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Abstract

We formally state and prove the wellposedness and the local Lipschitz continuity
of the multisurface stress-strain law of nonlinear kinematic hardening type due to
Chaboche within the space of time-dependent tensor-valued absolutely continuous
functions. The results also include the more general case of a continuous family of
auxiliary surfaces.

1 Introduction

In rate independent plasticity, the Prandtl-Reuß model constitutes the basic model for
the stress-strain law. Here, the elastic region Z is bounded by a yield surface ∂Z .
Throughout this paper, we will assume the yield surface to be a sphere of radius r in
the space of deviatoric stresses. If loading occurs while the stress deviator σd lies on
the yield surface, there is plastic flow with a plastic strain rate ε̇p proportional to the
outer normal to ∂Z in σd . It has been known from experiments for a long time that
for many materials the yield surface undergoes changes which depend upon the history of
the loading process. In the Melan-Prager model which dates back to [12], [13], nowadays
called linear kinematic hardening, the yield surface moves during plastic loading in the
direction of the plastic strain rate. More sophisticated models have been developed to
account for real material behaviour, in particular for the phenomenon called ratchetting.
Among those, the Chaboche model [10], also called nonlinear kinematic hardening, enjoys
a widespread popularity. In its standard form, it employs a finite family of auxiliary
spherical surfaces. In the special case of a single auxiliary surface, assumed to be centered
at 0 with radius R , the model is known as the Armstrong-Frederick model [1]; here,
the center σb of the yield surface, also termed the backstress, moves according to the
differential equation

σ̇b = γ
(
Rε̇p − σb|ε̇p|

)
, (1.1)
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for some constant γ > 0 , see Figure 1. (In the Melan-Prager model, the term −σb|ε̇p| is
omitted.)
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Figure 1: The Armstrong-Frederick model.

In the Chaboche model, the backstress σb is decomposed into a sum

σb =
∑
k∈I

σb
k , (1.2)

where each constituent σb
k satisfies an equation of type (1.1), namely

σ̇b
k = γ(k)

(
R(k)ε̇p − σb

k|ε̇p|
)

, k ∈ I . (1.3)

In the standard Chaboche model, the index set I is finite; we will allow an arbitrary
measure space and thus include the case of a continuous family of auxiliary surfaces.
Figure 2 shows the rheological structure of the model. It visualizes the relations between
the various variables which occur in the model, stated formally in (2.5) - (2.12) below.
The element E refers to the linear elastic part, R is called the rigid plastic element and
represents the variational inequality, and Kk is the element defined by (1.3). The element
L plays a special role; it stands for the linear element σl = C lεp of the Melan-Prager
model. It may or may not be included within the Chaboche model, but its presence or
absence influences the asymptotic behaviour (see e.g. [7]). If we remove all nonlinear
elements Kk in Figure 2, we obtain the Melan-Prager model. If we moreover delete the
element L , we arrive at the Prandtl-Reuß model.
In this paper, we prove that the Chaboche model is well posed in the space W 1,1 both in
the stress controlled and in the strain controlled case by proving that the defining equa-
tions and inequalities of the Chaboche model (see (2.5) - (2.12) below) lead to operators

ε = F(σ) , σ = G(ε) , (1.4)
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which are well defined and Lipschitz continuous on their appropriate domains of definition.
In doing this, we consider the stress-strain law in isolation, that is, we do not study the
boundary value problems which arise from the coupling with the balance equations. For
the proof we utilize the method of [2]. There we have introduced an auxiliary variable u
in order to reformulate the model equations such that the unknown functions of Figure 2
appear only in terms of |ε̇p| and σp

d . The analysis is based on the concept of hysteresis
operators, that is, of operators which are rate-independent as well as causal, see e.g. [14],
[8], [9], [3].

onononononononononononononon E : εe, σ

R : εp, σp

Kk : εp, σb
k

L : εp, σl

�
Figure 2: The rheological stucture of the Chaboche model.
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2 Model Formulation and Main Result

We first fix some basic tensor notation. By T , we denote the space of symmetric N ×N
tensors endowed with the usual scalar product and the associated norm

