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Abstract

We consider time-periodic oscillations of a beam with a spatially inhomogeneous
Prandtl-Ishlinskii constitutive law describing the elastoplastic hysteresis. The data (mass
density, Prandtl-Ishlinskii distribution, external load) are assumed to be uncertain. It
is shown that a unique solution exists and is stable with respect to the data variation.
Considering the total dissipated energy as a measure for the accumulated material fatigue,
we identify and estimate from above the ‘worst scenario’ case, where the dissipation over
one period is maximal within an admissible set of data obtained from inaccurate mea-
surements.

Introduction

We consider time-periodic oscillations of an elastoplastic beam governed by the equation

ρ(x) utt + F [uxx]xx = g(x, t) , (0.1)

subject to boundary conditions

u(0, t) = u(π, t) = uxx(0, t) = uxx(π, t) = 0 , (0.2)

where ρ(x) is the mass density, g(x, t) is a time-periodic load, and F is a spatially inhomoge-

neous constitutive Prandtl-Ishlinskii operator describing the elastoplastic hysteresis.

The existence of at least one time-periodic solution to Problem (0.1), (0.2) was proved in

a slightly different setting in [11]. Inspired by the paper [6] on a stationary beam bending

problem with Hencky’s law of plasticity and uncertain data, we admit the data of Problem

(0.1), (0.2) to be uncertain, and show existence, uniqueness and stability of the solution with

respect to data variation.

Note that hysteresis is the only source of energy dissipation here. It is strong enough to

prevent the system from resonance under periodic loading, see a more detailed discussion in

[12]. On the other hand, it was shown in [1] that the total accumulated damage during an

oscillation process evaluated by the so-called rainflow method is mathematically related to the

total dissipated energy. Thus, an estimate for the dissipated energy can be considered as a

measure for the accumulated material fatigue.
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Indeed, it is desirable in principle to minimize the total dissipation. In practice, however,

we have little freedom to play with material characteristics. Moreover, hysteresis operators

are known to be non-differentiable, and the problem of sensitivity with respect to small data

variation in problems with hysteresis is completely open.

Following [6], we therefore propose to stay on the “safe side” by identifying and estimating

from above the worst scenario case, where the dissipation over one period is maximal within

an admissible set of data obtained from inaccurate measurements.

The paper is organized as follows. Section 1 is devoted to a survey of basic facts from the

mathematical theory of hysteresis. In Section 2 we state the main results. A collection of

auxiliary statements is put separately into Section 3. Main theorems are proved in Section 4.

1 Hysteresis operators

1.1 Stop and play operators

One of the basic elements of the theory of hysteresis operators is borrowed from continuum

mechanics, more precisely, from Prandtl’s rheological model for elastic-perfectly plastic consti-

tutive laws represented on Fig. 1 as a combination in series of one linearly elastic element with

elasticity modulus E > 0 , and one dry friction element with yield point Er , see [13]. Fig. 2

shows the corresponding strain-stress diagram, where the strain e is a controlled quantity, and

σ/E is the normalized stress response. In mathematical terms, it can be formally described

as an input-output relation between two abstract absolutely continuous functions of time, in-

put u (which stands for e ), and output s (which stands for σ/E ), satisfying the variational

inequality




s(t) ∈ [−r, r] for every t ≥ 0 ,

(ṡ(t)− u̇(t))(φ− s(t)) ≥ 0 for a.e. t > 0 and every φ ∈ [−r, r] ,

s(0) = s0 ,

(1.1)

where a parameter r > 0 and an initial condition s0 ∈ [−r, r] are given, and the dot denotes

derivative with respect to t .�
Figure 1: Rheological scheme for Prandtl’s model.
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Figure 2: Strain-stress diagram for Prandtl’s model.

We list below some basic well-known analytical properties of the Prandtl model and its

extensions. A detailed discussion on this subject can be found in the monographs [2, 9, 12, 17].

We do not treat here its vectorial or tensorial counterparts, where the interval [−r, r] is replaced

by an arbitrary convex closed subset Z . The analytical properties of the model then depend

substantially on the geometry of the set Z and a survey can be found in [3].

For every input u ∈ W 1,1
loc (0,∞) , where W 1,1

loc (0,∞) is the space of absolutely continuous

functions [0,∞[→ R , and every initial condition s0 ∈ [−r, r] , problem (1.1) has a unique solu-

tion s ∈ W 1,1
loc (0,∞) . We can therefore define the solution operator Sr : [−r, r]×W 1,1

loc (0,∞) →
W 1,1

loc (0,∞) by the formula

Sr[s
0, u] := s . (1.2)

It is convenient to introduce also its complement

Pr[s
0, u] := u− Sr[s

0, u] . (1.3)

The operators Sr and Pr are called the stop and play , respectively, with threshold r . In each

interval of monotonicity [t0, t1] of the input function u , the outputs are explicitly given by the

formulas

Sr[s
0, u](t) = min{r, max{−r, Sr[s

0, u](t0) + u(t)− u(t0)}} , (1.4)

Pr[s
0, u](t) = max{u(t)− r, min{u(t) + r, Pr[s

0, u](t0)}} , (1.5)

which have traditionally been used as alternative definitions of the stop and play on piecewise

monotone inputs, see [2, 9]. The following inequalities hold, see e. g. Section II.1 of [12].

Proposition 1.1 For s0
1, s

0
2 ∈ [−r, r] and u1, u2 ∈ W 1,1

loc (0,∞) put pi := Pr[s
0
i , ui] and si :=

Sr[s
0
i , ui] , i = 1, 2 . Then we have
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(i) (ṗ1(t)− ṗ2(t)) (s1(t)− s2(t)) ≥ 0 for a.e. t > 0 ,

(ii) |p1(t)− p2(t)| ≤ max
{
|p1(0)− p2(0)| , max

0≤s≤t
|u1(s)− u2(s)|

}
∀t ≥ 0 .

