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Abstract

Since the beginning of the 1990s hysteresis operators have been employed on a larger scale for the

linearisation of hysteretic transducers. One reason for this is the increasing number of mechatronic

applications which use solid-state actuators based on magnetostrictive or piezoelectric material or shape

memory alloys. All of these actuator types show strong hysteretic effects. In addition to hysteresis,

piezoelectric actuators show strong creep effects. Thus, the objective of this article is to enlarge the

operator-based methodology of the hysteresis operators by elements that allow the description of systems

with hysteresis and creep. To reach this objective, following the procedure used for hysteretic systems,

creep operators are introduced to form, together with the hysteresis operators, the system operator for the

simultaneous consideration of both phenomena. With regard to applications in control and measurement

technology the existence, the uniqueness, the Lipschitz continuity and thus the input-output stability of its

inverse operator are theoretically supported by functional analytical methods. Subsequently, the efficiency

of  this new concept is demonstrated in practice by a real-time inverse feedforward controller for

piezoelectric actuators. Using this control concept, the tracking errors caused by hysteretic and creep

effects are reduced by approximately one order of magnitude.



1. Introduction

Models for the description of hysteretic transducers have evolved from two different branches of physics:

ferromagnetism and plasticity theory. The roots of both branches go back to the end of the 19th century.

But only at the beginning of the 1970s a mathematical formalism for a systematic consideration of

hysteretic transducers  was developed.  The core of this theory is formed by so-called hysteresis operators

which describe hysteretic transducers as a mapping between function spaces. From this approach an

autonomous branch within system theory has developed starting with the fundamental work of the Russian

mathematicians M.A. Krasnosel'skii and A.V. Pokrovskii; their approach makes it possible to consider

complex hysteretic transfer characteristics in a purely phenomenological way without taking into account

the underlying physics.

But it is only since the beginning of the 1990s that engineers employ this theory on a larger scale to

develop modern strategies for the linearisation of hysteretic systems.  One reason for this is the increasing

number of mechatronic applications in the last years which use new solid-state actuators based on

magnetostrictive or piezoelectric material or shape memory alloys. All of these actuator types show strong

hysteretic effects. Whereas in the beginning mainly the Preisach operator was used for the modeling and

control of solid-state actuators [1]-[3], recent papers also use the Prandtl-Ishlinskii operator, in particular

for the mathematical description and control of piezoelectric actuators [4]-[6].

Besides the hysteresis effects, the transfer characteristic of piezoelectric actuators also shows dynamic

creep effects that are not to be ignored. Although this is known since a long time and is explicitly

investigated in [1], up to now this fact has been neglected in the concepts for modeling and control.

However, as hysteresis operators due to their nature are static transducers, the simultaneous consideration

of hysteresis and creep requires an enlargement of the operator-based concept by elements for the

description of such dynamic effects. In the past this kind of enlargement of the Preisach operator has been

elaborated by Mayergoyz, Bertotti and Kortendieck [7]-[9]. These approaches, however,  have in common

that the models are not suited for a practical concept of a real-time inverse feedforward controller for the

simultaneous compensation of hysteresis and creep because of the great computational costs for

calculation and identification.



Thus, the objective of this article is to enlarge the operator-based methodology of the hysteresis operators

by elements that allow the description of systems with hysteresis and creep. This will be done in Section 2.

With regard to applications in control and measurement technology, it is important to prove the existence

and the uniqueness of the operator being inverse to the system operator, because the proof represents the

theoretical precondition for the success of the inversion processes to realize an inverse feed-forward

controller or an inverse filter for the compensation of the nonidealities introduced by hysteresis and creep

effects. The theorems of existence, uniqueness and Lipschitz continuity and thus the input-output stability

of the inverse operator are the object of section 3 whereas the proofs of these properties are moved to the

appendix. In Section 4 an efficient numerical implementation of the inverse operator is presented. Finally,

in section 5 the performance of the method is demonstrated in practice by an inverse feedforward

controller for the compensation of hysteresis and creep phenomena in the transfer characteristic of

piezoelectric actuators.