〈τ, η〉 =
N∑

i,j=1

τijηij , |τ | =
√
〈τ, τ〉 , (2.1)

For τ ∈ T , we define its trace Tr τ and its deviator τd by

Tr τ =
N∑

i=1

τii = 〈τ, δ〉 , τd = τ − Tr τ

N
δ , (2.2)

where δ = (δij) stands for the Kronecker symbol. We denote by

Td = {τ : τ ∈ T , Tr τ = 0} , T⊥d = {τ : τ = λδ , λ ∈ R} , (2.3)

the space of all deviators respectively its orthogonal complement. We understand stress
and strain as time-dependent tensor-valued functions which are absolutely continuous,

σ, ε ∈ W 1,1(t0, t1; T) := {τ |τ : [t0, t1] → T , ‖τ‖1,1 = |τ(t0)|+
∫ t1

t0
|τ̇(t)| dt < ∞} . (2.4)

As we study the stress-strain law in isolation, we do not consider the space dependence.
In this terminology, the Chaboche model takes on the form

σ = σb + σp , ε = εe + εp , εp(t) ∈ Td ∀ t , (2.5)

〈ε̇p, σp
d − σ̃〉 ≥ 0 , ∀ σ̃ ∈ Td , |σ̃| ≤ r , (2.6)

|σp
d| ≤ r , (2.7)

σ = Aεe , (2.8)

σb(t) =
∫

I
σb

k(t) dν(k) + νlσl(t) ∀ t , (2.9)

σ̇b
k = γ(k)

(
R(k)ε̇p − σb

k|ε̇p|
)

, for all k ∈ I , (2.10)

σl = C lεp , (2.11)

σp(t0) = σp
0 , σb

k(t0) = σb
0(k) , for all k ∈ I . (2.12)

Throughout this paper, we assume the data to have the following properties.

Assumption 2.1

(i) I is a measure space, ν is a finite nonnegative measure on I , the numbers νl, C l and
functions R ∈ L1

ν(I) , γ ∈ L∞ν (I) satisfy νl, R, γ ≥ 0 , C l > 0 ,
∫
I R(k)dν(k) > 0

and
0 < γmin ≤ γ(k) ≤ γmax , for all k ∈ I . (2.13)

(ii) The initial values in (2.12) satisfy

σp
0 ∈ Tp

r = {τ : τ ∈ T , |τd| ≤ r} , (2.14)

σb
0 ∈ T b = {f |f ∈ L1

ν(I; Td) , |f(k)| ≤ R(k) a.e.} . (2.15)
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(iii) A : T → T is linear, symmetric and positive definite.

We also introduce the constants

Γi =
∫

I
γ(k)iR(k) dν(k) , i = 0, 1, 2, 3 . (2.16)

Remark 2.2

(i) If the index set I is finite, say I = {1, . . . , K} , and if ν is chosen to be the counting
measure, that is, ν(J) equals the number of elements in J for every subset J of
I , then we obtain the standard formulation of the multisurface Chaboche model
with K auxiliary (limiting) surfaces, namely

σb =
K∑

k=1

σb
k . (2.17)

In this case, the model (2.5) - (2.12) is identical with the one discussed in ([10],
Section 5.4.4), nonlinear kinematic case, if we change the notation according to

k =̂ l , σb
k =̂ Xl , γ(k) =̂

√
2

3
γl , γ(k)R(k) =̂

2

3
Cl . (2.18)

(ii) If we have K = 1 in (i), or if we choose γ(k) ≡ γ and R(k) ≡ R/ν(I) to be
constant, the Chaboche model reduces to the model of Armstrong and Frederick [1]

σ̇b = γ(Rε̇p − σb|ε̇p|) . (2.19)

(iii) If dν(k) = g(k)dλ(k) for some function g , that is, if the measure ν has a density
with respect to the Lebesgue measure λ , we obtain a version of the Chaboche
model with a continuous one parameter family of backstresses respectively auxiliary
surfaces.

We formulate our main results. For the strain controlled case, we assume Hooke’s law for
the linear elastic part, that is,

Aε = 2µε + λTr (ε)δ , (2.20)

where λ, µ > 0 denote the Lamé constants.

