On weak orbits of operators

C. Badea and V. Müller

Abstract. Let T be a completely nonunitary contraction on a Hilbert space H with $r(T)=1$. Let $a_{n}>0, a_{n} \rightarrow 0$. Then there exists $x \in H$ with $\left|\left\langle T^{n} x, x\right\rangle\right| \geq a_{n}$ for all n. We construct a unitary operator without this property. This gives a negative answer to a problem of van Neerven.

Let X be a complex Banach space. Then each operator $T \in B(X)$ has orbits that are "large" in the following sense [M1], [B]:

Let $\left(a_{n}\right)$ be a sequence of positive numbers such that $a_{n} \rightarrow 0$. Then there exists $x \in X$ such that $\left\|T^{n} x\right\| \geq a_{n} r\left(T^{n}\right)$ for all n. Moreover, for each $\varepsilon>0$ it is possible to find $x \in X$ with $\|x\|<\sup _{n} a_{n}+\varepsilon$.

The corresponding question for weak orbits $\left\langle T^{n} x, x^{*}\right\rangle$ was considered by J. van Neerven [N], see also [M3].
(1) Let $T \in B(X)$. Let $\left(a_{n}\right)$ be a sequence of positive numbers such that $a_{n} \rightarrow 0$. Do there exist $x \in X$ and $x^{*} \in X^{*}$ such that $\left|\left\langle T^{n} x, x^{*}\right\rangle\right| \geq a_{n} r\left(T^{n}\right)$ for all n ?

There are several interesting cases when the answer is positive. In [N], it was proved for positive operators on Banach lattices. In [M2] and [M4] the statement was shown for Banach space operators satisfying $T^{n} \rightarrow 0$ in the strong operator topology and $r(T)=1$.

In the present paper we consider Hilbert space operators and generalize this for operators satisfying $T^{n} \rightarrow 0$ in the weak operator topology. As a consequence, we get that (1) is true for any completely non-unitary contraction with $r(T)=1$.

Note that for unitary operators questions concerning weak orbits reduce to questions concerning Fourier coefficients of L^{1} functions. We show that if μ is a Rajchman measure (in particular, an absolutely continuous measure) on the unit circle, then there is a positive function $f \in L^{1}(\mu)$ such that $|\hat{f}(n)| \geq a_{|n|}$ for all n (the statement is a folklore in case of the Lebesgue measure, see [K, p. 22 and 26]). However, the previous statement is not true in general. We construct an example of a Kronecker measure ν and a sequence $\left(a_{n}\right)$ of positive numbers, $a_{n} \rightarrow 0$ such that there is no function $f \in L^{1}(\nu)$ with the above property. This also gives a negative answer to question (1) of van Neerven.

Let H be a complex Hilbert space and let $T \in B(H)$. We say that $T^{n} \rightarrow 0$ in the weak operator topology if $\left\langle T^{n} x, y\right\rangle \rightarrow 0$ for all $x, y \in H$.

Mathematics Subject Classification (2000): 47A05, 47B15
Keywords and Phrases: weak orbits, Fourier coefficients, Kronecker measure
The first author was supported by ANR Projet Blanc "Dynop". The second author was supported by grant No. 201/06/0128 of GA ČR and Institutional Research Plan AV 0Z 10190503.

Theorem 1. Let $T \in B(H)$ satisfy $T^{n} \rightarrow 0$ in the weak operator topology, let $1 \in \sigma(T)$. Let $\left(a_{n}\right)_{n=0}^{\infty}$ be a sequence of positive numbers satisfying $a_{n} \rightarrow 0$ and let $\varepsilon>0$. Then there exists $x \in H$ with $\|x\|<\sup _{n} a_{n}+\varepsilon$ such that

$$
\operatorname{Re}\left\langle T^{n} x, x\right\rangle>a_{n}
$$

for all $n \geq 0$.
Proof. Without loss of generality we may assume that $a_{0} \geq a_{1} \geq \cdots$. Indeed, we may replace the numbers a_{n} by $\sup _{j \geq n} a_{j}$ if necessary. Moreover, it is sufficient to show that if $1>a_{0} \geq a_{1} \geq \cdots$ then there exists $x \in H$ of norm 1 such that $\operatorname{Re}\left\langle T^{n} x, x\right\rangle>a_{n}$ for all $n \geq 0$.

By the Banach-Steinhaus theorem, T is power bounded, i.e., $\sup _{n}\left\|T^{n}\right\|<\infty$. Let $K=\sup _{n}\left\|T^{n}\right\|$. Clearly $r(T)=1$.