Part (ii) of Proposition 1.1 states that the play (and therefore also the stop) can be extended

to Lipschitz continuous mappings from [−r, r] × C([0,∞[ ) to C([0,∞[ ) , where C([0,∞[ )

denotes the space of continuous functions [0,∞[→ R , endowed with a system of seminorms

‖u‖[0,t] := max
0≤s≤t

|u(s)| for t ≥ 0 . (1.6)

To simplify the presentation, we consider special initial configurations of the stop and play

operators. They consist in choosing

s0 := sign(u(0))min{|u(0)|, r} (1.7)

in the variational problem (1.1). In materials sciences, this corresponds to the initially un-

perturbed (or virgin) reference state. In some applications, it is substantial to consider more

general initial states, and an interested reader can find a detailed analysis in [2] or [12]. Here,

as we are interested in periodic motions, the results do not depend on the choice of s0 .

This enables us to consider the stop and play as operators from C([0,∞[ ) to C([0,∞[ )

and to write simply Sr[u] , Pr[u] instead of Sr[s
0, u] , Pr[s

0, u] .

These operators are odd , that is Sr[−u] = −Sr[u] , Pr[−u] = −Pr[u] for every input u , and

homogeneous in the sense that

Sr[zu] = zSr/|z|[u] , Pr[zu] = zPr/|z|[u] (1.8)

for every r > 0 , z �= 0, and every input u .

Note that for all r > 0 we have

d

dt
Pr[u] ·

d

dt
Sr[u] = 0 (1.9)

whenever the derivatives exist, hence dPr[u](t)/dt = u̇(t) , dSr[u](t)/dt = 0 or vice versa.

From Proposition 1.1 we immediately obtain the following estimate.

Corollary 1.2 For u1, u2 ∈ C([0,∞[ ) put pi := Pr[ui] , si := Sr[ui] , i = 1, 2 . Then for all

t ≥ 0 we have
|p1(t)− p2(t)| ≤ ‖u1 − u2‖[0,t] ,

|s1(t)− s2(t)| ≤ 2 ‖u1 − u2‖[0,t] .
(1.10)
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1.2 Prandtl-Ishlinskii operators

One practical drawback of Prandtl’s model in Fig. 2 consists in an instantaneous transition from

the purely elastic to the purely plastic regime. In ‘real’ elastoplastic materials, this transition

zone is smooth, see [13]. Prandtl [14] and Ishlinskii [7] therefore proposed to combine rheological

elements from Fig. 1 corresponding to different values r1 < r2 < . . . < rn < ∞ of the yield

point in parallel, as on Figure 3. The purely elastic element corresponding to r = ∞ accounts

for the kinematic hardening .

� ∞

rn

rn−1

r2

r1

Figure 3: Rheological structure of the Prandtl-Ishlinskii model.

According to Eq. (1.2), the strain-stress law for the Prandtl-Ishlinskii model can be written

in operator form as

σ = F [e] := E∞ e+
n∑

i=1

Ei Sri
[e] , (1.11)

where Ei are given non-negative individual elasticity moduli.

In fact, there is no reason to restrict the model to finitely many yield points. For a math-

ematical treatment, it is more convenient to work with more general constitutive operators.

This leads us to the following definition:

Definition 1.3 Let η : ]0,∞[→ [0,∞[ be a non-increasing function. Then the operator F
defined by the Stieltjes integral

F [e] := η(∞) e−
∫ ∞

0
Sr[e] dη(r) , (1.12)

is called a Prandtl-Ishlinskii operator of stop type whenever the integral exists, and η is called

the distribution function of F .
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Indeed, the case (1.11) is included in the above definition; it suffices to put r0 := 0 ,

rn+1 := ∞ , En+1 := E∞ , and

η(r) :=
n+1∑
i=k

Ei for r ∈ [rk−1, rk[ , k = 1, . . . , n+ 1 . (1.13)

In particular, constant functions η correspond to a purely elastic constitutive law.

An important practical question consists in identifying the function η from physical mea-

surements. The usual approach is to increase monotonically the load from zero to some final

value and plot the corresponding strain-stress graph called the initial loading curve. So, assume

that e(t) increases in [0,∞[ from the starting value e(0) = 0 . Then, at time t , we have by

Eq. (1.4) for every r > 0 that

Sr[e](t) = min{e(t), r} ,

and Eq. (1.12) formally yields

F [e](t) = η∞ e(t)−
∫ e(t)

0
r dη(r)− e(t)

∫ ∞

e(t)
dη(r) =

∫ e(t)

0
η(r) dr . (1.14)

Given an increasing concave experimental initial loading curve σ = ϕ(e) , Eq. (1.14) says that

it determines uniquely the Prandtl-Ishlinskii operator (1.12) (the Stieltjes integral exists in this

case !) through the relation

η(r) = ϕ′(r) :=
dϕ(r)

dr
. (1.15)

In the Prandtl-Ishlinskii model, all secondary branches of the hysteresis loops have the same

shape, namely σ = σ∗ + 2ϕ((e− e∗)/2) for an increasing branch, σ = σ∗ − 2ϕ((e∗ − e)/2) for

a decreasing branch, where (e∗, σ∗) is a turning point, cf. Fig. 4.

�
σ
σ∗

σ = ϕ(e)

e∗ e

Figure 4: A diagram of the Prandtl-Ishlinskii operator.