Theorem 2.3 (Wellposedness, Strain Controlled Case)
Let Assumption 2.1 as well as (2.20) hold. Then the system (2.5) - (2.12) defines an
operator

σ = G(ε; σp
0, σ

b
0) , (2.21)

G : W 1,1(t0, t1; T)× Tp
r × T b → W 1,1(t0, t1; T) , (2.22)

which satisfies the Lipschitz condition

‖ G(ε; σp
0, σ

b
0)− G(ε̄; σ̄p

0, σ̄
b
0) ‖1,1 ≤ L(K)

(
‖ ε− ε̄ ‖1,1 + |σp

0 − σ̄p
0|+ ‖σb

0 − σ̄b
0‖L1

ν(I;Td)

)
,

(2.23)
where the Lipschitz constant is uniform over subsets {(ε, σp

0, σ
b
0) : ‖ ε ‖1,1 ≤ K} of the

domain of definition of G .
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We now consider the stress controlled case. If νl = 0 , that is, if the Melan-Prager
element is absent, our choice (2.12) of initial conditions restricts the initial value σ(t0)
of the stress; on the other hand, there has to be an initial condition

εp(t0) = εp
0 (2.24)

for the plastic strain. This setting also works for the case νl > 0 , the restriction being

σ(t0) = σp
0 +

∫
I
σb

0(k)dν(k) + νlC lεp
0 . (2.25)

In the case νl = 0 , the description of the domains where the Lipschitz constant is uniform
involves the number

β =
1

γmin

+
rγmax

Γ2

. (2.26)

Theorem 2.4 (Wellposedness, Stress Controlled Case)
Let Assumption 2.1 hold.

(Case νl > 0.) The system (2.5) - (2.12), (2.24) defines an operator

ε = F(σ; σp
0, σ

b
0, ε

p
0) , F : Dσ → W 1,1(t0, t1; T) , (2.27)

where Dσ ⊂ W 1,1(t0, t1; T)×Tp
r ×T b ×Td is the subset of quadruples which satisfy

(2.25). Moreover, F satisfies on Dσ the Lipschitz condition

‖F(σ; σp
0, σ

b
0, ε

p
0)−F(σ̄; σ̄p

0, σ̄
b
0, ε̄

p
0) ‖1,1

≤ L(K)
(
‖σ − σ̄ ‖1,1 + |σp

0 − σ̄p
0|+ ‖σb

0 − σ̄b
0‖L1

ν(I;Td)
+ |εp

0 − ε̄p
0|
)

,(2.28)

where the Lipschitz constant is uniform over subsets {(σ, σp
0, σ

b
0, ε

p
0) : ‖σ ‖1,1 ≤ K}

of the domain of definition of F .

(Case νl = 0.) For every κ > 0 , let Dσ,κ be the subset of Dσ where the two conditions∣∣∣∣∫
I
γ(k)σb

0(k)dν(k)
∣∣∣∣ ≤ Γ1(1− κ) , (2.29)

‖σd ‖∞ ≤ Γ0 + r − Γ1βκ , (2.30)

hold, the number β being defined in (2.26). Then F has the properties as stated
above on the domains Dσ,κ instead of Dσ ; in particular, the Lipschitz constant also
depends on κ .

A well known example (see [10], or Example 3.5 in [2]) shows that the bound ‖σd ‖∞ <
Γ0 + r in (2.30) cannot be improved.
The basic idea of the proof of the two theorems above is the same as in [2]. We replace
the two unknown functions εp and σp

d by a single auxiliary function u , namely

u = Cεp + σp
d , (2.31)

where C > 0 is a suitably chosen constant. In fact, both functions εp and σp
d can be

expressed as

εp =
1

C
P(u ; σp

0d) , σp
d = S(u ; σp

0d) . (2.32)
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Here, the stop operator S represents the solution of the evolution variational inequality

|σp
d| ≤ r , 〈u̇− σ̇p

d, σ
p
d − σ̃〉 ≥ 0 a.e. ∀ |σ̃| ≤ r , (2.33)

with the initial condition
σp

d(t0) = σp
0d , (2.34)

and the play operator P is defined by

P(u ; σp
0d) = u− S(u ; σp

0d) . (2.35)