In comparison to a conventional feedback controller the main advantages of this operator-based inverse

feedforward controller are that the compensation of hysteretic nonlinearities and creep dynamics is also

achieved under highly dynamic operation and that no additional sensor for the system output is used for

compensation purposes. This leads to a very simple and inexpensive control system for the optimization of

such mechatronic devices. The main drawback of the inverse feedforward controller is the sensitivity to

unconsidered external disturbances which are introduced for example by temperature dependence. If such

effects play a role in a specific application the combination of inverse feedforward and feedback control

paradigms leads to a controller with optimized performance both for the static and for the dynamic

behaviour of the overall system.

2. Operator-based Hysteresis and Creep Modeling

Let C T[0, ] denote the space of continuous functions u T:[0, ] R→  endowed with the norm

 || : max{| ( ) ; [0, ]} u u t t T|| |∞ = ∈ , where T > 0  is a given number. We consider the operator

F C T C T: [0, ] [0, ]→  given by the formula

F u t au t b r p u t dr c l u t dr[ ]( ) :=  ( ) + ( ) [ ]( ) + ( ) [ ]( )00 00
π λ ξ λλ, ,

∞ ∞∫ ∫ (1)

where a is a given constant, b and c are given functions with the properties



 (i) a b r c> ≥ ≥0, ( ) 0 and ( ) 0 a.e.λ  (almost everywhere),

(ii) b r c L L cC( ),  ( ) (0, ) and ( )d <λ λ λ λ∈ ∞ = ∞
∞∫1

0
: .

pr  and lλ  are the elementary hysteresis and linear creep operators defined in the following way. Here the

abbreviations ( ) ( )u t
t

u t=
d

d
 and ′π π( ) =

d

d
( )r

r
r are used.

Definition 1.1

(i) Let Π  denote the space of functions π :[0, [∞ → R  which are Lipschitz continuous, | ( )| 1′ ≤π r a.e., and

there exists some R > 0  such that π ( ) =r 0 for r R≥ . For a given function π 0 ∈ Π , a given number

r > 0 and a given function u C T∈ [0, ] we define the play operator p C T C Tr: [0, ] [0, ]Π ×××× →→→→  with

threshold r as the solution operator p u t z tr r[ , ]( ):= ( )0π  of the rate-independent hybrid differential

equation
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with the initial value equation

z u r u r rr ( ) = max{ (0) - ,min{ (0) + , ( )}}0 0π .

(ii) For a given functionξ0 (0, )∈ ∞∞L , a given number  λ > 0  and a given function u C T∈ [0, ] we define

the linear creep operator l L C T C Tλ : (0, ) [0, ] [0, ]
∞ ∞ × → 1

 with the eigenvalue λ  as the solution

operator l u t z tλ λξ[ , ]( ):= ( )0  of the differential equation

1
( ) + ( ) = ( )  

λ λ λz t z t u t (3)

with the initial value equation

 ( ) = ( ) 0zλ ξ λ0 .

We actually have the explicit integral formula

l u t e e ut tt

λ
λ λ τξ ξ λ λ τ τ[ , ]( ) = ( ) + ( ) d  0 0

( )

0

− −∫ (4)

for the operator lλ . The linear creep operator is mainly characterized by its so-called creep eigenvalue λ

which determines the dynamic properties of this elementary system, see figure 2. The play operator



however is mainly  characterized by its threshold parameter r which determines the width of the hysteresis

region in the zr ,u-plane, see figure 3. The spaces Π  and L∞ ∞(0, )  are the state spaces for the operator

(1). A mechanical interpretation of the operator F defined by (1) can be given in terms of the constitutive

lawε σ==== F [ ], where ε  and σ  are the uniaxial strain and stress, respectively. The formula in (1)

corresponds to the rheological diagram shown in Fig. 4 below. The individual, parallel linear viscoelastic

elements to the right correspond to the linear creep operators lλ , while the parallel elastoplastic elements

to the left represent the play operators pr . Hence the first term in (1) describes the linear reversible part,

the second term describes the hysteretic part and the third term describes the creep part of systems with

hysteresis and creep.