Prandtl-Ishlinskii operators have a very specific property, namely that they are invertible

and the inverse has the same structure. This result goes back to [10] in the time-periodic case.

The following version can be found in [12], Corollary II.3.4.
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Theorem 1.4 Let ϕ : [0,∞[→ [0,∞[ be a concave increasing function, ϕ(0) = 0 , ϕ(∞) =

∞ , and let ψ = ϕ−1 : [0,∞[→ [0,∞[ be its inverse. Let η := ϕ′ , ζ := ψ′ be their respective

derivatives. Then the formula

G[σ] := ζ(0) σ +
∫ ∞

0
Pr[σ] dζ(r) for σ ∈ C([0,∞[ ) (1.16)

defines the so-called Prandtl-Ishlinskii operator of play type G : C([0,∞[ ) → C([0,∞[ ) with

distribution function ζ . The operator G is inverse to F given by formula (1.12), that is,

F [G[u]] = G[F [u]] = u for every u ∈ C([0,∞[ ) . Moreover, both F and G are odd operators.

In terms of the underlying mechanical construction, we can say that the rheological models

on Fig. 3 and Fig. 5 are equivalent for r̃k =
∑k−1

i=1 Ei ri + rk
∑n+1

i=k Ei .

�0 r̃1 r̃2 r̃n

Figure 5: Rheological structure of the Prandtl-Ishlinskii operator of play type.

For every input function σ ∈ C([0,∞[ ) , the function λ : [0,∞[×[0,∞[→ R defined by the

formula

λ(r, t) :=

{
Pr[σ](t) for r > 0 ,

σ(t) for r = 0 ,
(1.17)

represents the memory state evolution of the system. It has the following properties (see Propo-

sition II.2.5 and Corollary II.2.7 of [12]).

Proposition 1.5 Let σ ∈ C([0,∞[ ) and t ≥ 0 be given. Then the function λ(·, t) is Lipschitz

continuous in [0,∞[ for every t ≥ 0 with coefficient 1 , and we have




λ(r, t) = 0 for r ≥ ‖σ‖[0,t] ,∣∣∣∣∣ ∂∂rλ(r, t)
∣∣∣∣∣ = 1 for a.e. r ∈ ]0, ‖σ‖[0,t] [ .

(1.18)

If moreover there exists ω > 0 such that σ(t + ω) = σ(t) for every t ≥ 0 , then λ(r, t+ ω) =

λ(r, t) for every t ≥ ω .

Prandtl-Ishlinskii operators have (as a consequence of Proposition 1.5, Corollary 1.2, and

Eq. (1.9)) the following properties.
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Proposition 1.6 Let G be the operator (1.16), and let σ1, σ2 ∈ C([0,∞[ ) be given. Then for

every t ≥ 0 we have

|G[σ1](t)− G[σ2](t)| ≤ ζ
(
max{‖σ1‖[0,t] , ‖σ2‖[0,t]}

)
‖σ1 − σ2‖[0,t] . (1.19)

If moreover σ ∈ W 1,1
loc (0,∞) , then for a.e. t > 0 we have

∣∣∣∣∣ ddtG[σ](t)
∣∣∣∣∣ ≤ ζ(‖σ‖[0,t]) |σ̇(t)| . (1.20)

From Proposition 1.1 it follows that the operator G defined by (1.16) is monotone in the

sense that the inequality

d

dt
(G[σ1]− G[σ2]) (σ1 − σ2) ≥

1

2

d

dt

(
ζ(0)|σ1 − σ2|2 +

∫ ∞

0
|Pr[σ1]− Pr[σ2]|2 dζ(r)

)
(1.21)

holds a. e. for every σ1, σ2 ∈ W 1,1
loc (0,∞) . In particular, if σ1, σ2 are ω -periodic, then

G[σ1],G[σ2] are ω -periodic for t ≥ ω , and we have

∫ 2ω

ω

d

dt
(G[σ1]− G[σ2]) (σ1 − σ2) dt ≥ 0 . (1.22)

Inequality (1.22) is strict provided ζ is strictly increasing. More precisely, the following state-

ment is proved in Corollary II.4.11 and Proposition II.4.12 of [12].

Proposition 1.7 Let σ1, σ2 ∈ W 1,1
loc (0,∞) be ω -periodic, and let ζ be strictly increasing. As-

sume that ∫ 2ω

ω

d

dt
(G[σ1]− G[σ2]) (σ1 − σ2) dt = 0 . (1.23)

Then dσ1/dt = dσ2/dt , dG[σ1]/dt = dG[σ2]/dt a. e.

1.3 Energy inequalities

Energy dissipation is a typical feature of hysteresis phenomena. To introduce it as a mathe-

matical concept, we have to define an internal energy functional U ≥ 0 corresponding to the

constitutive law σ = F [e] or equivalently e = G[σ] . The second principle of thermodynamics

then states that the dissipation rate q satisfies

q := σ ė− U̇ ≥ 0 . (1.24)

If we choose e as state variable (input) and σ = F [e] as state function (output), we define

a continuous family of internal parameters σr := Sr[e] which correspond to individual stress

components in the rheological construction of Fig. 3. It is assumed that no internal energy can
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be stored in the dry friction elements; the internal energy U of the system is then defined as

the total internal energy of the individual elastic elements, that is, in operator form,

U = U [e] := 1

2

(
η(∞) e2 −

∫ ∞

0
σ2

r dη(r)
)
=

1

2

(
η(∞) e2 −

∫ ∞

0
(Sr[e])

2 dη(r)
)
. (1.25)

Conversely, if σ is the input and e = G[σ] is the output, then we choose the strain components

er := Pr[σ] to be the internal parameters and the total internal energy has the form

U = V[σ] := 1

2

(
ζ(0) σ2 +

∫ ∞

0
e2

r dζ(r)
)
=

1

2

(
ζ(0) σ2 +

∫ ∞

0
(Pr[σ])

2 dζ(r)
)
. (1.26)

It can be shown using Proposition II.3.3 of [12] that formulas (1.25) and (1.26) are equivalent.