We refer to [2] and [9] for more details. We now derive a differential equation for u where
the internal variables σb

k, σ
l, εe

d, ε
p appear only in terms of σp

d and |ε̇p| . In the stress
controlled case, we set

C = Γ1 + νlC l . (2.36)

Using the model equations, we obtain

u̇ = (Γ1 + νlC l)ε̇p + σ̇p
d = (Γ1 + νlC l)ε̇p + σ̇d − σ̇b

= σ̇d +
∫

I
γ(k)σb

k dν(k) |ε̇p| . (2.37)

In the strain controlled case, where we have assumed Hooke’s law (2.20) for the linear
elastic part, the backstress σb satisfies

σd = 2µεe
d , σb = 2µεd − (2µεp + σp

d) . (2.38)

Here, we set the constant C in (2.31) to

C = 2µ + Γ1 + νlC l , (2.39)

and obtain

u̇ = (2µ + Γ1 + νlC l)ε̇p + σ̇p
d = 2µε̇p + 2µε̇e

d − σ̇b + (Γ1 + νlC l)ε̇p

= 2µε̇d +
∫

I
γ(k)σb

k dν(k) |ε̇p| . (2.40)

As it is well known, one can easily eliminate the unknowns σb
k with the variations of

constants formula. Using the basic identity

ε̇p =
σp

d

r
|ε̇p| , (2.41)

the differential equation (2.10) for the backstresses becomes

σ̇b
k = γ(k)

(
R(k)

r
σp

d − σb
k

)
|ε̇p| , k ∈ I . (2.42)

For later use, we will write down the solution formula in terms of the play and stop
operator with the abbreviated notation

ξ = P(u ; σp
0d) , x = S(u ; σp

0d) , ξ, x : [t0, t1] → Td . (2.43)

7



The function

V (t) = Var[t0,t]ξ
(
=
∫ t

t0
|ξ̇(τ)| dτ , if ξ ∈ W 1,1(t0, t1; Td)

)
(2.44)

represents the accumulated plastic strain, scaled by a constant factor. If we set

Wk(t) = exp

(
γ(k)

C
V (t)

)
, (2.45)

the backstresses can be expressed as

σb
k(t) = exp

(
−γ(k)

C
V (t)

)(
σb

0(k) +
∫ t

t0

R(k)

r
x(τ) dWk(τ)

)
. (2.46)

Thus, for the stress as well as for the strain controlled case, the auxiliary function u
satisfies the equation

u̇ = θ̇ +M(u; σp
0, σ

b
0)|ξ̇| , (2.47)

where θ = σd respectively θ = 2µεd ,

M(u; σp
0, σ

b
0)(t) =

1

C

∫
I
γ(k)σb

k(t) dν(k) , (2.48)

and (2.43) - (2.46) are used to express σb
k in terms of the arguments of M . Equation

(2.47) is complemented by the initial condition

u(t0) = Cεp(t0) + σp
0d . (2.49)

In the stress controlled case, εp(t0) is prescribed, whereas in the strain controlled case, it
can be expressed in terms of the given data by (2.38).
Once the auxiliary equation (2.47) is solved, we can express the operators F ,G in terms
of u , namely

ε = F(σ, σp
0, σ

b
0, ε

p
0) = εe + εp = A−1σ +

1

C
P(u ; σp

0d) , (2.50)

σ = G(ε, σp
0, σ

b
0) = A(ε− εp) = Aε− 2µ

C
P(u ; σp

0d) . (2.51)
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3 Proof of the Wellposedness

The wellposedness of the initial value problem

u̇(t) = θ̇(t) +M(u; σp
0, σ

b
0)(t)|ξ̇(t)| , ξ(t) = P(u ; σp

0d)(t) , (3.1)

u(t0) = u0 . (3.2)

has been studied in [2] concerning the dependence on θ ; the dependence on the initial
conditions (u0, σp

0, σ
b
0) does not pose any new problems. For the convenience of the reader,

we repeat the formulation of the existence theorem, adapted to the present case.

