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Abstract

A phase-field system, non-local in space and non-smooth in time, with heat
flux proportional to the gradient of the inverse temperature, is shown to admit
a unique strong thermodynamically consistent solution on the whole time axis.
The temperature remains globally bounded both from above and from below,
and its space gradient as well as the time derivative of the order parameter
asymptotically vanish in L2 -norm as time tends to infinity.
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1 Introduction

We follow here the classical scheme for models of temperature-induced phase transi-
tions in a physical body Ω as e. g. in [2, 14], and derive equations for the temperature
θ (we will consider the absolute temperature θ > 0 here) and the order parameter χ

characterizing the physical state of the material. For example, in a simple melting-
solidification process, χ takes values in the interval [0, 1], where χ = 0 corresponds
to the solid, χ = 1 to the liquid, and 0 < χ < 1 is the liquid fraction in a mixture of
both phases. The mathematical model we describe below may or may not contain a
restriction on the domain of admissible values of χ .

We consider the free energy density F in the form

(1.1) F [θ, χ] = cV θ(1− log θ) + θσ(χ) + λ(χ) + (β + θ)ϕ(χ) + B[χ] ,
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Republic, E-mail krejci@wias-berlin.de, krejci@math.cas.cz

†Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, D-10117 Berlin, Ger-
many, E-mail sprekels@wias-berlin.de

1



where cV > 0 is the specific heat, σ and λ are smooth functions describing the local
dependence on χ of entropy and of latent heat, respectively, ϕ is a general proper,
convex, and lower semicontinuous function (in the above example of solid-liquid phase
transition, ϕ can be chosen for instance as the indicator function of the interval [0, 1]),
β > 0 is a constant parameter, and B is a non-local operator of the form

(1.2) B[χ](x, t) =

∫

Ω

k(x, y) G(χ(x, t)− χ(y, t)) dy ,

with a given sufficiently regular symmetric kernel k : Ω × Ω → R , and an even
smooth function G which is bounded on the domain of ϕ together with its first two
derivatives. In comparison with [8, 13], we thus remove all restrictions on the convex
potential ϕ . An interested reader will find a more detailed discussion on non-local
phase-field models e. g. in [3, 4, 7].

The corresponding densities of internal energy E and entropy S have the form

E[θ, χ] = cV θ + λ(χ) + β ϕ(χ) + B[χ] ,(1.3)

S[θ, χ] = cV log θ − σ(χ)− ϕ(χ) .(1.4)

The evolution process is driven by the energy conservation principle

(1.5)
d

dt

∫

Ω

E[θ, χ](x, t) dx = 0 ,

and by the order parameter evolution equation

(1.6) µ(θ)
∂χ

∂t
∈ −δχ

∫

Ω

F [θ, χ](x, t) dx .

The free energy contains a component which is Fréchet differentiable with respect to
χ , and another component which is convex, but not necessarily differentiable. The
symbol δχ thus represents alternatively the Fréchet derivative and the subdifferential
which may be multivalued. This also explains the inclusion sign in (1.6). Physically,
the relation (1.6) expresses the tendency of the system to move towards local minima
of the total free energy with speed proportional to 1/µ(θ).

Assuming that time differentiation and space integration can be interchanged in the
energy conservation law (1.5), we obtain, using the symmetries in the operator B ,
that

(1.7)

∫

Ω

(cV θt + (λ(χ) + β ϕ(χ))t + b[χ] χt) (x, t) dx = 0 ,

where we have set

(1.8) b[χ](x, t) = 2

∫

Ω

k(x, y) G′(χ(x, t)− χ(y, t)) dy .

Formally, by (1.7), there exists a vector function q (the heat flux) such that q ·n = 0
on ∂Ω (n is the unit outward normal) and

(1.9) cV θt + (λ(χ) + β ϕ(χ))t + b[χ] χt + div q = 0 .
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Assuming now the Penrose-Fife law q := κ∇(1/θ), where κ > 0 is a constant pa-
rameter characterizing the heat conduction properties of the material, we obtain from
(1.6) and (1.9) the following system of balance equations for the unknowns θ and χ :

cV θt + κ∆

(
1

θ

)
+ (λ(χ) + β ϕ(χ))t + b[χ] χt = 0 ,(1.10)

µ(θ) χ
t + θσ′(χ) + λ′(χ) + b[χ] ∈ −(β + θ) ∂ϕ(χ) .(1.11)

It is complemented with the boundary and initial conditions

∂

∂n

(
1

θ

)
= 0 on ∂Ω× (0,∞) ,(1.12)

θ(x, 0) = θ0(x) , χ(x, 0) = χ
0(x) a. e. in Ω ,(1.13)

where ∂/∂n denotes the outward normal derivative, and θ0, χ0 are given functions.

It is easy to see that the system is thermodynamically consistent. The positivity of
temperature and the smoothness that will be established in Theorem 2.2 below imply,
by virtue of (1.4) and (1.10)–(1.11), that

(1.14)
∂

∂t
S[θ, χ] + div

(q

θ

)
= κ

∣∣∣∣∇
(

1

θ

)∣∣∣∣
2

+
µ(θ)

θ
χ2

t ≥ 0 a. e. ,

which is the Second Principle of Thermodynamics in Clausius-Duhem form.

As main results, we will prove that System (1.10)–(1.13) admits, under suitable as-
sumptions on the data, a unique strong solution with positive temperature θ . If
moreover the space dimension is at most three and the internal energy is a priori
bounded from below, then the temperature remains globally bounded from above and
from below by a positive constant. Moreover, as t → ∞ , the functions χ

t and ∇θ
tend to 0 in the norm of L2(Ω).

The situation here differs from the problem treated e. g. in [12] in several respects.
On the one hand, our heat flux does not contain the regularizing linear term in θ used
there. On the other hand, the Ginzburg-Landau contribution |∇χ|2 in the free energy,
which accounts for non-local interactions, is replaced here by the integral functional
B . The regularizing effect in our setting is due to the positive constant β and to a
specific growth of the coefficient µ as function of θ in Eq. (1.11).

The paper is organized as follows. The main results are stated in Section 2. Section
3 is devoted to a detailed study of a class of differential inclusions. The existence and
uniqueness result is proved in Section 4, global bounds are derived in Section 5, and
the asymptotic behaviour of solutions is discussed in Section 6.