A straightforward differentiation yields the formula

q(t) = σ
d

dt
G[σ]− d

dt
V[σ] =

∫ ∞

0
Sr[σ]

∂

∂t
Pr[σ] dζ(r) ≥ 0 a. e. (1.27)

for every σ ∈ W 1,1
loc (0,∞) , hence the model is consistent with inequality (1.24).

Hysteresis operators admit a second order energy inequality which is related to the convexity

of hysteresis loops. A detailed discussion on this subject can be found in Section II.4 of [12].

We need here the following consequence of Proposition II.4.21 and Corollary II.4.23 of [12].

Theorem 1.8 Let G be defined by (1.16), and for r > 0 put

γ(r) := inf

{
ζ(b)− ζ(a)

b− a
; 0 < a < b ≤ r

}
.

Let σ ∈ W 2,1
loc (0,∞) be a given ω -periodic function. Then G[σ] ∈ W 1,∞(0,∞) , and we have

−
∫ 2ω

ω

d

dt
G[σ](t) σ̈(t) dt ≥ 1

4
γ(‖σ‖[0,ω])

∫ 2ω

ω
|σ̇|3 dt . (1.28)

1.4 Parameter dependent hysteresis operators

We will consider Prandtl-Ishlinskii operators whose distribution functions depend on a pa-

rameter a in a Lebesgue measurable parameter set A ⊂ R
N . Given an input function

e : A× [0,∞[→ R , we define the output σ by the formula

σ(a, t) = F [e](a, t) := η(a,∞) e(a, t) −
∫ ∞

0
Sr[e(a, ·)](t) drη(a, r) (1.29)

for (a, t) ∈ A × [0,∞[ . It makes sense for every a ∈ A , for which the function t �→ e(a, t) is

continuous, and the function r �→ η(a, r) is non-increasing and non-negative for a. e. a ∈ A .

For an input function σ , we similarly define the output of the inverse operator

e(a, t) := G[σ](a, t) = ζ(a, 0) σ(a, t) +
∫ ∞

0
Pr[σ(a, ·)](t) drζ(a, r) , (1.30)
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where ζ(a, ·)) is associated with η(a, ·) as in Theorem 1.4. Typically, a may represent the

space variable. This enables us to consider also spatially inhomogeneous materials.

The following weak continuity result is a modification of Proposition 2.12 in [4] and will

play a substantial role in Section 4.

Proposition 1.9 Let {σn ; n ∈ N} , be a sequence in L∞(A× ]0,∞[ ) such that σn(a, t) ≤ R

a. e., σn(a, ·) ∈ C([0,∞[ ) for a.e. a ∈ A , and limn→∞
∫
A ‖(σn − σ)(a, ·)‖[0,t] da = 0 .

Let ζ , {ζn ; n ∈ N} , be functions in L∞
loc(A× ]0,∞[ ) such that ζ(a, ·) , ζn(a, ·) are non-

decreasing and non-negative for every n ∈ N and a. e. a ∈ A , and let ζn|(A× ]0,R[ ) converge to

ζ |(A× ]0,R[ ) in L∞(A× ]0, R[ ) weakly-star as n → ∞ .

Let Gn , G be the operators corresponding to ζn, ζ , respectively, according to Eq. (1.30).

Then Gn[σn](·, t) converge to G[σ](·, t) for every t ≥ 0 in L∞(A) weakly-star as n → ∞ .

Proof. Integrating by parts in the Stieltjes integral and using Proposition 1.5, we obtain for

a. e. a ∈ A and every t > 0 that

(Gn[σn]− G[σ])(a, t) = ζn(a, 0)(σn − σ)(a, t) (1.31)

+
∫ R

0
(Pr[σn(a, ·)]− Pr[σ(a, ·)])(t) drζn(a, r)

−
∫ R

0

∂

∂r
Pr[σ(a, ·)](t) (ζn − ζ)(a, r) dr .

A weakly-star convergent sequence is bounded. We can therefore estimate the first two terms

on the right-hand side of (1.31) using Corollary 1.2 by

∣∣∣∣∣ζn(a, 0)(σn − σ)(a, t) +
∫ R

0
(Pr[σn(a, ·)]− Pr[σ(a, ·)])(t) drζn(a, r)

∣∣∣∣∣ ≤ C ‖(σn − σ)(a, ·)‖[0,t]

(1.32)

a. e. with a constant C independent of a and n . The third term converges weakly-star by

Proposition 1.5, and the assertion follows. �

2 Main results

2.1 Derivation of the model

Let us consider a cylindrical beam of length π and constant cross section S . In the referential

state, the beam is oriented in such a way that the x -axis coincides with its longitudinal axis.

The cross section is assumed to be a plane figure which is symmetric with respect to both
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coordinate axes. We further assume that the motion takes place only in the xz -plane, and

neglect longitudinal displacements. The transversal displacement denoted by u is assumed to

depend only on x ∈ [0, π] and the time t ≥ 0 .

The motion is governed by the equation (see §21 of [15] or §87 of [8])

ρ(x)
∂2u

∂t2
+

1

|S|
∂2M

∂x2
= g(x, t) , (2.1)

where |S| is the two-dimensional area of the cross section, g(x, t) is the load density, and M

is the y -component of the bending moment.

