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Abstract

We present a generalization to an arbitrary number of subspaces of the cosine of the Friedrichs angle between
two subspaces of a Hilbert space. This parameter is used to analyze the rate of convergence in the von Neumann-
Halperin method of alternating projections. To cite this article: C. Badea, S. Grivaux, V. Müller, C. R. Acad.
Sci. Paris, Ser. I ***(****).
Résumé

Une généralisation de l’angle de Friedrichs et la méthode des projections alternées. On considère
une généralisation à plusieurs espaces du cosinus de l’angle de Friedrichs entre deux sous-espaces d’un espace de
Hilbert. On utilise ce paramètre pour analyser la vitesse de convergence dans la méthode des projections alternées
de von Neumann-Halperin. Pour citer cet article : C. Badea,S. Grivaux, V. Müller, C. R. Acad. Sci. Paris, Ser.
I ***(****).

1. Introduction

Let M1, . . . ,MN be N ≥ 2 closed subpaces of a complex Hilbert space H, whose intersection is denoted
by M = M1 ∩ M2 · · · ∩ MN . Throughout this Note we will denote by PS the orthogonal projection onto
the closed subspace S of H. The method of considering the convergence of the iterates of the product
T = PMN

· · ·PM2PM1 in order to obtain T∞ = PM is called the method of alternating projections. It was
proved for N = 2 by J. von Neumann and in general for N ≥ 3 by I. Halperin [7] that for each x ∈ H

lim
n→∞

‖(PMN
· · ·PM2PM1)

nx− PMx‖ = 0.
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For N = 2 we have a quite complete description of the rate of convergence involving the angle of the
two subspaces (see [5] and [9, Lecture VIII]).

Definition 1.1 (Friedrichs angle) Let H be a Hilbert space whose closed unit ball we denote by BH , and
let M1 and M2 be two closed subspaces of H with intersection M = M1∩M2. The Friedrichs angle between
the subspaces M1 and M2 is defined to be the angle in [0, π/2] whose cosine is given by

c(M1,M2) := sup{| 〈x, y〉 | : x ∈ M1 ∩M⊥ ∩BH , y ∈ M2 ∩M⊥ ∩BH}.

It was proved by Aronszajn [1] (upper bound) and by Kayalar and Weinert [8] (equality) that

‖(PM2PM1)
n − PM‖ = c(M1,M2)2n−1 for any n ≥ 1.

This formula shows that the sequence (Tn) of iterates of T = PM2PM1 converges uniformly to T∞ = PM

if and only if c(M1,M2) < 1, that is if and only if the Friedrichs angle between M1 and M2 is positive.
In this case the iterates of T = PM2PM1 converge “quickly” (as fast as of a geometrical progression) to
T∞ = PM , in the following sense:

(QUC) (quick uniform convergence) there exist a positive constant C and an α ∈]0, 1[ such that
‖Tn − T∞‖ ≤ Cαn for any n ≥ 1.

It is also known [5] that c(M1,M2) < 1 if and only if M1 + M2 is closed, if and only if M⊥
1 + M⊥

2 is
closed, if and only if (M1 ∩ M⊥) + (M2 ∩ M⊥) is closed. When M1 + M2 is not closed, we have strong,
but not uniform convergence of the iterates of T to T∞. It was recently proved by Bauschke, Deutsch
and Hundal (see [3] for the history of this result) that in this case we have arbitrarily slow convergence
of the iterates of T = PM2PM1 to T∞:

(ASC) (arbitrarily slow convergence) for every ε > 0 and every sequence (an)n≥1 of positive numbers
such that limn→∞ an = 0, there exists a vector x ∈ X such that ‖Tnx− T∞x‖ ≥ an for every n ≥ 1.

Thus the iterates of the product of two projections converge either quickly, or arbitrarily slowly. We
call this alternative the (QUC)/(ASC) dichotomy.