3. Input-Output Stability of the Inverse Operator

From the control point of view the aim of this section is to show that the operator F is invertible in C T[0, ]

and both  F and its inverse F −1
 are Lipschitz continuous and thus input-output stable in C T[0, ]. For this

purpose we decompose the operator (1) into a purely rate-independent part

P u t au t b r p u t drr[ ]( ) :=  ( ) + ( ) [ ]( )00
π ,

∞∫ (5)

and a purely rate-dependent part

L u t c l u t d[ ]( ) :=  ( ) [ ]( )00
λ ξ λλ ,

∞∞∞∞∫∫∫∫ . (6)

After a few conversions of  (1) we obtain the implicit operator equation

u t P w L u t( ) [ [ ]]( )==== −−−−−−−−1 (7)

with the output w t F u t( ) [ ]( )====  which contains the inverse of the rate-independent operator P. The inverse

F −−−−1of the operator F is defined as the solution operator of the implicit operator equation (7) which can be

regarded as the basic law for the design of inverse feedforward controllers. Figure 5 shows the feedback

structure of the inverse operatorF −−−−1. Now we have to show that this solution operator exists, is unique

and Lipschitz continuous and thus input-output stable under the constraints described by the properties of

a, b and c. To do this we first recall some well-known properties of the purely rate-independent operator

(5) called Prandtl-Ishlinskii operator. The following results can be found in Chapter 2 of [11] or section

II.3 of [13].



Theorem 1.3

(i) For every u v C T, [0, ]∈ , t T∈ [0, ]  and r > 0 we have
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where ϕ −1
 is the inverse function to ϕ . Then the inverse operator P−1

 to P  is also a Prandtl-

Ishlinskii operator and is given by the formula

P u t au t b r p u t drr
−−−− ∞∞∞∞∫∫∫∫1

[ ]( ) :=  ( ) + ( ) [ ]( )00
,π .     (10)

By definition, the function ϕ  is convex and ′′ =ϕ ( ) ( )r b r  a.e., hence ϕ −1
 is concave and b r( ) 0≤  a.e. As

a direct consequence of Thm. 1.3, we see that both P−1
 and P  are causal and Lipschitz continuous in

C T[0, ]. We denote by L
P−1  the Lipschitz constant of P−1

 that is,

L a b r dr a r dr a

a
a a b r dr

P− = = − ′′ = − ′ ∞ + ′

= −
′ ∞

+
′

= −
+
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With the above properties of  P−1
 the following theorem shows that the operator F is a bijection of

C T[0, ] onto C T[0, ].

Theorem 1.4

For every w C T∈∈∈∈ [0, ] there exists a unique u C T∈ [0, ] such that w F u= [ ].

To conclude this section, it remains to mention that also F −1
 is Lipschitz continuous with constant

L e
P

L L T
P C

−
−

1

1
and thus input-output stable in C T[0, ].



Theorem 1.5

Under the above hypotheses, we have for every u v C T, [0, ]∈

 || [ ] [ ]|||| ||u v L e F u F v
P

L L T
P C− ≤ −∞ ∞−
−

1

1
.     (12)

The proofs are the object of the appendix.

4. Numerical Implementation of the Inverse Operator

To calculate the compensation signal in real-time a digital signal processor (DSP) is used. Therefore a

time-discrete model for the operator F is developed. Using a rectangular approximation for the numerical

calculation of the integral equation (4), we obtain a simple first-order difference equation

 ( ) ( ) + (1- ) ( )s sz k e z k e u k
T T

λ
λ

λ
λ+ = ⋅ ⋅− −

1     (13)

with the initial value ( ) = 0zλ ξ0  and

 [ , ]( ) ( )l u k z kλ λξ0 =     (14)

as a time-discrete counterpart to the time-continuous elementary creep operator. In equation (13)  Ts  is the

sampling time. The output sequence of the discrete play operator can be calculated by the difference

equation analogous to (2):

 ( ) =

( )    ,  if  ( ) ( )

( )  ,  if  ( ) ( ) ( ) +

( )     ,  if  ( ) + ( )
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with the initial value z u r u r rr ( ) = max{ (0) - ,min{ (0) + , ( )}}0 0π  and

  [ , ]( ) = ( ) p u k z kr rπ 0 .     (16)

