σ̇p

d = u̇ = σ̇d , a.e. in I . (4.18)

The continuity of u and (4.14) then imply the assertion. 2

Theorem 4.4 (Unique Solvability up to the Boundary)
Let σd ∈ W 1,1(t0, t1;Td) be given such that (4.3) as well as (4.13) hold, let σp

0d be given
by (4.14). Then the initial value problem (4.1) has a unique solution u ∈ W 1,1

loc (t0, t1;Td)
which satisfies (4.15) near t0 ; moreover, the functions σp

d = S(u ; σp
0d) and σe = σd−σp

d

satisfy (4.12) as well as the boundary conditions (4.11).

Proof. This is a direct consequence of Lemma 4.3 and of Proposition 3.4. The validity of
the boundary conditions at t = t1 again follows from Lemma 4.2. 2

Remark 4.5 (Multisurface Mróz Model)
Mróz [29] originally proposed a multisurface model which employs spheres Si(t) , 0 ≤
i ≤ m , moving around in Td , with radii r0 < . . . < rm . The smallest surface S0(t)
represents the yield surface ∂Z∗(t) . The inclusion property σd(t) ∈ B0(t) ⊂ . . . ⊂
Bm(t) is assumed to hold for the corresponding closed balls. At any given time t , the
active surface is defined by the largest index k such that σd(t) ∈ Sk(t) but σd(t) ∈
int Bk+1(t) ; the movement of the active surface Sk with respect to Sk+1 is determined
by the geometric construction outlined in Subsection 2.4 above. If loading occurs, the
smaller surfaces Sj with j < k follow the movement of Sk , see Figure 6 for k = 2 . In
the case of unloading, none of the surfaces move. Thus, a general evolution decomposes
into a sequence of problems of the type (4.1), (4.3), where r and R are replaced by rk

and rk+1 respectively. The question of existence, uniqueness and regularity of the plastic
stress as well as of the plastic strain appears to be completely open. For the case of a
continuous family Sr(t) parametrized by r ≥ 0 , some results are available in [4].
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Figure 6: The multisurface Mróz model for m = 3.
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A Appendix: Properties of the Play Operator

The vector play operator with an arbitrary convex closed characteristic has already been
the object of serious study, see e.g. the monographs [21], [38] and [23]. For the purposes
of this paper, however, we need a result which is not adequately covered in the literature,
namely the Lipschitz type estimate provided by Theorem A.5 below. Its statement and
proof constitute the main purpose of this appendix. In addition, we cite some known
results which we have used above in order to facilitate the reader’s task.
The play operator as well as the stop operator are constructed by means of an evolution
variational inequality with values in some space X ; throughout this section we assume
that X is a real separable Hilbert space endowed with a scalar product 〈·, ·〉 and the
corresponding norm |x| = 〈x, x〉1/2 . In the main body of this paper, X always represents
some finite dimensional space of tensors; hence, the reader may very well be satisfied to
assume that X = IRn .
We begin with a variant of the classical result on the wellposedness of the evolution
variational inequality.

Proposition A.1 Let Z ⊂ X be a convex closed set such that 0 ∈ Int Z , let x0 ∈ Z
be given. Then for any function u ∈ W 1,1(t0, t1; X) there exists a unique function x ∈
W 1,1(t0, t1; X) such that

〈u̇(t)− ẋ(t), x(t)− x̃〉 ≥ 0 , for all x̃ ∈ Z , a.e. in (t0, t1) , (A.1)
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x(t) ∈ Z , for all t ∈ [t0, t1] , (A.2)

x(t0) = x0 . (A.3)

Moreover, if y ∈ W 1,1(t0, t1; X) denotes the solution belonging to y0 ∈ Z and v ∈
W 1,1(t0, t1; X) , then

|x(t)− y(t)| ≤ |x0 − y0|+
∫ t

t0
|u̇(s)− v̇(s)| ds (A.4)

holds.