In the next step, we neglect all components eij , σij of the strain and stress tensor except

for e = e11 , σ = σ11 . Under the small deformation hypothesis, the strain e has the form

e(x, z, t) = −z
∂2u

∂x2
(x, t) . (2.2)

The bending moment satisfies the equation

M(x, t) = −
∫∫

S
z σ(x, z, t) dy dz . (2.3)

Let σ be related to e by a Prandtl-Ishlinskii relation (1.29) with parameter a = (x, z) , that

is,

σ(x, z, t) = η(x, z,∞) e(x, z, t) −
∫ ∞

0
Sr[e(x, z, ·)](t) drη(x, z, r) . (2.4)

By (1.8), we have

z Sr[−z uxx(x, ·)](t) = −z2 Sr/|z|[uxx(x, ·)](t) (2.5)

for every r > 0 and z �= 0. Combining (2.3) with (2.4) and (2.5) we obtain

M(x, t) = F̂ [uxx](x, t) := η̂(x,∞) uxx(x, t) −
∫ ∞

0
Sr[uxx(x, ·)](t) drη̂(x, r) , (2.6)

where η̂(x, r) =
∫∫

S z
2 η(x, z, |z|r) dy dz . This enables us to rewrite the equation of motion (2.1)

in the form

ρ(x) utt +
1

|S| F̂ [uxx]xx = g(x, t) , (2.7)

which is (up to a change of notation) nothing but (0.1).

2.2 Governing equations

Using the inversion formula (1.16) and introducing new variables w = F [uxx] , v = ut , we

rewrite the system (0.1), (0.2) in the form

ρ(x) vt + wxx = g(x, t) , (2.8)

G[w]t − vxx = 0 , (2.9)
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with boundary conditions

v(0, t) = v(π, t) = w(0, t) = w(π, t) = 0 , (2.10)

where G is an operator of the form

G[w](x, t) = ζ(x, 0)w(x, t) +
∫ ∞

0
Pr[w(x, ·)](t) drζ(x, r) . (2.11)

We introduce the following notation.

Notation 2.1 We fix ω > 0 , set J := ]0, π[ , and define the spaces

(i) Lp
ω(J) of functions u ∈ Lp

loc(J× ]0,∞[ ) such that u(x, t+ ω) = u(x, t) for every t > 0 ,

endowed with the norm

‖u‖p =



(∫ 2ω

ω

∫
J |u(x, t)|p dx dt

)1/p
if 1 ≤ p < ∞ ,

ess sup {|u(x, t)| ; (x, t) ∈ J× ]ω, 2ω[ } if p = ∞ ,

(ii) Cω(J̄) of continuous functions u : J̄ → R such that u(x, t+ω) = u(x, t) for every t ≥ 0 ,

endowed with the norm ‖u‖∞ ,

(iii) Z = {(v, w) ∈ Cω(J̄) × Cω(J̄) ; vt, wxx ∈ L2
ω(J) , wt, vxx ∈ L3

ω(J) , and (2.10) holds} ,
endowed with the norm

‖(v, w)‖Z := ‖vt‖2 + ‖wxx‖2 + ‖wt‖3 + ‖vxx‖3 .

Note that we have the compact embedding

Z ↪→↪→ Cω(J̄)× Cω(J̄) . (2.12)

We make the following hypotheses.

Hypothesis 2.2 There exists constants ḡ, ρ̄0, ρ̄1, α, β, γ̄0, γ̄1 , satisfying the inequalities ḡ > 0 ,

ρ̄1 > ρ̄0 > 0 , α ≤ 1 , β > 0 , γ̄1 > γ̄0(β + 1)/β > 0 , α ≤ β , 3β − 2α < 2 , such that

(i) g, gt ∈ L2
ω(J) , ‖g‖2

2 + ‖gt‖2
2 ≤ ḡ2 ,

(ii) ρ ∈ L∞(J) , ρ̄0 ≤ ρ(x) ≤ ρ̄1 a e. ,

(iii) ζ ∈ L∞
loc(J× ]0,∞[ ) , ζ(x, ·) is increasing for a. e. x ∈ J , and the inequalities

0 ≤ ζ(x, r) ≤ Γ̄(r) := γ̄1 max{1, rβ} , (2.13)

ζ(x, r)− ζ(x, s)

r − s
≥ γ̄(r) := γ̄0 min{1, rα−1} (2.14)

hold for a. e. x ∈ J and for every r > s > 0 .
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The set of all Σ = (g, ρ, ζ) ∈ L2
ω(J)×L∞(J)×L∞

loc(J× ]0,∞[ ) satisfying Hypothesis 2.2 will

be denoted by Σ in the sequel. Note that in Hypothesis 2.2 we have Γ̄(r) >
∫ r
0 γ̄(s) ds+ γ̄0/β

for every r > 0 , hence the set Σ is non-empty.

Actually, the approximations will live in larger sets Σc (parametrized by c > 0) of all

Σ = (g, ρ, ζ) satisfying Hypothesis 2.2 with (2.13) replaced by

0 ≤ ζ(x, r) ≤ c+ Γ̄(r) . (2.15)

2.3 Main theorems

We now state the main results. Proofs will be given in Section 4. Let us first establish the

existence, uniqueness, and continuous dependence of solutions to Eqs. (2.8) – (2.10).

Theorem 2.3 For every Σ ∈ Σ there exists a unique (v, w) ∈ Z such that Eqs. (2.8) – (2.10)

are satisfied almost everywhere in J× ]ω,∞[ .

Theorem 2.3 enables us to define the solution operator

S : Σ → Z : Σ �→ (v, w) . (2.16)

This mapping is weakly compact in the following sense.