2 Main results

Throughout the paper, the following assumptions on the data are supposed to hold.
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Hypothesis 2.1. We consider a bounded domain Ω ⊂ RN with Lipschitzian bound-
ary, N being an arbitrary integer, and for t ≥ 0 we denote Qt = Ω × (0, t) . In
addition to the fixed positive parameters cV , κ , and β in (1.10)–(1.11), we assume
the existence of constants 0 < µ0 < µ1 such that

(i) ϕ : R → R ∪ {+∞} is a proper, convex, and lower semicontinuous function,
D(ϕ) is its domain;

(ii) σ, λ ∈ W 2,∞(D(ϕ)) ;

(iii) G ∈ W 2,∞(D(ϕ) − D(ϕ)) , G(z) = G(−z) for all z ∈ (D(ϕ) − D(ϕ)) , k ∈
L∞(Ω× Ω) , k(x, y) = k(y, x) a. e.;

(iv) µ : [0,∞) → [0,∞) is an absolutely continuous function, µ(0) > 0 , and for a. e.
θ > 0 we have µ0(1 + θ) ≤ µ′(θ) ≤ µ1(1 + θ) .

Let us first introduce some notation. For any C > 0 we denote

(2.1) DC(ϕ) = {χ ∈ D(ϕ) ; ∂ϕ(χ) ∩ [−C, C] 6= ∅} .

By [1, Example 2.3.4], ∂ϕ is maximal monotone, hence DC(ϕ) is a closed (possibly
unbounded or degenerate) interval for every C > 0. Moreover, the function ϕ is
Lipschitz continuous with constant C on DC(ϕ).

We first state the existence and uniqueness theorem. The subscript ‘loc’ in (2.3)–(2.4)
refers only to the time variable.

Theorem 2.2. Existence and uniqueness. Let Hypothesis 2.1 hold, and let there
exist constants 0 < θ1 < θ2 and C0 > 0 such that the initial data in (1.13) satisfy the
conditions

(2.2)

{
θ0 ∈ W 1,2(Ω) ∩ L∞(Ω) , θ1 ≤ θ0(x) ≤ θ2 a. e. in Ω ,

χ
0 ∈ L∞(Ω) , χ

0(x) ∈ DC0(ϕ) a. e. in Ω .

Then there exists C > 0 and a unique solution (θ, χ) to (1.10)–(1.13) such that

θ ∈ L∞loc(Ω× (0,∞)) , θt, ∆(1/θ) ∈ L2
loc(Ω× (0,∞)) ,∇θ ∈ L∞loc(0,∞; L2(Ω)) ,(2.3)

χ ∈ L∞loc(Ω× (0,∞)) , χ
t ∈ L∞(Ω× (0,∞)) , χ(x, t) ∈ DC(ϕ) a. e.(2.4)

Moreover, there exist positive constants c1, c2 , independent of t , such that

(2.5) θ1e
−c1t ≤ θ(x, t) ≤

√
θ2
2 + 2c2t a. e.

We are able to prove the global boundedness and stabilization results only in domains
Ω of dimension N ≤ 3. We state them in the following form.
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Theorem 2.3. Global boundedness. Let the assumptions of Theorem 2.2 hold,
let there exist ϕ0 ∈ R such that

(2.6) ϕ(χ) ≥ ϕ0 ∀χ ∈ D(ϕ) ,

and let N ≤ 3 . Then there exist constants 0 < θ∗ < θ∗ such that for a. e. (x, t) ∈
Ω× (0,∞) we have

(2.7) θ∗ ≤ θ(x, t) ≤ θ∗ .

The lower bound (2.6) for ϕ has a clear physical meaning. It says that the internal
energy (1.3) is bounded from below.

Theorem 2.4. Asymptotic behaviour. Let the assumptions of Theorem 2.3 hold.
Then we have

(2.8) lim
t→∞

∫

Ω

(|χt|2 + |∇θ|2) (x, t) dx = 0 .

It would also be interesting to describe the ω -limit set of the solution trajectory. This
question seems to be still open and will be a subject of further research.

The proofs of the above results are postponed to the forthcoming sections. Theorem 2.2
is proved in Section 4, while Sections 5 and 6 are devoted to the proofs of Theorems 2.3
and 2.4, respectively. Before that, we investigate in detail a certain class of differential
inclusions related to Eq. (1.11).

3 Solution operators to differential inclusions

In this section we derive some properties of solution operators to differential inclusions
which slightly generalize (1.11). In addition to results established in [7], we prove
the inequality (3.4) which is related to the “second-order energy inequality” for the
underlying relaxation-hysteresis operator, see [5], and will play a crucial role in the
proof of Theorem 2.4.

Consider a function ϕ as in Hypothesis 2.1 (i) and fix a final time T > 0. For a
given initial condition χ

0 , and a given function θ ∈ L1(QT ), we solve the following
differential inclusion

(3.1) α(θ) χ
t + ∂ϕ(χ) 3 f [χ, θ] a. e. in QT , χ(x, 0) = χ

0(x) a. e. in Ω,

where α : R→ R is a given function and f : L1(QT )× L1(QT ) → L∞(QT ) is a given
operator satisfying the following hypothesis.

Hypothesis 3.1. There exist positive constants α0, L, C such that

(i) α0 ≤ α(θ) for all θ ∈ R ;
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(ii) |α(θ1)− α(θ2)| ≤ L|θ1 − θ2| for all θ1, θ2 ∈ R ;

(iii) |f [χ, θ](x, t)| ≤ C a. e. in QT for all χ, θ ∈ L1(QT ) such that χ(x, t) ∈ D(ϕ)
a. e. in QT ;

(iv) |f [χ1, θ1]− f [χ2, θ2]|L1(Qt) ≤ L(|χ1 − χ
2|L1(Qt) + |θ1 − θ2|L1(Qt))

for all χ
1, θ1, χ2, θ2 ∈ L1(QT ) and t ∈ [0, T ] .

Note that in all formulas throughout this section, we keep fixed the value of C from
Hypothesis 3.1 (iii).

Proposition 3.2. Let Hypothesis 3.1 hold, and let DC(ϕ) be as in (2.1). Then for
every θ ∈ L1(QT ) and for every χ

0 ∈ L∞(Ω) , χ
0(x) ∈ DC(ϕ) a. e. in Ω , there exists

a unique solution χ ∈ L∞(QT ) to Eq. (3.1) such that χ
t ∈ L∞(QT ) , and we have

(3.2) χ(x, t) ∈ DC(ϕ) , |f [χ, θ](x, t)− α(θ(x, t)) χ
t(x, t)| ≤ C a. e. in QT .