Proof. See e.g. [23], Theorem I.3.1 and Proposition I.3.9. The estimate (A.4) follows from
(A.1) - (A.3), since (arguments t omitted) the inequalities

〈u̇− ẋ, x− y〉 ≥ 0 , 〈v̇ − ẏ, y − x〉 ≥ 0 (A.5)

imply

|x− y| d
dt
|x− y| = d

dt

1

2
|x− y|2 ≤ |u̇− v̇| |x− y| . (A.6)

2

Thus, the evolution variational inequality (A.1), (A.2) together with the initial value (A.3)
gives rise to an operator

x = S(u ; x0) . (A.7)

Definition A.2 Let Z ⊂ X be a convex closed set such that 0 ∈ Int Z . The solution
operator

S : W 1,1(t0, t1; X)× Z → W 1,1(t0, t1; X) (A.8)

defined by (A.1) - (A.7) is called the stop, the operator

P : W 1,1(t0, t1; X)× Z → W 1,1(t0, t1; X) (A.9)

defined by
P(u ; x0) = u− S(u ; x0) (A.10)

is called the play. The set Z is called the characteristic of S respectively P .

Proposition A.3 Let Z ⊂ X be a convex closed set such that 0 ∈ Int Z . The play
operator P with the characteristic Z has the following properties:

(i) The function ξ = P(u ; x0) satisfies

〈ξ̇(t), u̇(t)− ξ̇(t)〉 = 0 , a.e. in (t0, t1) , (A.11)

and, consequently,
|ξ̇(t)| ≤ |u̇(t)| , a.e. in (t0, t1) , (A.12)

for all u ∈ W 1,1(t0, t1; X) and all x0 ∈ Z .

(ii) P maps W 1,p(t0, t1; X) × Z continuously into W 1,p(t0, t1; X) for all p with 1 ≤
p < ∞ .
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(iii) P and S can be uniquely extended to operators

P : C([t0, t1]; X)× Z → C([t0, t1]; X) ∩BV (t0, t1; X) , (A.13)

S : C([t0, t1]; X)× Z → C([t0, t1]; X) , (A.14)

which are continuous w.r.t the supremum norm

‖u ‖∞ = sup
t∈[t0,t1]

|u(t)| , u ∈ C([t0, t1]; X) . (A.15)

Proof. See [23], Section I.3. For a bounded set Z , part (iii) is due to [21]; the general
case as well as (ii) have been proved in [22]. 2

In the case where Z represents the ball Br(0) in X with radius r > 0 centered around
0 , the play and the stop operator have additional regularity properties. Let us note first
that, since the radius vector and the normal coincide for a ball, there holds

ξ̇(t) = α(t)x(t) , a.e. in (t0, t1) , (A.16)

where α ≥ 0 is a scalar function with α(t) = 0 if |x(t)| < r . Moreover, the following
estimate of Hölder type holds.

Proposition A.4 Assume that Z = Br(0) . Then for any u, v ∈ C([t0, t1]; X) and any
x0, y0 ∈ Z , the functions ξ = P(u ; x0) and η = P(v ; y0) satisfy the estimate

‖ ξ − η ‖∞ ≤ max
{
|ξ(0)− η(0)| ,

√
(‖u− v ‖∞ + r)2 − r2

}
. (A.17)

Proof. See Sections 17.1 and 17.2 in [21], cf. also Theorem I.4.2 in [23]. 2

We now present an estimate of Lipschitz type.

Theorem A.5 Assume that Z = Br(0) , let u, v ∈ W 1,1(t0, t1; X) and x0, y0 ∈ Z be
given. Then the functions

ξ = P(u ; x0) , η = P(v ; y0) , (A.18)

x = u− ξ = S(u ; x0) , y = v − η = S(v ; y0) , (A.19)

satisfy the estimate

∫ t1

t0
|ξ̇ − η̇| dt ≤ |x0 − y0|+

∫ t1

t0
|u̇− v̇| dt +

√
2

r

∫ t1

t0
|u̇||x− y| dt . (A.20)

Proof. This will be given below. 2

Corollary A.6 The play operator P with the characteristic Z = Br(0) is Lipschitz
continuous on bounded subsets of W 1,1(t0, t1; X) . Hence, the same is true for the stop
operator S .
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Proof. If we insert (A.4) into (A.20), we obtain

∫ t1

t0
|ξ̇ − η̇| dt ≤

(
1 +

√
2

r

∫ t1

t0
|u̇| dt

) (
|x0 − y0|+

∫ t1

t0
|u̇− v̇| dt

)
. (A.21)