In practice due to the continuity property of the play operator complex continuous hysteresis loops can be

modeled in a sufficiently precise way with a small number of elementary operators [14]. Analogously real

visco-elastic creep phenomena can be modeled in a sufficiently precise way with a small number of

elementary linear creep operators [15]. Therefore the operator (1) is replaced by the finite sum version

F u k au k b p u k c l u ki ri

n

jj

m

i j
[ ]( ) :=  ( ) + [ ]( ) + [ ]( )

=1 =1
π ξλ0 0, ,∑ ∑     (17)

for the practical realization of the inverse feedforward controller. (17) is a special case of (1) which

follows from the choice

b r b r ri ii

n
( ) :=  ( )

=1
δ −−−−∑∑∑∑ and c c j jj

m
( ) :=  ( )

=1
λ δ λ λ−−−−∑∑∑∑



for the functions b r( )and c( )λ with the Dirac distribution δ, 0 < r1< . .< rn < ∞ and  0 < λm < . . < λ1 <∞.

In this case the properties of a, b and c are reduced to

 (i) 0 0 0<<<< <<<< ∞∞∞∞ ≤≤≤≤ <<<< ∞∞∞∞ ≤≤≤≤ <<<< ∞∞∞∞a b ci j,  and .

The problem of finding the inverse control value u k( )  for a given control value w kc ( )  and thus to obtain

the inverse operator F −1  is equivalent to the solution of the implicit operator equation (7) in the discrete-

time case. Because of the fact that the output L u k[ ]( )  at the time point k depends only on the states

z k z k
mλ λ1

1 1( ), .. , ( )− −  of the rate-dependent part and on u k( )−1 , see (13), we can calculate u k( )  by (7)

if the controller input w kc ( ) , the output L u k[ ]( )  and the inverse operator P−1
are known. After the

calculation of u k( )  the output L u k[ ]( )+1 of the rate-dependent part can be updated for the next time step.

To obtain the inverse operator

P u k au k b p u ki ri

n

i

− = ∑1
0[ ]( ) :  ( ) + [ ]( )

=1
,π     (18)

we have to calculate the thresholds r rn1 , .. , , the weights a  and  b bn1,..,  and the initial memory state π 0 .

In this case, the function ϕ  from Theorem 1.3 (ii) is convex and piecewise affine, and its derivative ′ϕ

has the form

′ = + ∈ =+=∑ϕ ( )    for   [ , [  ,    .  .  ,r a b r r r j ni j ji

j
11

0, ,     (19)

where we put r0 0:= , rn+ = ∞1: .  Its inverse ϕ −1
 is therefore affine in each interval [ , [r rl l+1  for l = 0, . . , n

where r rl l= ϕ ( ) , l = 0, . . , n and in particular r0 0= , rn+ = ∞1 . This yields that
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for  l = 1, . . , n. Summing up the identities (20) over l from 1 to j we obtain
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which is nothing more than the desired inversion formula for the thresholds. To compute the weights

corresponding to the inverse operator, we observe that in each interval [ , [r rj j+1  for j = 0, . . , n we have

ϕ -1
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hence, in particular,
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and
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for  j = 1, . . , n. It remains to derive an expression for the initial state π 0 . Indeed, only its values at the

points r rn1 , .. ,  are relevant. By Theorem 1.3 (ii) we have for  j = 1, . . , n
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The above formulae and the rate independence property guarantee that the operator (18) is inverse to the

discrete-threshold version of the Prandtl-Ishlinskii operator (5).

5. Inverse Feedforward Controller for a Piezoelectric Actuator

To test the compensation method presented above, a micropositioning stage based on a piezoelectric stack

actuator as a driving element was realized. Fig. 6 illustrates the test and measurement equipment of the

experimental part. It consists of a digital signal processor (DSP) which generates the digital driving signal

for the piezoelectric actuator. This signal is converted by a 12-bit digital-to-analog converter and

amplified by an high-voltage power amplifier to an analog high-voltage signal of up to 1 kV. The output

of the high-voltage power amplifier is measured by an additional voltage measurement circuit and

converted to a digital signal by a 12-bit analog-to-digital converter. The displacement of the actuator is

directly digitally measured by a high-precision laser-interferometer with a resolution of 5 nm. The signals

from the voltage measurement circuit and the interferometer are fed back to the DSP for characterization,

identification and control purposes. The measured relation between the driving voltage signal, see Fig. 7a,

and the displacement signal of the actuator in the large signal range, see Fig. 7b, is shown in Fig. 7c.