In addition, there exists a positive constant M such that the solutions χ
1, χ2 ∈

L∞(QT ) associated with χ
01, χ02 ∈ DC(ϕ) and θ1, θ2 ∈ L1(QT ) satisfy for all t ∈ [0, T ]

the inequality

(3.3) |(χ1)t−(χ2)t|L1(Qt) + |(χ1−χ
2)(t)|L1(Ω) ≤ M

(
|χ01−χ

02|L1(Ω) + |θ1−θ2|L1(Qt)

)
.

If moreover both θt and (f [χ, θ])t belong to L1(QT ) , then for every non-negative
function η ∈ W 1,∞(0, T ) with compact support in (0, T ) we have

∫ T

0

∫

Ω

(
((f [χ, θ])t

χ
t) (x, t) η(t) +

1

2

(
α(θ) χ2

t

)
(x, t) η̇(t)

)
dx dt(3.4)

≥ 1

2

∫ T

0

∫

Ω

(
α′(θ) θt

χ2
t

)
(x, t) η(t) dx dt .

Remark 3.3. The L1 -Lipschitz continuity estimate (3.3) in Proposition 3.2 cannot
be extended to Lp(QT ) for p > 1, see [6, Example 3], except in the case when ϕ is a
C1 -function with locally Lipschitz continuous derivative. Strong continuity L1(QT ) →
Lp(QT ) of the solution mapping for p < ∞ follows however from the uniform L∞ -
bound (3.2). Indeed, testing (3.1) by χ

t , we obtain the identity

(3.5) ϕ(χ)t = −α(θ) χ2
t + f [χ, θ] χt a. e. in QT ,

which implies in particular, by virtue of (3.2) and Hypothesis 3.1, that

(3.6) |ϕ(χ)t| ≤ C |χt| ≤ 2C2

α0

a. e.

Let now θ(n), θ be such that θ(n) → θ strongly in L1(QT ) as n →∞ , and let χ(n), χ

be the corresponding solutions to Eq. (3.1). Using Proposition 3.2 and taking into

account the L∞ -bound (3.2), we see that χ(n) → χ , χ(n)
t → χ

t , ϕ(χ(n))t → ϕ(χ)t

strongly in any Lp(QT ) for 1 ≤ p < ∞ as a consequence of the Lebesgue Dominated
Convergence Theorem.
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Before proving Proposition (3.2), let us start with a space-independent problem. For
a given initial condition χ

0 ∈ D(ϕ) and a given function θ ∈ L1(0, T ), we consider
the differential inclusion

(3.7) α(θ(t)) χ̇(t) + ∂ϕ(χ(t)) 3 g(t) a. e. in (0, T ), χ(0) = χ
0,

where α : R→ R is as in Hypothesis 3.1 and g ∈ L∞(0, T ) is such that

(3.8) |g(t)| ≤ C a. e. in (0, T ).

We prove the following result.

Proposition 3.4. Let Hypotheses 3.1 (i–ii) and (3.8) hold. Then for every θ ∈
L1(0, T ) and every χ

0 ∈ DC(ϕ) , there exists a unique solution χ ∈ W 1,∞(0, T ) to
Eq. (3.7), and we have

(3.9) χ(t) ∈ DC(ϕ) ∀t ∈ [0, T ] ,
∣∣g(t)− α(θ(t)) χ̇(t)

∣∣ ≤ C a. e. in (0, T ) .

In addition, there exists a positive constant R depending only on C , α0 , and L , such
that the solutions χ

1, χ
2 ∈ W 1,∞(0, T ) associated with χ

01, χ02 ∈ DC(ϕ) , θ1, θ2 ∈
L1(0, T ) , and g1, g2 ∈ L∞(0, T ) with the constraint (3.8) satisfy the inequality

(3.10) |χ̇1 − χ̇
2|(t) +

d

dt
|χ1 − χ

2|(t) ≤ R
(
|θ1 − θ2|(t) + |g1 − g2|(t)

)
a. e. in (0, T ).

If moreover both θ and g belong to W 1,1(0, T ) , then for every non-negative function
η ∈ W 1,∞(0, T ) with compact support in (0, T ) we have

∫ T

0

(
ġ(t) χ̇(t) η(t) +

1

2
α(θ(t)) χ̇2

(t) η̇(t)

)
dt ≥ 1

2

∫ T

0

α′(θ(t)) θ̇(t) χ̇2
(t) η(t) dt .(3.11)

Proof of Proposition 3.4. We first prove the existence of solutions. We fix θ ∈
L1(0, T ), χ

0 ∈ DC(ϕ) and, for n ∈ N and k = 1, . . . , n , define the sequences

(3.12) αk =
n

T

∫ tk

tk−1

α(θ(t)) dt , gk =
n

T

∫ tk

tk−1

g(t) dt ,

(3.13) χ
k =

(nαk

T
I + ∂ϕ

)−1 (
gk +

nαk

T
χ

k−1

)

corresponding to the partition t0 = 0, tk = Tk/n , where I(u) = u is the identity
mapping. Assume that for some k ≥ 1 we have

(3.14) ∂ϕ(χk) 3 gk − nαk

T
(χk − χ

k−1) > C .

By hypothesis, we have |gk| ≤ C , hence maxDC(ϕ) ≤ χ
k < χ

k−1 by the monotonicity
of ∂ϕ . This yields, if k − 1 > 0, that

(3.15) gk−1 − nαk

T
(χk−1 − χ

k−2) ≥ gk − nαk

T
(χk − χ

k−1) > C ,
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and by induction we obtain maxDC(ϕ) ≤ χ
k < χ

k−1 < · · · < χ
0 which is a contradic-

tion. We obtain a similar contradiction by assuming that gk− (nαk/T )(χk−χ
k−1) <

−C . Using the fact that αk ≥ α0 , we thus have for all k = 1, . . . , n that

(3.16)
∣∣∣gk − nαk

T
(χk − χ

k−1)
∣∣∣ ≤ C , χ

k ∈ DC(ϕ) , |χk − χ
k−1| ≤ 2CT

nα0

.