Theorem 2.4 Let {Σ(n) ; n ∈ N} , Σ(n) = (g(n), ρ(n), ζ (n)) be any sequence in Σ . Then there

exists a subsequence {Σ(nk)} of {Σ(n)} and an element Σ ∈ Σ such that S(Σ(nk)) → S(Σ) as

k → ∞ weakly in Z and uniformly in Cω(J̄)× Cω(J̄) .

With each Σ ∈ Σ we associate the total dissipation over one period of the process defined

by Eqs. (2.8) – (2.10) using the formula (1.27), that is,

D(Σ) :=
∫ 2ω

ω

∫
J
G[w]t w dx dt , (2.17)

where (v, w) = S(Σ) . Testing Eq. (2.8) by v and (2.9) by w , we obtain equivalently

D(Σ) =
∫ 2ω

ω

∫
J
g v dx dt . (2.18)

The worst scenario result mentioned in the introduction reads as follows.

Theorem 2.5 There exists Σ∗ ∈ Σ such that for every Σ ∈ Σ we have D(Σ) ≤ D(Σ∗) .

Moreover, the value of D(Σ∗) can be found as a limit of finite-dimensional approximations.
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3 Auxiliary results

3.1 Weak compactness

We first show that the sets Σc themselves are weakly compact in the following sense.

Lemma 3.1 Let {cn} be a sequence of real numbers such that lim infn→∞ cn = c ≥ 0 , let

Σ(n) = (g(n), ρ(n), ζ (n)) be an arbitrary sequence in Σcn , and let R > 1 be a constant. Then

there exists a subsequence Σ(nk) of Σ(n) and Σ = (g, ρ, ζ) ∈ Σc such that




g(nk) → g , g
(nk)
t → gt weakly in L2

ω(J) ,

ρ(nk) → ρ weakly-star in L∞(J) ,

ζ (nk)
∣∣∣
J× ]0,R[

→ ζ
∣∣∣
J× ]0,R[

weakly-star in L∞(J× ]0, R[ ) .

(3.1)

Proof. The existence of convergent subsequences is obvious. The only fact one has to prove is

that the weak-star limit of ζ (nk)|J× ]0,R[ is a restriction of a function ζ satisfying Hypothesis

2.2 (iii). This can be done by the standard diagonalization procedure. Let {rj ; j ∈ N} be

a dense countable subset of [0, R] . We successively select a subsequence ζ (nk) in such a way

that ζ (nk)(·, rj) converge to some ζj weakly-star in L∞(J) for every j ∈ N . Each function ζj

is defined in a set Aj ⊂ J of full measure, therefore also A = ∩∞
j=1Aj has full measure. For

x ∈ A and r ≥ 0 we now put

ζ(x, r) :=




ζj(x) if r = rj , j ∈ N ,

inf{ζj(x) ; rj > r} if r ∈ [0, R[ \⋃∞
j=1{rj} ,

Γ̄(r) if r ≥ R .

(3.2)

Then ζ satisfies Hypothesis 2.2 (iii). Moreover, for every test function q ∈ L1(J) , the functions

zk(r) :=
∫
J ζ

(nk)(x, r) q(x) dx , z(r) :=
∫
J ζ(x, r) q(x) dx are non-decreasing and zk(rj) → z(rj)

for every j ∈ N , hence zk(r) → z(r) at every point r ∈ [0, R] of continuity of z . In particular,

ζ (nk)|J× ]0,R[ converge weakly-star to ζ |J× ]0,R[ in L∞(J× ]0, R[ ) , and the proof is complete. �

3.2 Finite-dimensional approximations

Approximate solutions will be constructed by the Fourier method, see [16]. We choose in L2
ω(J)

the orthonormal basis {ejk ; j ∈ Z , n ∈ N} given by

ejk(x, t) =




2√
ωπ

cos 2πj
ω

t sin kx for j < 0 ,√
2

ωπ
sin kx for j = 0 ,

2√
ωπ

sin 2πj
ω

t sin kx for j > 0 .

(3.3)
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We have the identities

(ejk)t =
2πj

ω
e−jk , (ejk)xx = −k2 ejk . (3.4)

Instead of (2.8) – (2.10), we fix some n ∈ N , and solve the approximate system

∫ 2ω

ω

∫
J
ρ(n)(x) v

(n)
t ejk dx dt − k2 wjk =

∫ 2ω

ω

∫
J
g(n) ejk dx dt , (3.5)

∫ 2ω

ω

∫
J
G(n)[w(n)]t ejk dx dt + k2 vjk = 0 , (3.6)

with unknowns vjk, wjk , j = −n, . . . , n , k = 1, . . . , n , where

v(n)(x, t) =
∑n

j=−n

∑n
k=1 vjk ejk(x, t) ,

w(n)(x, t) =
∑n

j=−n

∑n
k=1 wjk ejk(x, t) ,

(3.7)

G(n)[w(n)](x, t) = ζ (n)(x, 0)w(n)(x, t) +
∫ ∞

0
Pr[w

(n)(x, ·)](t) drζ
(n)(x, r) , (3.8)

with suitably chosen Σ(n) = (g(n), ρ(n), ζ (n)) ∈ Σ1 .

The following a priori estimate will play a crucial role throughout the paper.