2

Theorem A.5 appears to be new. Corollary A.6 is a special case of Theorem 20.1 in [21];
however, in [21] there is no comment concerning its proof, nor is the value of the Lipschitz
constant indicated. Note that in Section 3 we use the fact that the constant in front of
the first integral on the right hand side of (A.20) equals 1. On the other hand, we do
not know whether the Lipschitz constant given in (A.21) is optimal, cf. also Example A.8
below.
For the scalar case dim(X) = 1, (A.20) can be improved to

∫ t1

t0
|ξ̇ − η̇| dt ≤ |x0 − y0|+

∫ t1

t0
|u̇− v̇| dt . (A.22)

The proof of (A.22), given in [6], p. 46f., can be generalized to the vector case, if one takes
into account the geometry of the sphere which is responsible for the rightmost integral in
(A.20). This is done as follows. The normality rule

ξ̇ = |ξ̇|x
r

, a.e. in (t0, t1) , (A.23)

with ξ̇ = 0 a.e. on {t : |x(t)| < r} , follows from the variational inequality. Together
with (A.11) it implies

|ξ̇|2 = 〈u̇, ξ̇〉 = |ξ̇|〈u̇, x〉
r

, a.e. in (t0, t1) , (A.24)

so

ξ̇ =
1

r2
〈u̇, x〉x (A.25)

holds a.e. on {t : |x(t)| = r} .

Lemma A.7 There holds

|ξ̇ − η̇| ≤ |u̇− v̇|+
√

2

r
|u̇||x− y| , (A.26)

a.e. on the set
Ar = {t : t ∈ [t0, t1] , |x(t)| = |y(t)| = r} . (A.27)

Proof. From (A.25) and the corresponding formula

η̇ =
1

r2
〈v̇, y〉y , (A.28)

we infer that

|ξ̇ − η̇| ≤ 1

r2
(|〈u̇− v̇, y〉y|+ |〈u̇, x〉x− 〈u̇, y〉y|) (A.29)

holds a.e. on Ar . Using the identity

|〈u̇, x〉x− 〈u̇, y〉y|2 = r2〈u̇, x− y〉2 + 〈u̇, x〉〈u̇, y〉|x− y|2 , (A.30)

we easily derive the assertion. 2
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Proof of Theorem A.5. The identity

1

2

d

dt

(
|x(t)|2 − |y(t)|2

)
= −r(|ξ̇(t)| − |η̇(t)|) + (〈u̇(t), x(t)〉 − 〈v̇(t), y(t)〉) , (A.31)

which holds a.e. on [t0, t1] , follows directly from (A.23). The crucial observation is that
actually

∣∣∣|ξ̇(t)| − |η̇(t)|
∣∣∣ +

1

2r

d

dt

∣∣∣|x(t)|2 − |y(t)|2
∣∣∣ ≤ 1

r
|〈u̇(t), x(t)〉 − 〈v̇(t), y(t)〉| (A.32)

holds a.e. on [t0, t1] . On the set A = {t : |x(t)| = |y(t)|} , (A.32) follows directly from
(A.31) since in that case the left hand side of (A.31) is zero almost everywhere. To prove
(A.32) on the complement of A , by virtue of

(
|ξ̇(t)| − |η̇(t)|

) (
|x(t)|2 − |y(t)|2

)
≥ 0 , a.e. in (t0, t1) , (A.33)

which trivially follows from the fact that |ξ̇(t)| 6= 0 only if |x(t)| = r , it suffices to
multiply both sides of (A.31) with the sign of |x(t)|2 − |y(t)|2 . We now claim that

|ξ̇ − η̇|+ 1

2r

d

dt

∣∣∣|x|2 − |y|2
∣∣∣ ≤ |u̇− v̇|+

√
2

r
|u̇||x− y| , a.e. in (t0, t1) . (A.34)

Indeed, (A.34) holds on Ar because of (A.26). On the complement of Ar , we have
|ξ̇ − η̇| = ||ξ̇| − |η̇|| , thus (A.34) follows from (A.32) and the inequality

1

r
|〈u̇, x〉 − 〈v̇, y〉| ≤ |u̇− v̇|+ 1

r
|u̇||x− y| . (A.35)

We now integrate (A.34) over [t0, t1] to obtain the assertion (A.20) of Theorem A.5. 2

One may ask whether the value of the Lipschitz constant given by (A.21) is best possible.
It turns out that we can use Example I.4.3 of [23] to exhibit, for any ε > 0 , a pair of
input functions u, v such that the inequalities