We now define the interpolates

(3.17) α(n)(t) = αk , g(n)(t) = gk , χ̄(n)(t) = χ
k , χ(n)(t) = χ

k−1 ,

(3.18) χ(n)(t) = χ
k−1 +

n

T
(t− tk−1)(χk − χ

k−1) ,

for t ∈ [tk−1, tk), continuously extended to t = T . The functions χ(n) are bounded in
W 1,∞(0, T ) uniformly with respect to n ∈ N . Passing to a subsequence, if necessary,

we find χ ∈ W 1,∞(0, T ) such that χ(0) = χ
0 , χ̇(n) → χ̇ in L∞(0, T ) weakly-star, and

χ(n) → χ uniformly in [0, T ] . Using the inequalities

(3.19) |χ(n)(t)− χ̄(n)(t)| ≤ 2CT

nα0

, |χ(n)(t)− χ(n)(t)| ≤ 2CT

nα0

,

we also see that χ̄(n) → χ , χ(n) → χ uniformly. Using the Mean Continuity The-
orem for functions in L1(0, T ), we conclude that α(n) converge to α(θ(·)) strongly
in L1(0, T ), and g(n) converge to g strongly in any Lp(0, T ) for 1 ≤ p < ∞ and
weakly-star in L∞(0, T ). Let now z ∈ L∞(0, T ) be a test function, z(t) ≥ 0 a. e. in
(0, T ), and let w ∈ D(ϕ), ξ ∈ ∂ϕ(w) be arbitrary. By construction, we have

(3.20) (g(n)(t)− α(n)(t) χ̇(n)
(t)− ξ)(χ̄(n)(t)− w) ≥ 0 a. e. in (0, T ) ,

hence

(3.21)

∫ T

0

(g(n)(t)− α(n)(t)χ̇
(n)

(t)− ξ)(χ̄(n)(t)− w) z(t) dt ≥ 0 .

Passing to the limit as n ↗∞ in (3.21) we obtain

(3.22) (g(t)− α(θ(t)) χ̇(t)− ξ)(χ(t)− w) ≥ 0 a. e.

Since ∂ϕ is maximal monotone, the function χ satisfies Eq. (3.7). Estimate (3.9)
follows from (3.16).

We now prove inequality (3.10) which also implies uniqueness of solutions to Eq. (3.7).
Let χ

01, χ02 ∈ DC(ϕ), θ1, θ2 ∈ L1(0, T ), and g1, g2 ∈ L∞(0, T ) be functions satisfying
(3.8), and let χ

1, χ2 ∈ W 1,∞(0, T ) be corresponding solutions of Eq. (3.7). For i = 1, 2
and t ∈ (0, T ) put

(3.23) ξi(t) = gi(t)− α(θi(t)) χ̇
i(t) .
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As ∂ϕ is monotone and ξi(t) ∈ ∂ϕ(χi(t)) for i = 1, 2 a. e. in (0, T ), we have

(3.24)
(
ξ1(t)− ξ2(t)

) (
χ

1(t)− χ
2(t)

) ≥ 0 a. e.

We test the identity

ξ1(t)− ξ2(t) + α(θ1(t))
(
χ̇

1(t)− χ̇
2(t)

)
= χ̇

2(t)
(
α(θ2(t))− α(θ1(t))

)
(3.25)

+ g1(t)− g2(t) a. e.

by the sign of ξ1(t)− ξ2(t) if ξ1(t) 6= ξ2(t), or otherwise by the sign of χ
1(t)− χ

2(t).
By virtue of (3.24), this yields

∣∣ξ1 − ξ2

∣∣(t) + α(θ1(t))
d

dt

∣∣χ
1 − χ

2

∣∣(t)(3.26)

≤ ∣∣χ̇
2(t)

∣∣ ∣∣α(θ1(t))− α(θ2(t))
∣∣ +

∣∣g1 − g2

∣∣(t) a. e. ,

hence

α(θ1(t))

(∣∣χ̇
1 − χ̇

2

∣∣(t) +
d

dt

∣∣χ
1 − χ

2

∣∣(t)
)

(3.27)

≤ 2
∣∣g1 − g2

∣∣(t) + 2
∣∣χ̇

2(t)
∣∣ ∣∣α(θ1(t))− α(θ2(t))

∣∣ a. e.

Using the estimates

(3.28) α(θi(t)) ≥ α0 for i = 1, 2,
∣∣χ̇

2(t)
∣∣ ≤ 2C

α0

a. e. ,

and Hypothesis 3.1, we obtain from (3.27) that

∣∣χ̇
1 − χ̇

2

∣∣(t) +
d

dt

∣∣χ
1 − χ

2

∣∣(t)(3.29)

≤ 2

α0

|g1 − g2|(t) +

(
4CL

α2
0

) ∣∣θ1 − θ2

∣∣(t) a. e. ,

that is exactly (3.10).

To prove inequality (3.11), we fix η with the required properties and h0 > 0 such that
suppη ⊂ (0, T − h0). For 0 < h < h0 we use the monotonicity of ∂ϕ which yields
that

(g(t + h)− g(t)) (χ(t + h)− χ(t))(3.30)

≥ (
α(θ(t + h)) χ̇(t + h)− α(θ(t)) χ̇(t)

)
(χ(t + h)− χ(t))

for a. e. t ∈ (0, T − h). Testing the above inequality by η(t), dividing by h2 , and
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integrating by parts, we obtain

∫ T−h

0

((
g(t + h)− g(t)

h

)(
χ(t + h)− χ(t)

h

)
η(t)(3.31)

+
1

2
α(θ(t))

(
χ(t + h)− χ(t)

h

)2

η̇(t)

)
dt

≥
∫ T−h

0

( (
α(θ(t + h))− α(θ(t))

h

)(
χ(t + h)− χ(t)

h

)
χ̇(t + h)

−1

2
α′(θ(t)) θ̇(t)

(
χ(t + h)− χ(t)

h

)2
)

η(t) dt .

By the Mean Continuity Theorem for the Lebesgue integral, the difference quotients
converge as h ↘ 0+ to the derivatives strongly in L1(0, T ), hence pointwise almost
everywhere. Thanks to the L∞ bound for χ̇ , we can pass to the limit in (3.31) as
h ↘ 0+ and obtain (3.11). The proof of Proposition 3.4 is complete. ¥

We now use this result to prove Proposition 3.2.