Theorem 3.1 Let θ ∈ W 1,1(t0, t1; Td) , u0 ∈ Td and an operator

M : C([t0, t1]; Td)× Tp
r × T b → C([t0, t1]; Td) (3.3)

be given. Assume that M(·; σp
0, σ

b
0) is causal and continuous with respect to the maximum

norm for all σp
0 ∈ Tp

r and σb
0 ∈ T b , and that κ > 0, σp

0 ∈ Tp
r, σ

b
0 ∈ T b and u0 ∈ Td are

given such that
sup

τ∈[t0,t]

|M(u; σp
0, σ

b
0)| ≤ 1− κ (3.4)

holds for all t ∈ [t0, t1] and all u ∈ W 1,1(t0, t; Td) with u(t0) = u0 and

|u̇(τ)| ≤ 1

κ
|θ̇(τ)| , a.e. in (t0, t) . (3.5)

Then there exists a solution (u, ξ) of the Cauchy problem (3.1), (3.2) where the functions
u, ξ ∈ W 1,1(t0, t1; Td) fulfil (3.4) and (3.5). Moreover, every such solution which satisfies
(3.4) also satisfies (3.5).

Proof. See [2], Theorem 3.2. 2

Lemma 3.2 The operator M(·; σp
0, σ

b
0) as defined in (2.43) - (2.48) is causal and con-

tinuous on C([t0, t1]; Td) for all σp
0 ∈ Tp

r and σb
0 ∈ T b . The backstresses σb

k satisfy the
a priori estimate

|σb
k(t)| ≤ R(k) , a.e. in (t0, t1) , (3.6)

for all k ∈ I .

Proof. The estimate (3.6) follows from the variations of constants formula (2.46), since
|x(t)| ≤ r and |σb

0(k)| ≤ R(k) hold for all t and k . Let now un ∈ C([t0, t1]; Td) converge
uniformly to u ∈ C([t0, t1]; Td) . It is known (see [9]) that

ξn = P(un ; σp
0d) → ξ = P(u ; σp

0d) , xn = S(un ; σp
0d) → x = S(u ; σp

0d) , (3.7)

Vn(t) = Var[t0,t]ξn → V (t) = Var[t0,t]ξ , (3.8)

uniformly on [t0, t1] . An application of Lebesgue’s dominated convergence theorem yields
the assertion. 2

We now discuss the boundedness property (3.4). By the definition of M in (2.48), the
estimate (3.6) yields

‖M(u; σp
0, σ

b
0) ‖∞ ≤ Γ1

C
, (3.9)
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so (3.4) holds for all arguments, regardless of (3.5), with

κ =
νlC l

C
, respectively κ =

2µ + νlC l

C
, (3.10)

in the stress respectively strain controlled case. Thus, the existence of a solution of (3.1),
(3.2) follows for the strain controlled case and, if in addition νl > 0 , also for the stress
controlled case.
Existence proof for the stress controlled case with νl = 0 . Let κ > 0 . According
to Theorem 2.4, we want to prove existence for initial conditions satisfying

σ(t0) = σp
0 +

∫
I
σb

0(k)dν(k) , (3.11)

∣∣∣∣∫
I
γ(k)σb

0(k)dν(k)
∣∣∣∣ ≤ Γ1(1− κ) , (3.12)

and for stress inputs σd =̂ θ ∈ W 1,1(t0, t1; Td) satisfying

‖σd ‖∞ ≤ Γ0 + r − Γ1βκ , β =
1

γmin

+
rγmax

Γ2

. (3.13)

Let such a σd be given, choose η > 0 small enough such that∫ t+η

t
|σ̇d(τ)| dτ ≤ κ2Γ1

8γmax

, ∀ t ∈ [t0, t1 − η] . (3.14)

In the first step we will prove that, if we have a solution u of (3.1), (3.2) satisfying (3.4)
on [t0, a] , then it can be extended to [a, a + η] , and every such extension ũ satisfies