The results concerning the rate of convergence in Halperin’s theorem for N ≥ 3 are far less complete
than the results described above for N = 2. We refer to [5], [6], [4, Chapter 9], [10] and their references for
several results concerning the rate of convergence in the method of alternating projections for N ≥ 3. An
interesting fact is pointed out in [6, Example 3.7]: for N ≥ 3 the error of the method of cyclic alternating
projections is not a function of the various Friedrichs angles c(Mi,Mj) between pairs of subspaces.

The aim of this Note is to announce several results concerning the rate of convergence in Halperin’s
theorem for N ≥ 3, including that the dichotomy (QUC)/(ASC) holds for N ≥ 2, with several possible
meanings for (ASC). We introduce a generalization of the cosine of the Friedrichs angle to several sub-
spaces, c(M1, · · · ,MN ). Like for N = 2, the condition (QUC) holds if and only if c(M1, · · · ,MN ) < 1.
Estimates for the error ‖(PMN

· · ·PM2PM1)
n − PM‖ are given in this case as well as several statements

equivalent to the condition c(M1, · · · ,MN ) < 1. We refer the reader to [2] for complete proofs and for
other related results.

2. Main results

The rate of convergence in the method of alternating projections for N ≥ 3 is obtained in terms of the
following parameter:

Definition 2.1 Let M1, · · · ,MN be N ≥ 2 closed subspaces of H with intersection M = M1 ∩ · · · ∩MN .
The Friedrichs number c(M1, · · · ,MN ) associated to these N subspaces is defined as
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c(M1, · · · ,MN ) = sup{ 2
N − 1

∑
j<k Re 〈mj ,mk〉

‖m1‖2 + · · ·+ ‖mN‖2
: mj ∈ Mj ∩M⊥, ‖m1‖2 + · · ·+ ‖mN‖2 6= 0

}
.

It is not hard to show that this definition coincides with the classical one for two subspaces, and that
the number c(M1, · · · ,MN ) always lies between 0 and 1. The Friedrichs number of M1, · · · ,MN is related
to the projections PM1 , · · · , PMN

by the following formula:

c(M1, · · · ,MN ) =
N

N − 1

∥∥∥∥PM1 + · · ·+ PMN

N
− PM

∥∥∥∥− 1
N − 1

·

We announce the following results which provide a fairly complete description of the rate of convergence
in the method of alternating projections.

Theorem 2.2 Let M1, . . . ,MN be N ≥ 2 closed subpaces of a complex Hilbert space H with intersection
M = M1 ∩ M2 · · · ∩ MN . Let T = PMN

PMN−1 · · ·PM1 denote the product of the projections on these
successive subspaces. Then the following alternative holds: either the range Ran(T − I) is closed and the
iterates Tn converge uniformly to T∞ = PM , and in this case (QUC) holds, or Ran(T − I) is not closed
and then the convergence of Tn to T∞ is arbitrarily slow in each one of the following senses:

(ASC1: arbitrarily slow convergence, variant 1) for every ε > 0 and every sequence (an)n≥1 of positive
numbers such that limn→∞ an = 0, there exists a vector x ∈ X such that ‖x‖ < supn an + ε and
‖Tnx− T∞x‖ ≥ an for all n;

(ASC2: arbitrarily slow convergence, variant 2) for every sequence (an)n≥1 of positive numbers such
that limn→∞ an = 0, there exists a dense subset of points x ∈ X such that ‖Tnx − T∞x‖ ≥ an for all
but a finite number of n’s;

(ASCH: arbitrarily slow convergence, Hilbertian version) for every ε > 0 and every sequence (an)n≥1

of positive numbers such that limn→∞ an = 0, there exists a vector x ∈ H such that ‖x‖ < supn an + ε
and Re 〈Tnx− T∞x, x〉 ≥ an for all n ≥ 1 ;

(ASCHR: arbitrarily slow convergence for random products) for every ε > 0, every sequence (an)n≥0 of
positive reals with limn→∞ an = 0, and every sequence of indices (ik)k≥1 in {1, 2, . . . , N}, there exists
x ∈ H with ‖x‖ < supn an + ε such that Re

〈
Pin

Pin−1 · · ·Pi1x− PMx, x
〉
≥ an for each n ≥ 1.