Proof of Proposition 3.2. For given θ ∈ L1(QT ) and χ
0 ∈ L∞(Ω), χ

0(x) ∈ DC(ϕ)
a. e., we prove the existence of a unique solution to (3.1) by the Banach contraction
argument. We define the set

(3.32) S :=

{
v ∈ L∞(QT ) :

vt ∈ L∞(QT ) , |vt|L∞(QT ) ≤ 2C/α0 ,

v(x, 0) = χ
0(x) a. e. in Ω

}

as a closed subset of L1(QT ) endowed with the weighted norm

(3.33) |v|RL :=

∫ T

0

e−2RLt

∫

Ω

|v(x, t)| dx dt ,

where R = R(C,α0, L) and L are as in Hypothesis 3.1 and Proposition 3.4. For an
arbitrary χ̃ ∈ S , we put g̃(x, t) = f [χ̃, θ](x, t), and define χ(x, t) as the solution of
the differential inclusion

(3.34)
α(θ(x, t)) χ

t(x, t) + ∂ϕ(χ(x, t)) 3 g̃(x, t) a. e. in QT ,

χ(x, 0) = χ
0(x) a. e. in Ω .

For almost every x ∈ Ω, this inclusion is of the form (3.7) with right-hand side
satisfying (3.8). By Proposition 3.4, the function χ belongs to S , and we may define
the solution mapping T : S → S : χ̃ 7→ χ . We check that T is a contraction with
respect to the norm (3.33). Indeed, we integrate the estimate (3.10) with θ1 = θ2 ,
gi(t) = f [χ̃i, θi](t) for i = 1, 2 from 0 to t . This, thanks to Hypothesis 3.1 (iv), leads
to

(3.35)

∫

Ω

|χ1 − χ
2|(x, t) dx ≤ RL

∫ t

0

∫

Ω

|χ̃1 − χ̃
2|(x, τ) dx dτ .
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Now, multiplying both sides of this inequality by e−2RLt , and integrating over [0, T ] ,
we infer that

(3.36) |χ1 − χ
2|RL ≤ 1

2
|χ̃1 − χ̃

2|RL .

Hence T is a contraction on S , and the Banach fixed point theorem yields the existence
and uniqueness of a solution χ ∈ S of the differential inclusion (3.1). Estimate (3.2)
follows directly from (3.9). Finally, in order to prove (3.3), take χ

01, χ02 ∈ DC(ϕ),
θ1, θ2 ∈ L1(QT ), and let χ

1, χ2 be the corresponding solutions of Eq. (3.1). For almost
all x we use (3.10) with gi(t) = f [χi, θi](x, t), i = 1, 2. Integrating over Ω and over
(0, t) for t ∈ (0, T ] , and using Hypothesis 3.1, we obtain that

∫ t

0

∫

Ω

|(χ1)t − (χ2)t|(x, s) dx ds +

∫

Ω

|χ1 − χ
2|(x, t) dx− |χ01 − χ

02|L1(Ω)(3.37)

≤
∫ t

0

∫

Ω

(RL|χ1 − χ
2|(x, s) + R(L + 1)|θ1 − θ2|(x, s)) dx ds .

Gronwall’s argument then yields
∫ t

0

∫

Ω

|(χ1)t − (χ2)t|(x, s) dx ds +

∫

Ω

|χ1 − χ
2|(x, t) dx(3.38)

≤ eRLt

(
|χ01 − χ

02|L1(Ω) + R(L + 1)

∫ t

0

∫

Ω

|θ1 − θ2|(x, s) dx ds

)
,

and (3.3) follows. Inequality (3.4) is a direct consequence of (3.11). ¥

4 Existence and uniqueness

This section is devoted to the proof of Theorem 2.2. We rewrite Eq. (1.11) as

(4.1)
µ(θ)

β + θ
χ

t + ∂ϕ(χ) 3 − θ

β + θ
σ′(χ)− 1

β + θ
(λ′(χ) + b[χ]) .

We see that it is of the form (3.1), and we may use Proposition 3.2 for any T > 0 with
some suitable C > 0 independent of T as an immediate consequence of Hypothesis
2.1. This enables us to define a mapping A : L1

loc(Ω × (0,∞)) → L∞loc(Ω × (0,∞))
which with each θ ∈ L1

loc(Ω× (0,∞)) associates the solution χ of (4.1) satisfying the
initial condition χ(x, 0) = χ

0(x) a. e. in Ω. Problem (1.10)–(1.13) is thus of the form

cV θt + κ∆

(
1

θ

)
+ (λ(χ) + β ϕ(χ))t + b[χ] χt = 0 ,(4.2)

χ = A[θ] ,(4.3)

∂

∂n

(
1

θ

)
= 0 on ∂Ω× (0,∞) ,(4.4)

θ(x, 0) = θ0(x) a. e. in Ω .(4.5)
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4.1 Uniqueness

Let θ, θ̃ be two positive solutions of (4.2)–(4.5) with the prescribed regularity, and set
χ = A[θ] , χ̃ = A[θ̃] . We test the difference of equations (4.2) written for θ and θ̃ by
the sign of θ − θ̃ (which is equal to the sign of (1/θ̃)− (1/θ)) and obtain

cV
d

dt

∫

Ω

|θ − θ̃|(x, t) dx(4.6)

≤
∫

Ω

∣∣(λ(χ) + β ϕ(χ))t + b[χ] χt −
(
λ(χ̃) + β ϕ(χ̃)

)
t
− b[χ̃] χ̃t

∣∣ dx .

Integrating this relation from 0 to t and using (3.3) and (3.5) leads to the inequality

(4.7)

∫

Ω

|θ − θ̃|(x, t) dx ≤ C1

(
1 + sup

(x,τ)∈Qt

θ(x, τ)

) ∫ t

0

∫

Ω

|θ − θ̃|(x, τ) dx dτ

with some constant C1 independent of t . As θ is locally bounded, we may use
Gronwall’s argument and conclude that θ = θ̃ a. e.

4.2 A cut-off system

�
u

y

0

ε 1/ε 2/ε

−1/ε

−2/ε

y = f(u)y = f̂ε(u)

y = f̄ε(u)

Figure 1: The cut-off diagram.

We fix some T > 0 and choose a parameter ε ∈ (0, 1) which will be specified later on.
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Let f̄ε, f̂ε, f be auxiliary functions defined as

f(u) =

{ −∞ for u ≤ 0 ,

− 1
u

for u > 0 ,
(4.8)

f̂ε(u) =





u
ε2 − 2

ε
for u < ε ,

− 1
u

for ε ≤ u ≤ 1
ε
,

ε2 u− 2ε for u > 1
ε
,

(4.9)

f̄ε(u) =





−1
ε

for u < ε ,

f̂ε(u) for ε ≤ u ≤ 2
ε
,

0 for u > 2
ε
,

(4.10)

see Figure 1. We replace (4.2)–(4.5) by the cut-off system in QT

cV f̂ε(u)t − κ∆u = (λ(χε) + β ϕ(χε))t + b[χε] χε
t ,(4.11)

χε = A[−f̄ε(u)] ,(4.12)

∂u

∂n
= 0 on ∂Ω× (0, T ) ,(4.13)

u(x, 0) =
1

θ0(x)
a. e. in Ω .(4.14)

For each fixed ε ∈ (0, 1), this is a regular system with Lipschitz continuous nonlinear-
ities which admits a unique solution (u, χε) with u ∈ L2(0, T ; W 2,2(Ω)), ut ∈ L2(QT ),
∇u ∈ L∞(0, T ; L2(Ω)), and χε, χε

t ∈ L∞(QT ).