Lemma 3.2 There exists a constant R > 1 independent of n and of Σ(n) ∈ Σ1 such that

every solution (v(n), w(n)) to (3.5), (3.6) satisfies the estimate

‖(v(n), w(n))‖Z ≤ R , ‖v(n)‖∞ ≤ R , ‖w(n)‖∞ ≤ R . (3.9)

Proof. We multiply Eq. (3.5) by (2πj/ω)2 vjk , Eq. (3.6) by (2πj/ω)2wjk , and sum up. This

yields that

−
∫ 2ω

ω

∫
J
G(n)[w(n)]t w

(n)
tt dx dt =

∫ 2ω

ω

∫
J
g

(n)
t v

(n)
t dx dt . (3.10)

From Theorem 1.8 it follows that

1

4
γ̄(‖w(n)‖∞) ‖w(n)

t ‖3
3 ≤ ḡ ‖v(n)

t ‖2 . (3.11)

We next multiply Eq. (3.5) by −(2πj/ω) v−jk , Eq. (3.6) by (2πj/ω)w−jk , and sum up. For

every k = 1, . . . , n we have

n∑
j=−n

j (wjk v−jk + vjk w−jk) = 0 ,

and Ineq. (1.20) implies that

ρ̄0 ‖v(n)
t ‖2

2 ≤ (1 + Γ̄(‖w(n)‖∞)) ‖w(n)
t ‖2

2 + ḡ ‖v(n)
t ‖2 . (3.12)
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Finally, Eqs. (3.5), (3.6) directly yield that

‖w(n)
xx ‖2 ≤ ρ̄1 ‖v(n)

t ‖2 + ḡ , (3.13)

‖v(n)
xx ‖3 ≤ (1 + Γ̄(‖w(n)‖∞) ‖w(n)

t ‖3 . (3.14)

In the rest of the proof, we denote by K1, K2, . . . any positive constant independent of n

and of Σ(n) ∈ Σ1 . Eliminating v
(n)
t from Eqs. (3.11), (3.12) we obtain

γ̄(‖w(n)‖∞) ‖w(n)
t ‖3

3 ≤ K1

(
1 + Γ̄1/2(‖w(n)‖∞) ‖w(n)

t ‖3

)
, (3.15)

hence

‖w(n)
t ‖3 ≤ K2

(
1 +

Γ̄1/4(‖w(n)‖∞)

γ̄1/2(‖w(n)‖∞)

)
, (3.16)

and using Eqs. (3.13), (3.12), we derive the estimates

‖w(n)
t ‖2 + ‖w(n)

xx ‖2 ≤ K3

(
1 +

Γ̄3/4(‖w(n)‖∞)

γ̄1/2(‖w(n)‖∞)

)
, (3.17)

where for all r > 0 we have

Γ̄3/4(r)

γ̄1/2(r)
≤ K4 (1 + rκ) , κ =

1

4
(3β − 2α + 2) < 1 . (3.18)

Combining Eqs. (3.17) – (3.18) with the embedding inequality

‖w(n)‖∞ ≤ K5

(
‖w(n)

t ‖3 + ‖w(n)
xx ‖2

)
(3.19)

we thus obtain

‖w(n)‖∞ ≤ K6

(
1 + ‖w(n)‖κ

∞

)
,

hence ‖w(n)‖∞ ≤ K7 and the assertion follows from Eqs. (3.14), (3.16), and (3.17). �

Lemma 3.3 For each n ∈ N and Σ(n) ∈ Σ1 there exists a unique solution {vjk, wjk ; j =

−n, . . . , n , k = 1, . . . , n} to the system (3.5), (3.6).

Proof. System (3.5), (3.6) is of the form Φ(W ) = G , where W = (vjk, wjk) ∈ X = R
2n(2n+1) is

the unknown vector, G ∈ X is a datum, and Φ : X → X is the mapping given by the left-hand

side of (3.5), (3.6). From Theorem 1.4 and Proposition 1.6 it follows that Φ is continuous and

odd. By Lemma 3.2, the equation Φ(X) = δ G has no solution for any δ ∈ [0, 1] outside a

sufficiently large ball in X . The homotopy argument in the topological degree theory (cf. e. g.

[5]) then entails that at least one solution exists inside the ball.
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To prove the uniqueness, we consider two solutions (vjk, wjk) , (v
′
jk, w

′
jk) , and denote v̄jk =

vjk − v′jk , w̄jk = wjk − w′
jk . Then∫ 2ω

ω

∫
J
ρ(n)(x) v̄

(n)
t ejk dx dt − k2 w̄jk = 0 , (3.20)

∫ 2ω

ω

∫
J

(
G(n)[w(n)]− G(n)[w′(n)

]
)

t
ejk dx dt + k2 v̄jk = 0 . (3.21)

We multiply Eq. (3.20) by v̄jk , (3.21) by w̄jk , and sum up. This yields

∫ 2ω

ω

∫
J

(
G(n)[w(n)]− G(n)[w′(n)

]
)

t
(w(n) − w′(n)

) dx dt = 0 . (3.22)

The function ζ (n) is strictly increasing by Hypothesis 2.2 (iii). Proposition 1.7 enables us to

conclude that w
(n)
t = w′(n)

t , G(n)[w(n)]t = G(n)[w′(n)]t a. e., and the assertion follows. �

4 Proofs of main results

4.1 Proof of Theorem 2.3

Let Σ ∈ Σ be given. For n ∈ N we use Lemma 3.3 to construct the solution (v(n), w(n)) to the

system (3.5), (3.6), with Σ(n) = Σ. The estimate in Lemma 3.2 and the compact embedding

(2.12) allow us to select a subsequence (v(nk), w(nk)) such that (v(nk), w(nk)) → (v, w) weakly

in Z and uniformly in Cω(J̄)× Cω(J̄) . Proposition 1.6 yields that G[w(nk)] converge to G[w]
uniformly, hence (v, w) ∈ Z is a solution to Eqs. (2.8) – (2.10). The uniqueness follows from

the same argument as in the proof of Lemma 3.3. Theorem 2.3 is proved.