More precisely, the next theorem characterizes in several ways when the above dichotomy occurs. We
denote by σ(A) the spectrum of A, by ‖ · ‖e the essential norm and by σe the essential spectrum.

Theorem 2.3 With the same notation as in the previous theorem, the following assertions are equivalent:

(1) the range Ran(T − I) of T − I is not closed;
(1′) for every k ≥ N and every sequence of indices (ik)k≥1 such that {i1, . . . , ik} = {1, 2, . . . , N},
Ran(PMik

· · ·PMi1
− I) is not closed;

(2) one/all of the conditions (ASC1), (ASC2), (ASCH) hold for T ;
(2′) the condition (ASCHR) holds;
(3) c(M1, · · · ,MN ) = 1;
(4) for every ε > 0, every closed subspace K ⊂ M⊥ of finite codimension (in M⊥), there exists a vector
x ∈ K such that ‖x‖ = 1 and max{dist(x, Mj) : j = 1, · · · , N} < ε;
(5) 1 ∈ σ(T − PM );
(5′) for every k and every i1, · · · , ik ∈ {1, 2, · · · , N} we have 1 ∈ σ(PMik

· · ·PMi1
− PM );

(6) ‖T − PM‖ = 1 ;
(6′) for every k and every sequence of indices (ik)k≥1 with {i1, . . . , ik} = {1, 2, . . . , N} we have
‖PMik

· · ·PMi1
− PM‖ = 1 ;

(7) ‖T − PM‖e = 1;
(7′) for every k and every i1, · · · , ik ∈ {1, 2, · · · , N} we have ‖PMik

· · ·PMi1
− PM‖e = 1;
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(8) 1 ∈ σe(T − PM );
(8′) for every k, every i1, · · · , ik ∈ {1, 2, · · · , N} we have 1 ∈ σe(PMik

· · ·PMi1
− PM );

(9) for every ε > 0, every closed subspace K ⊂ M⊥ of finite codimension (in M⊥), there exists a vector
x ∈ K such that ‖Tx− x‖ ≤ ε;
(9′) for every ε > 0, every closed subspace K ⊂ M⊥ of finite codimension (in M⊥), there exists a
vector x ∈ K such that ‖PMik

· · ·PMi1
x− x‖ ≤ ε for every k and every i1, · · · , ik ∈ {1, 2, · · · , N};

(10) the sum of diag(M1) := {(y, . . . , y) : y ∈ M1} ⊂ HN−1 and M2 ⊕ · · ·⊕MN ⊂ HN−1 is not closed
in HN−1 (and equivalent statements for diag(Mj) ⊂ HN−1, 2 ≤ j ≤ N);
(11) M⊥

1 + · · ·+ M⊥
N is not closed in H.

The conditions (1), (2), (5), (6), (7), (8) and (9) (most of which are of spectral nature) are conditions
about the product T = PN · · ·P1, while the corresponding conditions denoted with primes are analog
conditions concerning random products PMiN

· · ·PMi1
. The conditions (3), (4), (10) and (11) concern the

geometry of subspaces. The last theorem gives an estimate on the rate of convergence when we have
(QUC) in terms of the Friedrichs parameter:

Theorem 2.4 Let M1, · · · ,MN be N ≥ 2 closed subspaces of H with intersection M = M1∩M2 · · ·∩MN ,
and T = PMN

· · ·PM1 . Suppose that c := c(M1, · · · ,MN ) < 1. Then we have quick uniform convergence
of the powers Tn to PM , and more precisely

‖Tn − PM‖ ≤

(
1−

(
1− c

4N

)2
)n/2

for any n ≥ 1.
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