We now use the maximum principle to show that θ := 1/u solves (4.2)–(4.5) in QT

provided ε = ε(T ) is sufficiently small.

Maximum principle 1.

Put θ̂ε = −f̂ε(u), θ̄ε = −f̄ε(u). By (3.5) and (4.1) we have

(4.15) µ(θ̄ε)(χε
t)

2 + θ̄ε(σ(χε) + ϕ(χε))t + (λ(χε) + β ϕ(χε))t + b[χε] χε
t = 0 ,

hence we may rewrite Eq. (4.11) in the form

(4.16) cV θ̂ε
t + κ∆u = µ(θ̄ε)(χε

t)
2 + θ̄ε(σ(χε) + ϕ(χε))t .

We may find a constant c1 > 0 independent of ε such that

(4.17) θ̂ε
t +

κ

cV

∆u ≥ −c1θ̄
ε a. e.

We now test the inequality (4.17) by the non-positive function p(x, t) = −(θ1 e−c1t −
θ̂ε(x, t))+ , where z+ = max{0, z} denotes the positive part of a real number z and θ1

is defined in (2.2), and obtain

(4.18)

∫

Ω

(
θ̂ε

t p−
κ

cV

〈∇u,∇p〉
)

dx ≤ c1

∫

Ω

|θ̄ε||p| dx ≤ c1

∫

Ω

|θ̂ε||p| dx a. e.
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We have 〈∇p,∇u〉 ≤ 0 a. e., and (4.18) yields that

(4.19)

∫

Ω

p
(
p + θ1 e−c1t

)
t
dx ≤ c1

∫

Ω

|p| (|p|+ θ1 e−c1t
)

dx ,

hence

(4.20)
d

dt

∫

Ω

p2(x, t) dx ≤ 2c1

∫

Ω

p2(x, t) dx a. e.

Let us fix some ε > 0 such that

(4.21) ε ≤ min

{
1

θ2

, θ1 e−c1T

}
,

with θ2 specified in (2.2). Then u(x, 0) ∈ (ε, 1/ε), hence θ̄ε(x, 0) = θ0(x) and p(x, 0) =
0 a. e. From (4.20) combined with Gronwall’s Lemma it follows that p ≡ 0, hence
θ̂ε(x, t) ≥ θ1 e−c1t a. e. We have ε ≤ θ1 e−c1t ≤ 1/ε , hence

(4.22) u(x, t) ≤ f̂−1
ε

(
θ1 e−c1t

)
=

1

θ1

ec1t ≤ 1

ε
a. e.

Maximum principle 2.

By virtue of (4.15) and Hypothesis 2.1 (iv), there exists C2 > 0 such that for a. e.
(x, t) ∈ QT we have

(4.23) |χε
t(x, t)| ≤ C2

θ̄ε(x, t)
.

Taking (4.22) into account, we may find c2 > 0 such that

(4.24)
1

cV

∣∣(λ(χε) + β ϕ(χε)
)

t
+ b[χε] χε

t

∣∣(x, t) ≤ c2

θ̄ε(x, t)
= c2 max{ε, u(x, t)} .

For w ∈ R put Mε(w) = c2 max{ε, w} . From (4.11) and (4.24) it follows that

(4.25) f̂ε(u)t − κ

cV

∆u + Mε(u) ≥ 0 a. e.

Let us consider

(4.26) ε ≤ min

{
θ1 e−c1T ,

1√
θ2
2 + 2c2T

}
,

and define v ∈ C1([0, T ]) as the unique solution of the ODE

(4.27)
d

dt
f̂ε(v) + Mε(v) = 0 , v(0) =

1

θ2

∈
(

ε,
1

ε

)
.
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As long as v(t) stays in the interval [ε, 1/ε] , Eq. (4.27) has the form v̇(t)+c2v
3(t) = 0,

hence

(4.28) v(t) =
1√

θ2
2 + 2c2t

for t ∈ [0, T ] .

Subtracting (4.25) from the relation

(4.29) f̂ε(v)t − κ

cV

∆v + Mε(v) = 0 ,

we obtain

(4.30)
(
f̂ε(v)− f̂ε(u)

)
t
− κ

cV

∆(v − u) + Mε(v)−Mε(u) ≤ 0 .

Let Hδ for δ > 0 be a regularization of the Heaviside function, say,

Hδ(w) = max{0, min{1, w/δ}} for w ∈ R .

Testing (4.30) by Hδ(v − u) and letting δ ↘ 0+ (note that both f̂ε and Mε are
non-decreasing functions) we obtain

(4.31)
d

dt

∫

Ω

((
f̂ε(v)− f̂ε(u)

)+
)

dx +

∫

Ω

(Mε(v)−Mε(u))+ dx ≤ 0 .

We have u(x, 0) ≥ v(0), hence u(x, t) ≥ v(t) ≥ ε a. e. in Ω × (0, T ). Using also
(4.22), we thus obtain that f̂ε(x, t) = −1/u(x, t), hence θ = 1/u satisfies (4.2)–(4.3)
a. e. in Ω× (0, T ) whenever (4.26) holds. Since T > 0 has been arbitrarily chosen, we
conclude from the above computations that the unique global solution of (4.2)–(4.5)
satisfies (2.5), and Theorem 2.2 is proved.

5 Global bounds

We use here a variant of the Alikakos-Moser iteration scheme, see e. g. [10, 14], to
derive the bounds for θ(x, t) stated in Theorem 2.3. To simplify the formulas, we
denote by | · |p the usual norm in Lp(Ω) for 1 ≤ p ≤ ∞ . We make repeated use of
the well-known interpolation inequality

(5.1) |v|q ≤ K
(
δα |∇v|2 + δ−γ |v|1

)
for 1 ≥ 1

q
>

1

2
− 1

N
,

which holds for every v ∈ W 1,2(Ω) and every δ ∈ (0, 1) with α = 1−N((1/2)−(1/q)),
γ = N(1 − (1/q)), and with a constant K > 0 independent of v and δ . In fact, we
deal only with values of q between 2 and 4, so that within this range, the constant
K in (5.1) can be taken independent of q . On the other hand, the hypothesis N ≤ 3
is motivated by the fact that inequality (5.1) has to hold for all q ∈ [2, 4].