4.2 Proof of Theorem 2.4

The solutions (v(n), w(n)) = S(Σ(n)) constructed as limits of finite-dimensional approximations

following the argument of the proof of Theorem 2.3 satisfy the estimates (3.9). By Lemma

3.1, we can select a subsequence {Σ(nk)} satisfying (3.1) and such that (v(nk), w(nk)) → (v, w)

weakly in Z and uniformly in Cω(J̄)×Cω(J̄) . Using Proposition 1.9 we can pass to the limit

in (2.8), (2.9). Indeed, ρ(nk) are independent of t , hence ρ(nk) v
(nk)
t converge in L2

ω(J) weakly

to ρ vt , and the assertion follows.

4.3 Proof of Theorem 2.5

The existence of Σ∗ is obvious. Indeed, the mapping D : Σ → R is bounded, and we may put

D∗ := sup{D(Σ) ; Σ ∈ Σ} . Choosing any maximizing sequence {Σ(n)} in Σ , we use Theorem

2.4 to construct a convergent subsequence which enables us to pass to the limit in (2.18).
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The finite-dimensional approximation of D∗ is interesting for practical applications. It can

be done in the following way. For n ∈ N , we denote by Σ(n) the set of all Σ = (g, ρ, ζ) such

that the Fourier expansion of g is finite, e. g.

g(x, t) =
n∑

j=−n

n∑
k=1

gjk ejk(x, t) , (4.1)

and ρ, ζ have a piecewise constant/piecewise linear form

ρ(x) = ρ� , (4.2)

ζ(x, r) = ζ�(m−1) +
n

R

(
r − m− 1

n
R
)
(ζ�m − ζ�(m−1)) (4.3)

for x ∈ [(=−1)π/n, =π/n[ , r ∈ [(m−1)R/n,mR/n[ , = = 1, . . . , n , m = 1, . . . , n , continuously

extended to x = π , and

ζ(x, r) = cn + Γ̄(r) for r ≥ R , (4.4)

with R > 1 from Lemma 3.2 and with cn = γ̄0R/n . The real numbers gjk , ρ� , ζ�m are subject

to the following restrictions.
n∑

j=−n

n∑
k=1

(1 + j2)g2
jk ≤ ḡ2 , (4.5)

ρ̄0 ≤ ρ� ≤ ρ̄1 ∀= = 1, . . . , n , (4.6)

ζ�m ≤ cn + Γ̄
(

m−1
n

R
)

ζ�m − ζ�(m−1) ≥ R
n
γ̄
(

m−1
n

R
) ∀=,m = 1, . . . , n , (4.7)

with ζ�0 ≥ 0 . We easily check that by (4.5) – (4.7), Σ(n) is a non-empty compact subset of Σcn

for every n ∈ N . By Lemma 3.3, for each Σ ∈ Σ(n) and n ≥ γ̄0R , there exists a unique solution

{(vjk, wjk) ; j = −n, . . . , n , k = 1, . . . , n} to the system (3.5), (3.6). Repeating the argument

of the proof of Theorem 2.4, we see that the mapping Sn : Σ(n) → R
2n(2n+1) : Σ �→ {(vjk, wjk)}

is continuous. In particular, the corresponding ‘discrete dissipation’ mapping Dn : Σ(n) → R

given by

Dn(Σ) :=
n∑

j=−n

n∑
k=1

gjk vjk

is continuous, hence it attains its maximum on Σ(n) at some point Σ̂(n) ∈ Σ(n) . We denote

D+ := lim sup
n→∞

Dn(Σ̂
(n)) , D− := lim inf

n→∞
Dn(Σ̂

(n)) , (4.8)

with the intention to prove that D+ = D− = D∗ .

By Lemma 3.1, we find a subsequence Σ̂(nk) of Σ̂(n) such that

lim
k→∞

Dnk
(Σ̂(nk)) = D+ ,
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and the convergence (3.1) holds for Σ̂(nk) with some Σ = (g, ρ, ζ) ∈ Σ , and with R from

Lemma 3.2. Selecting again a subsequence, if necessary, we may argue as in the proof of

Theorem 2.4 and assume that the corresponding solutions (v̂(nk), ŵ(nk)) to (3.5), (3.6) converge

weakly in Z and uniformly in Cω(J̄)× Cω(J̄) to (v, w) = S(Σ) ∈ Z . Passing to the limit as

k → ∞ we obtain D(Σ) = D+ , hence D+ ≤ D∗ .

The proof will be complete if we check that D(Σ) ≤ D− for every Σ ∈ Σ . To this

end, consider an arbitrary Σ = (g, ρ, ζ) ∈ Σ and for n ∈ N , j = −n, . . . , n , k = 1, . . . , n ,

=,m = 1, . . . , n put

gjk :=
∫ 2ω

ω

∫
J
g(x, t) ejk(x, t) dx dt ,

ρ� :=
n

π

∫ �π/n

(�−1)π/n
ρ(x) dx ,

ζ�m := cn +
n

π

∫ �π/n

(�−1)π/n
ζ
(
x,

m− 1

n
R
)
dx ,

ζ�0 := ζ�1 − cn .

Then the conditions (4.5) – (4.7) are fulfilled, and we may define g(n) , ρ(n) , ζ (n) as in (4.1) –

(4.3). For n ≥ γ̄0R we have Σ(n) := (g(n), ρ(n), ζ (n)) ∈ Σcn ⊂ Σ1 , hence Dn(Σ
(n)) ≤ Dn(Σ̂

(n)) .

We choose a subsequence such that Dnk
(Σ̂(nk)) → D− . By construction, Eqs. (3.1) hold, and

passing to the limit as k → ∞ we obtain D(Σ) ≤ D− . Theorem 2.5 is proved.
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