‖M(ũ; σp
0, σ

b
0) ‖∞ ≤ 1− κ

2
(3.15)

on [a, a + η] , and

| ˙̃u(t)| ≤ 2

κ
|σ̇d(t)| , a.e. on (a, a + η) . (3.16)

To this end, let ũ ∈ W 1,1(a, a + η; Td) be an arbitrary function which satisfies (3.16)
as well as ũ(a) = u(a) ; setting ũ = u on [t0, a] we may regard it as an element of
W 1,1(t0, a+ η; Td) as well. From the variation of constants formula (2.46), applied on the
interval [a, a + η] , we obtain

|σb
k(t)− σb

k(a)| ≤
(

1− exp

(
−γ(k)

Γ1

(V (t)− V (a))

))
· (|σb

k(a)|+ R(k)) , t ∈ [a, a + η] ,

(3.17)
for the corresponding backstresses. Since

|V (t)− V (a)| ≤
∫ t

a
| ˙̃u(τ)| dτ , (3.18)

we get

|σb
k(t)− σb

k(a)| ≤ 2R(k)
γmax

Γ1

∫ t

a
| ˙̃u(τ)| dτ ≤ 4γmax

κC1

R(k)
∫ a+η

a
|σ̇d(τ)| dτ

≤ κ

2
R(k) , (3.19)
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so
|M(ũ; σp

0, σ
b
0)(t)−M(ũ; σp

0, σ
b
0)(a)| ≤ κ

2
. (3.20)

Thus, the assumption |M(ũ; σp
0, σ

b
0)(a)| ≤ 1 − κ implies that (3.15) holds if ũ satisfies

(3.16). We may therefore apply Theorem 3.1 on the interval [a, a+η] to conclude the first
step of the proof. In the second step, we use (3.13) to show that (3.15) can be improved
to

|M(ũ; σp
0, σ

b
0)(t)| ≤ 1− κ , ∀ t ∈ [a, a + η] . (3.21)

In fact, if (3.21) does not hold, then there must exist a t ∈ (a, a + η) such that

|M(ũ; σp
0, σ

b
0)(t)| > 1− κ ,

d

dt

(
|M(ũ; σp

0, σ
b
0)(t)|2

)
> 0 . (3.22)

Let us define

α = |M(ũ; σp
0, σ

b
0)(t)| , e =

1

α
M(ũ; σp

0, σ
b
0)(t) ∈ Td , (3.23)

then obviously
0 < 1− α < κ , |e| = 1 . (3.24)

The choice of t implies that

0 <
1

2

d

dt

(
|M(ũ; σp

0, σ
b
0)(t)|2

)
=

α

Γ1

∫
I
γ(k)〈σ̇b

k(t), e〉 dν(k)

=
α

Γ1

|ξ̇(t)|
∫

I
γ(k)2〈R(k)

r
x(t)− σb

k(t), e〉 dν(k) , (3.25)

so in particular |ξ̇(t)| > 0 and therefore∫
I
γ(k)2〈σb

k(t), e〉 dν(k) <
Γ2

r
〈x(t), e〉 =

Γ2

r

(
〈σd(t), e〉 −

∫
I
〈σb

k(t), e〉 dν(k)
)

, (3.26)

hence ∫
I

(
γ(k)2 +

Γ2

r

)
〈σb

k(t), e〉 dν(k) <
Γ2

r
‖σd ‖∞ . (3.27)

On the other hand, the a priori estimate |σb
k(t)| ≤ R(k) shows that

0 < 1− α =
1

Γ1

∫
I
γ(k)〈R(k)e− σb

k(t), e〉 dν(k) < κ , (3.28)

hence the definition of β in (3.13) yields∫
I

(
1 +

r

Γ2

γ(k)2
)
〈R(k)e− σb

k(t), e〉 dν(k) ≤ β
∫

I
γ(k)〈R(k)e− σb

k(t), e〉 dν(k)

≤ βΓ1κ , (3.29)

and therefore

‖σd ‖∞ >
∫

I

(
1 +

r

Γ2

γ(k)2
)

R(k) dν(k)