The following elementary estimate will also be of interest.
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Lemma 5.1. Let w, h : [0,∞) → [0,∞) be absolutely continuous functions such that
h is non-decreasing, and for some a, % > 0 we have

(5.2) ẇ(t) + aw%(t) ≤ h(t) a. e.

Then for all t ≥ 0 we have

(5.3) aw%(t) ≤ h(t) + (aw%(0)− h(0))+ .

Proof. We show that V (t) := (aw%(t) − h(t))+ is a Lyapunov function in [0,∞).
Indeed, V is absolutely continuous, and if V̇ (t) 6= 0 for some t , then aw%(t)−h(t) > 0,
hence ẇ(t) < 0, and V̇ (t) = a%w%−1 ẇ(t) − ḣ(t) ≤ 0. Consequently, V is non-
increasing, hence V (t) ≤ V (0) for all t and (5.3) follows. ¥

5.1 An upper bound

Integrating Eq. (1.10) over Ω yields the energy conservation principle

(5.4)
d

dt

∫

Ω

(cV θ(x, t) + λ(χ) + βϕ(χ) + B[χ]) dx = 0 ,

hence there exists a constant C3 > 0 independent of t such that

(5.5)

∫

Ω

θ(x, t) dx ≤ C3 .

We further test Eq. (1.10) by θr for r ≥ 3 and use the inequalities (4.23)–(4.24) for
ε = 0 to obtain

(5.6)
1

r + 1

d

dt
|θ(t)|r+1

r+1 + r
κ

cV

∫

Ω

|∇θ(t)|2 θ(t)r−3 dx ≤ c2 |θ(t)|r−1
r−1 .

Put ψr = θ(r−1)/2 . Then (5.6) reads

(5.7)
1

r + 1

d

dt
|ψr(t)|2+4/(r−1)

2+4/(r−1) +
4rκ

cV (r − 1)2
|∇ψr(t)|22 ≤ c2 |ψr(t)|22 ,

hence

(5.8)
d

dt
|ψr(t)|2+4/(r−1)

2+4/(r−1) +
4κ

cV

|∇ψr(t)|22 ≤ c2 (r + 1) |ψr(t)|22 .

In what follows, we denote by C4, C5, . . . positive constants independent of r and t .
Using (5.1) for v = ψr , q = 2, and δ = δ̃/

√
r + 1 with suitably chosen δ̃ independent

of r (0 < δ̃ < min{1, (2κ/(cV c2))
1/2/K} , say), we have

(5.9)
d

dt
|ψr(t)|2+4/(r−1)

2+4/(r−1) + C4 |∇ψr(t)|22 ≤ C5 (r + 1)1+N/2 |ψr(t)|21 .

The next step consists in a repeated use of (5.1) with q = 2 + 4/(r − 1) in order
to estimate the term |∇ψr(t)|2 from below by |ψr(t)|2+4/(r−1) . All related values of
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q are between 2 and 4, hence the exponents α, γ in (5.1) satisfy the inequalities
1 − N/4 ≤ α ≤ 1, N/2 ≤ γ ≤ 3N/4. This enables us to choose an appropriate δ
independent of r and obtain

(5.10)
d

dt
|ψr(t)|2+4/(r−1)

2+4/(r−1) + C6 |ψr(t)|22+4/(r−1) ≤ C7 (r + 1)1+N/2 |ψr(t)|21 .

By (5.5) we have that |ψ3(t)|1 ≤ C3 , hence (5.13) for r = 3 can be written in the form

(5.11)
d

dt
|ψ3(t)|44 + C6 |ψ3(t)|24 ≤ C8 .

For r ≥ 5 we have

(5.12) |ψr(t)|21 =
∣∣ψ(r+1)/2(t)

∣∣4
2

,

hence

(5.13)
d

dt
|ψr(t)|2+4/(r−1)

2+4/(r−1) + C6 |ψr(t)|22+4/(r−1) ≤ C9 (r + 1)1+N/2
∣∣ψ(r+1)/2(t)

∣∣4
2

.

For k ∈ N put rk = 2k + 1, qk = 2 + 4/(rk − 1) and

(5.14) φk(t) = max
0≤s≤t

|ψrk
(s)|22 .

Set b = θ2 max{1, |Ω|} . For all r ≥ 3 and q ≥ 2 we have |ψr(0)|2q ≤ br−1 . From the
inequality

|ψrk
(t)|22 ≤ |Ω|1/(2k−1+1) |ψrk

(t)|2qk
,

as well as from Lemma 5.1, (5.11), and (5.13) it follows that

φ1(t) ≤ C10 ,(5.15)

φk(t) ≤ C10

(
b2k

+ (2k + 2)1+N/2φ2
k−1(t)

)
(5.16)

for all t ≥ 0. This inequality fits with the framework of [14, Lemma 4.1.5] which is
essentially due to Laurençot in [11]. We can however proceed in a straightforward way
and introduce a new variable zk(t) = φ2−k

k (t) = |θ(t)|2k . Inequalities (5.15)–(5.16) can
be rewritten as

z1(t) ≤ C11 ,(5.17)

zk(t) ≤ (
C11 (2k + 2)1+N/2

)2−k

max{b, zk−1(t)} .(5.18)

For yk(t) := log(max{b, zk(t)}) we thus obtain

(5.19) yk(t) ≤ y1(t) +
∞∑

j=1

2−j log(C11 (2j + 2)1+N/2) ≤ C12 ,

independently of k and t . In particular, we have |θ(t)|2k ≤ C13 independently of k
and t , hence, taking a bigger C13 , if necessary,

(5.20) θ(x, t) < C13 for a. e. (x, t) ∈ Ω× (0,∞) .
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5.2 A lower bound

Using (1.11), we rewrite Eq. (1.10) in the form

(5.21) cV θt + κ∆

(
1

θ

)
= µ(θ) χ2

t + θ (σ(χ) + ϕ(χ))t

which yields (cf. the Clausius-Duhem inequality (1.14))

cV
θt

θ
+ κ div

(
1

θ
∇1

θ

)
= κ

∣∣∣∣∇
1

θ

∣∣∣∣
2

+
µ(θ)

θ
χ2

t + (σ(χ) + ϕ(χ))t(5.22)

≥ (σ(χ) + ϕ(χ))t a. e.