Caused by creep effects the displacement signal changes with time although the input signal is constant,

compare Fig. 7a and 7b. Therefore the hysteresis loops in Fig 7c contain vertical jumps which are

characteristic for rate-dependent phenomena as they cannot be described by rate-independent operators.

To model the hysteretic and creep transfer characteristic of the piezoelectric actuator the time-discrete

version of the operator F was comprised of  n = 6 play operators with fixed threshold values ri  which are

determined by



r
i

n
u i ni ==== ++++

====∞∞∞∞
1

1   ;     . .         (26)

with u ∞∞∞∞ = 1 in this normalized case and of m = 5 elementary linear creep operators with fixed

eigenvaluesλj  which are determined by

 λ j j
sT

j m=    ;     . . 
1

10
11−−−− ====     (27)

with a sampling period of Ts = 1 ms in this application. The free parameters c j , bi  and a were identified

using nonlinear optimization procedures to minimize the deviation between the normalized measured and

modeled transfer characteristics under the contraints, see Tab. 1. Apart from the measurement values,

which are shown as a dashed line in Fig. 7b and Fig. 7c, these figures also show the output-input

chracteristic calculated on the basis of the operator F as a solid line. Fig. 7d finally shows the error signal

e between the real system response and the one calculated by the operator F as a solid line as well as the

error signal e between the real system response and the one calculated by a linear characteristic as a

dashed line. While the maximum value of the error signal e reaches up to 8.6 % of the range of the

displacement signal when compared to a linear characteristic, the operator F reduces these value to 0.82

%. This corresponds to an improvement of more than one order of magnitude.

To verify the performance of the inverse control procedure, the compensator was implemented on a DSP

TMS 320C40 and driven with an input signal w tc ( )  shown in Fig. 8a. The calculation time of the

compensator is less than 0.1ms and so a sampling frequency up to 10 kHz is possible. Fig. 8b shows the

output signal of the compensator. This signal shows the inverse characteristic of the displacement signal in

Fig. 7b. Due to the compensation the actuator output signal is nearly free of  hysteretic and creep effects,

see Fig. 8c. Fig. 8d presents the measured output-input characteristic of the serial connection of the

compensator and the real system. Due to the compensation effect of the inverse operator the vertical lines

and the branching caused by the creep and hysteresis phenomena are strongly reduced. In the case of the

inverse feedforward control paradigm the relative deviation of the transfer characteristic from an optimal

linear characteristic, which is caused by the model error, amounts to only 1%.



6. Conclusions

The main contribution of this paper consists in introducing a combined complex operator which is used

for modeling of systems with hysteresis and creep. The proof of existence, uniqueness, Lipschitz

continuity and thus input-output stability of the inverse operator are natural preconditions for the practical

realisation of the inverse operator via a numerical inversion procedure. The performance of the operator-

based method is practically demonstrated by means of a compensator for a micropositioning stage based

on a piezoelectric stack actuator. It is experimentally shown that the tracking error of the stage is reduced

by one order of magnitude. In future works we will extend the method on the one hand by visco-plastic

type elementary creep operators to improve the creep modeling and on the other hand by nonlinear

superposition operators to model unsymmetrical characteristics like saturation phenomena in systems with

hysteresis and creep.
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Appendix

Our aim is to prove that the operator F is invertible in C T[0, ] and both  F and its inverse F −1
 are

Lipschitz continuous.