−
∫

I

(
1 +

r

Γ2

γ(k)2
)
〈R(k)e− σb

k(t), e〉 dν(k)

≥ Γ0 + r − βΓ1κ , (3.30)
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which contradicts our assumption (3.13). Thus, such a t cannot exist, and the second
step is proved. Applying the two steps in an alternate fashion we are able to cover the
whole interval [t0, t1] , thus completing the existence proof. 2

Proof of uniqueness and Lipschitz continuous dependence. We combine a Gron-
wall type argument with the Lipschitz continuity property of the hysteresis operators P
and S . As the arguments are essentially the same as for the single surface case, i.e. the
model of Armstrong and Frederick, we can use the results of [2] to a large extent.

Proposition 3.3 Let two sets of data (θ1, u
0
1, σ

p
10, σ

b
10) , (θ2, u

0
2, σ

p
20, σ

b
20) with θi ∈ Θ ,

u0
i ∈ X , σp

i0 ∈ Tp
r and σb

i0 ∈ T b be given, let (u1, ξ1) and (u2, ξ2) be corresponding
solutions in W 1,1(t0, t1; Td) of the Cauchy problem (3.1), (3.2) which satisfy (3.4) and
(3.5). Assume that

max
s∈[t0,t]

|M(u1; σ
p
10, σ

b
10)(s)−M(u2; σ

p
20, σ

b
20)(s)| ≤ A

(
|σp

10 − σp
20|+ ‖σb

10 − σb
20‖L1

ν(I;Td)

+ |u0
1 − u0

2|+
∫ t

t0
|u̇1 − u̇2| ds

)
(3.31)

holds for all t ∈ [t0, t1] . Then there holds

‖u1 − u2 ‖1,1 ≤ L
(
|u0

1 − u0
2|+ |σp

10 − σp
20|+ ‖σb

10 − σb
20‖L1

ν(I;Td)
+ ‖ θ1 − θ2 ‖1,1

)
, (3.32)

where L depends only upon A, κ, r and

c := max{‖ θ1 ‖1,1 , ‖ θ2 ‖1,1} . (3.33)

Proof. See Theorem 3.3 in [2]. 2

The operator M as defined by (2.43) - (2.48) satisfies

|M(u1; σ
p
10, σ

b
10)(t)−M(u2; σ

p
20, σ

b
20)(t)| ≤

∫
I
γ(k)|σb

10(k)− σb
20(k)| dν(k)

+
(

2Γ2

C
+

Γ3

C2

∫ t

t0
|ξ̇1(s)| ds

) ∫ t

t0
|ξ̇1 − ξ̇2| ds , (3.34)

as a repeated use of the triangle inequality as well as of the inequality | exp(−t) −
exp(−s)| ≤ |t− s| , valid for t, s ≥ 0 , shows. It was proved in [2], Theorem A.5, that∫ t

t0
|ξ̇1 − ξ̇2| ds ≤ |σp

10d − σp
20d|+

∫ t

t0
|u̇1 − u̇2| ds +

√
2

r

∫ t

t0
|u̇1||x1 − x2| ds (3.35)

holds. Moreover, by the standard uniqueness argument for variational inequalities (see
also Proposition A.1 in [2]), one has

|x1(t)− x2(t)| ≤ |σp
10d − σp

20d|+
∫ t

t0
|u̇1 − u̇2| ds . (3.36)

Putting together the estimates (3.34) - (3.36), one sees that M satisfies the assumption
(3.31) with some constant A which depends only on ‖u1 ‖1,1, ‖u2 ‖1,1 and on the problem
data. Therefore the Lipschitz estimate (3.32) holds for the difference u1 − u2 of the two
solutions. It extends to all the unknown functions in the Chaboche model, since they
can be expressed in terms of u and ξ as shown at the end of Section 2, both for the
stress controlled and the strain controlled case. Thus, the proof of Theorems 2.3 and 2.4
is complete.

12



References

[1] P.J. ARMSTRONG and C.O. FREDERICK, 1966, A mathematical representation
of the multiaxial Bauschinger effect , C.E.G.B., Report RD/B/N 731.
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