The function
w(x, t) := log C13 − log θ

is positive and satisfies the inequality

(5.23) cV wt − κ div

(
1

θ2
∇w

)
≤ − (σ(χ) + ϕ(χ))t a. e.

Integrating this inequality from 0 to t and using the assumption (2.6) we obtain that

(5.24)

∫

Ω

w(x, t) dx ≤ C14 .

We now argue as in the previous subsection and test Eq. (5.23) by wr for r ≥ 1. From
the uniform upper bounds for |ϕ(χ)t| , |χt| , and θ it follows that

(5.25)
1

r + 1

d

dt
|w(t)|r+1

r+1 + r
κ

cV C2
13

∫

Ω

|∇w(t)|2 w(t)r−1 dx ≤ C15 |w(t)|rr .

Put Ψr(x, t) = w(r+1)/2(x, t). Then

(5.26)
d

dt
|Ψr(t)|22 + C16 |∇Ψr(t)|22 ≤ C17(r + 1)

(
1 + |Ψr(t)|22

)
.

Using again the interpolation inequality, we obtain similarly as in (5.8)–(5.10) for all
r ≥ 1 that

(5.27)
d

dt
|Ψr(t)|22 + C18 |Ψr(t)|22 ≤ C19(r + 1)1+N/2

(
1 + |Ψr(t)|21

)
.

By (5.24), we have |Ψ1(t)|1 ≤ C20 , hence

(5.28)
d

dt
|Ψ1(t)|22 + C18 |Ψ1(t)|22 ≤ C21 .

For r ≥ 3 we have

(5.29) |Ψr(t)|21 =
∣∣Ψ(r−1)/2(t)

∣∣4
2

,
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hence

(5.30)
d

dt
|Ψr(t)|22 + C18 |Ψr(t)|22 ≤ C22 (r + 1)1+N/2

(
1 +

∣∣Ψ(r−1)/2(t)
∣∣4
2

)
.

For k ∈ N put rk = 2k − 1, and

(5.31) Φk(t) = 1 + max
0≤s≤t

|Ψrk
(s)|22 .

Set B = (log C13 − log θ1) max{1, |Ω|} . For all r ≥ 1 we have |Ψr(0)|22 ≤ Br+1 , and
from Lemma 5.1, (5.28), and (5.30) it follows that

Φ1(t) ≤ C23 ,(5.32)

Φk(t) ≤ C24

(
B2k

+ 2k(1+N/2)Φ2
k−1(t)

)
(5.33)

for all t ≥ 0. Similarly as in the previous subsection we derive the estimate

(5.34) w(x, t) < C25 for a. e. (x, t) ∈ Ω× (0,∞) ,

and the proof of Theorem 2.3 is complete.

6 Asymptotic behaviour

The statement of Theorem 2.4 fits with the general framework of Proposition 5.4 in
[9]. We however give here a direct and elementary proof which takes into account the
fact that the function

(6.1) E(t) :=

∫

Ω

(
κ

∣∣∣∣∇
1

θ

∣∣∣∣
2

+ µ(θ) χ2
t

)
(x, t) dx

may be discontinuous.

It follows from (5.22) for all T > 0 that

∫ T

0

∫

Ω

(
κ

∣∣∣∣∇
1

θ

∣∣∣∣
2

+
µ(θ)

θ
χ2

t

)
(x, t) dx dt +

∫

Ω

(σ(χ) + ϕ(χ)) (x, T ) dx(6.2)

= cV

∫

Ω

(log θ(x, T )− log θ0(x)) dx +

∫

Ω

(σ(χ0) + ϕ(χ0)) (x) dx

≤ cV

∫

Ω

(θ(x, T )− log θ1) dx +

∫

Ω

(σ(χ0) + ϕ(χ0)) (x) dx ,

hence E ∈ L1(0,∞) as a consequence of (5.5). Testing Eq. (1.10) by θt/θ
2 we further

obtain for a. e. t > 0 that

(6.3) C26

∫

Ω

θ2
t (x, t) dx +

d

dt

∫

Ω

κ

∣∣∣∣∇
1

θ

∣∣∣∣
2

(x, t) dx ≤ C27 .
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Using (3.4) we find a constant C28 such that for every T > 0 and every non-negative
function η ∈ W 1,∞(0, T ) with compact support in (0, T ) we have

(6.4)

∫ T

0

∫

Ω

µ(θ) χ2
t (x, t) η̇(t) dx dt ≥ −

∫ T

0

η(t)

(
C28 + C26

∫

Ω

θ2
t (x, t) dx

)
dt .

Put C∗ = C27 + C28 . We now claim that

(6.5) the function q(t) := C∗ t− E(t) is non-decreasing.

Indeed, for every T > 0 and every non-negative function η ∈ W 1,∞(0, T ) with compact
support in (0, T ) we have

∫ T

0

q(t) η̇(t) dt =

∫ T

0

(
−C∗ +

d

dt

∫

Ω

κ

∣∣∣∣∇
1

θ

∣∣∣∣
2

(x, t) dx

)
η(t) dt(6.6)

−
∫ T

0

∫

Ω

µ(θ) χ2
t (x, t) η̇(t) dx dt

≤
∫ T

0

(−C∗ + C27 + C28) η(t) dt ≤ 0 ,

and (6.5) follows. This implies, in particular, that E has bounded variation on every
bounded time interval, and E(t+) ≤ E(t−) for every t > 0.

For n ∈ N we define the sequences

(6.7) εn = ess sup{E(t) ; t ∈ [n, n + 1]} , δn = min
{

1,
εn

C∗

}
,

and find tn ∈ [n, n + 1] such that E(tn−) = εn . For a. e. t ∈ [tn − δn, tn] we have

E(t) ≥ εn − C∗(tn − t) ,

hence
∫ tn

tn−δn

E(t) dt ≥
∫ tn

tn−δn

(εn − C∗(tn − t)) dt =
1

2C∗
(
ε2

n − (εn − C∗δn)2
)

(6.8)

≥ 1

2
C∗δ2

n .

We thus have

(6.9)
1

2
C∗

∞∑
n=1

δ2
n ≤

∞∑
n=1

∫ n+1

n−1

E(t) dt ≤ 2

∫ ∞

0

E(t) dt .

Since E belongs to L1(0,∞), we obtain that limn→∞ δn = 0, and the proof of Theorem
2.4 is complete.
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