Proof of Theorem 1.4

For every u v C T, [0, ]∈  we have by (4) for every λ > 0  and t T∈ [0, ]

| [ , ]( ) [ , ]( )| ( ) ( )|d0 0l u t l v t u v
t

λ λξ ξ λ τ τ τ− ≤ −∫ |
0

.     (28)

Let w C T∈ [0, ]  be given and let Γ : [0, ] [0, ]C T C T→  be the operator

Γ [ ]( ) :=  ( ) ( ) [ [ ]]( )00
x t w t c l P x t d− −∞∫ λ ξ λλ ,

1
    (29)

According to (29), we have for all x y C T, [0, ]∈

 [ ]( ) [ ]( )| [ ]( ) [ ]( )| max ( ) ( )|
0 0

| | |Γ Γx t y t L P x P y d L L x y dC

t

P C

t
− ≤ − ≤

≤ ≤
−− −∫ ∫−

1 1
1

0
τ τ τ

ρ τ
ρ ρ τ ,     (30)

hence also

 max [ ]( ) [ ]( )| max ( ) ( )|
0 00≤ ≤ ≤ ≤

− ≤ −− ∫ρ ρ τ
ρ ρ ρ ρ τ

t P C

t
x y L L x y d| |Γ Γ 1  .     (31)

From the above inequality it immediately follows that the n-th iterate Γ n
 of Γ  satisfies

 max [ ]( ) [ ]( )| max [ ]( ) [ ]( )|
0 00≤ ≤ ≤ ≤

− −− ≤ −− ∫ρ ρ τ
ρ ρ ρ ρ τ

t

n n
P C

n nt
x y L L x y d| |Γ Γ Γ Γ1

1 1     (32)

for every t T∈ [0, ] and n ≥ 1 , with the convention Γ 0 [ ]x x=  and Γ 0 [ ]y y= . By induction we conclude

that

 max [ ]( ) [ ]( )|
( )

!
||

0≤ ≤
∞− ≤ −

−

ρ
ρ ρ

t

n n P C
n

x y
L L t

n
x y| ||Γ Γ

1

    (33)

for every t T∈ [0, ] and n ≥ 1 . For n sufficiently large, the mapping Γ n
 is therefore a contraction in

C T[0, ]. According to the Banach Contraction Principle, Γ  admits a unique fixed point x C T∈ [0, ], that

is, Γ [ ]x x= . It suffices to put u P x : [ ]= −1
 and the proof is complete.    

The Lipschitz continuity of F follows immediately from (8) and (28). It remains to prove Theorem 1.5

which implies that also F −1
 is Lipschitz continuous with constant L e

P

L L T
P C

−
−

1

1
.



Proof of Theorem 1.5

Let u v C T, [0, ]∈  be given. We proceed as in the Proof of Thm. 1.4 putting x P u : [ ]= , y P v : [ ]= . Then

we have

F u F v x y c l P x P y d[ ] [ ] =  ( ) [ [ ] [ ]]00
− − + −− −∞∫ λ ξ λλ , 1 1

,     (34)

hence

 ( ) ( )| [ ] [ ]|| max ( ) ( )|
0

| || |x t y t F u F v L L x y d
P C

t
− ≤ − +

≤ ≤
−∞ − ∫1

0 ρ τ
ρ ρ τ .     (35)

The Gronwall lemma yields

max ( ) ( )| [ ] [ ]||
0

1

≤ ≤
− ≤ −−

∞τ
τ τ

t
x y e F u F v

L L t
P C

| || .     (36)

for every t T∈ [0, ] and Thm. 1.5 is proved.   



a 0.5806
b1 0.1443
b2 0.0539
b3 0.0204
b4 0.0208
b5 0.0032
b6 0.0002
c1 0.0693
c2 0.0722
c3 0.0582
c4 0.0694
c5 0.0478

Tab. 1: Weights of the operator F



Fig. 1: Inverse feedforward controller for hysteretic and creep systems

Fig. 2: Dynamic characteristic of the linear creep operator

Fig. 3: Rate-independent transfer characteristic of the play operator

Fig. 4: The rheological structure of the operator F

Fig 5: Signal flow chart of the inverse operator

Fig 6: Test- and measurement equipment for a piezoelectric micropositioning stage

Fig. 7: Actuator reaction y t( )versus the input-signal u t( )  and model error e t( ) :

a) Input signal u t( ) b) System reactionw t( )

c) Output-input-trajectory w u( )  d) Model error e t( )

Fig. 8: Results of the inverse control process:

a) Given control signal w tc ( )  b) Compensator output signal u t( )   c) Actuator output signal w t( )

d) Actuator output signal w t( )  versus the given control signal w tc ( )
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