∫ 1

0
|v̇(t)| dt >

1

ε
,

∫ 1

0
|u̇(t)− v̇(t)| dt < ε , (A.36)

∫ T

0
|ξ̇(t)− η̇(t)| dt ≥

(
1

2r

∫ T

0
|v̇(t)| dt− ε

) ∫ T

0
|u̇(t)− v̇(t)| dt , (A.37)

holds. Thus, the gap between the constant in (A.21) and the optimal one is characterized
by a factor of at most 2

√
2 . In particular, the play operator P is not globally Lipschitz

continuous on W 1,1(t0, t1; X) , if dim(X) > 1 .

Example A.8 Let X = IR2 , Z = Br(0) . For h < 0 and α > 0 we consider the inputs

u(t) = (r + h)

(
cos αt
sin αt

)
, v(t) = r

(
cos αt
sin αt

)
, (A.38)

with the intention to let h tend to 0 and α tend to infinity. If we choose x(0) = y(0) =
(1, 0) as initial values, we obtain

x(t) = r

(
cos(αt + ρ(t))
sin(αt + ρ(t))

)
, η = 0 , y = v , (A.39)
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where ρ is the solution of the initial value problem

ρ̇ = α

(
r + h

r
cos(ρ)− 1

)
, ρ(0) = 0 , (A.40)

that is,

ρ(t) = 2 arctan




√
h

2r + h
tanh




√
h(2r + h)

2r
αt





 . (A.41)

We then obtain

|ξ̇(t)− η̇(t)|2 = |u̇(t)− ẋ(t)|2
= α2(r + h)2[(cos ρ sin(αt + ρ)− sin αt)2 + (cos αt− cos ρ cos(αt + ρ))2]

= α2(r + h)2 sin2 ρ(t) , (A.42)

hence

|ξ̇(t)− η̇(t)| = 2α(r + h)
tan ρ(t)

2

1 + tan2 ρ(t)
2

= 2α(r + h)

√
h(2r + h)f(t)

2r + h + hf 2(t)
, (A.43)

where

f(t) = tanh




√
h(2r + h)

2r
αt


 . (A.44)

This yields the inequality

α
√

h(2r + h)f(t) ≤ |ξ̇(t)− η̇(t)| ≤ α
2r + 2h

2r + h

√
h(2r + h)f(t) . (A.45)

Note that we have

α
√

h(2r + h)
∫ 1

0
f(t) dt = 2r

∫ √
h(2r+h)

2r
α

0
tanh s ds = 2r log


cosh

√
h(2r + h)

2r
α


 ,

(A.46)
and ∫ 1

0
|v̇(t)| dt = αr ,

∫ 1

0
|u̇(t)− v̇(t)| dt = hα . (A.47)

From (A.45) it therefore follows that for every fixed α > 0 we have

lim
h↓0

∫ 1
0 |ξ̇(t)− η̇(t)| dt

∫ T
0 |u̇(t)− v̇(t)| dt

=
α

2
=

1

2r

∫ 1

0
|v̇(t)| dt . (A.48)

With the pair (u, v) we thus achieve (A.36), (A.37) for a given ε > 0 if we choose α > 0
sufficiently large and h > 0 sufficiently small.

Finally, we recall the following result, which goes back to Visintin ([38]) for the scalar
(i.e., dim(X) = 1) case.

Proposition A.9 Let {un} and {x0
n} be sequences in C([t0, t1]; X) respectively Br(0)

such that ‖un − u ‖∞ → 0 and |x0
n−x| → 0 for some u ∈ C([t0, t1]; X) and x0 ∈ Br(0) ,

set ξn = P(un ; x0
n) and ξ = P(u ; x0) . Then there holds

lim
n→∞Var[t0,t1] ξn = Var[t0,t1] ξ . (A.49)

Proof. See Proposition I.4.11 in [23]. 2
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[23] P. KREJČÍ, 1996, Hysteresis, convexity and dissipation in hyperbolic equations ,
Gakkotosho, Tokyo.

[24] J. LEMAITRE and J.-L. CHABOCHE, 1990, Mechanics of solid materials , Cam-
bridge University Press, Cambridge 1990. French edition: Dunod, Paris 1985.
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