Suppose first that $1 \notin \sigma_{e}(T)$. Then 1 is an eigenvalue and the corresponding eigenvector x of norm 1 satisfies the required condition. Thus we may suppose that $1 \in \sigma_{e}(T)$. Hence $1 \in \partial \sigma_{e}(T)$, and by [HW], $T-I$ is not upper semi-Fredholm. Thus for every subspace $M \subset H$ of finite codimension and each $\varepsilon>0$ there exists a vector $x \in M$ with $\|x\|=1$ and $\|T x-x\|<\varepsilon$. Moreover, given $k \in \mathbb{N}$, we can find a vector $u \in M$ of norm 1 such that $\left\|T^{j} u-u\right\|<\varepsilon$ for all $j \leq k$.

By [M2], there are positive numbers $c_{i} \quad(i \geq 1)$ such that $\sum_{i=1}^{\infty} c_{i}^{2}=1$ and $\sum_{i=k+1}^{\infty} c_{i}^{2}>3 K c_{k}$ for all $k \geq 1$.

Set formally $\delta_{0}=0$. Let $\delta_{1}, \delta_{2}, \ldots$ be positive numbers satisfying $\delta_{i}<\frac{1-a_{i}}{2^{i}}$ and $\delta_{i}<\frac{K}{i^{2} 2^{i+2}} \min \left\{c_{k}: k=1, \ldots, i+1\right\}$.

Find n_{0} such that $a_{n_{0}}<\sum_{i=2}^{\infty} c_{i}^{2}-3 K c_{1}$. We construct an increasing sequence $\left(n_{k}\right)$ of positive integers and a sequence $\left(x_{k}\right)$ of unit vectors in H in the following way: Let $k \in \mathbb{N}$ and suppose that $x_{i} \in H$ and $n_{i} \in \mathbb{N}$ have already been constructed for $1 \leq i \leq k-1$. Find $x_{k} \in H$ of norm 1 such that

$$
x_{k} \perp T^{j} x_{t} \quad\left(0 \leq j \leq n_{k-1}, 1 \leq t \leq k-1\right)
$$

and

$$
\left\|T^{j} x_{k}-x_{k}\right\|<\delta_{k} \quad\left(j \leq n_{k-1}\right)
$$

Find $n_{k}>n_{k-1}$ such that

$$
\left|\left\langle T^{j} x_{t}, x_{s}\right\rangle\right|<\delta_{k} \quad\left(j \geq n_{k}, 1 \leq s, t \leq k\right)
$$

and

$$
a_{n_{k}}<\sum_{i=k+2}^{\infty} c_{i}^{2}-3 K c_{k+1} .
$$

Let the sequences $\left(x_{k}\right)$ and $\left(n_{k}\right)$ have been constructed in the above described way. Set $x=\sum_{k=1}^{\infty} c_{k} x_{k}$. Since the vectors x_{k} are orthonormal, we have $\|x\|=\left(\sum_{k=1}^{\infty} c_{k}^{2}\right)^{1 / 2}=1$. For $j \leq n_{0}$ we have

$$
\begin{aligned}
& \operatorname{Re}\left\langle T^{j} x, x\right\rangle=\operatorname{Re}\left\langle\sum_{s=1}^{\infty} c_{s} T^{j} x_{s}, x\right\rangle=\sum_{s=1}^{\infty} c_{s} \operatorname{Re}\left(\left\langle x_{s}, x\right\rangle-\left\langle x_{s}-T^{j} x_{s}, x\right\rangle\right) \\
& \geq \sum_{s=1}^{\infty} c_{s}^{2}-\sum_{s=1}^{\infty} c_{s} \delta_{s} \geq 1-\sum_{s=1}^{\infty} \delta_{s}>1-\sum_{s=1}^{\infty} \frac{1-a_{1}}{2^{s}}=a_{1} \geq a_{j} .
\end{aligned}
$$

Let $k \geq 1$ and $n_{k-1}<j \leq n_{k}$. We have

$$
\begin{aligned}
& \operatorname{Re}\left\langle T^{j} x, x\right\rangle=\operatorname{Re}\left\langle\sum_{s=1}^{k} c_{s} T^{j} x_{s}, x\right\rangle+\operatorname{Re}\left\langle\sum_{s=k+1}^{\infty} c_{s} T^{j} x_{s}, x\right\rangle \\
& \geq \operatorname{Re}\left\langle\sum_{s=1}^{k} c_{s} T^{j} x_{s}, \sum_{t=1}^{k} c_{t} x_{t}\right\rangle+\operatorname{Re}\left\langle\sum_{s=1}^{k} c_{s} T^{j} x_{s}, \sum_{t=k+1}^{\infty} c_{t} x_{t}\right\rangle \\
& \quad+\sum_{s=k+1}^{\infty} c_{s} \operatorname{Re}\left(\left\langle x_{s}, x\right\rangle-\left\|T^{j} x_{s}-x_{s}\right\|\right) \\
& \geq \operatorname{Re}\left\langle\sum_{s=1}^{k-1} c_{s} T^{j} x_{s}, \sum_{t=1}^{k-1} c_{t} x_{t}\right\rangle+\operatorname{Re}\left\langle\sum_{s=1}^{k-1} c_{s} T^{j} x_{s}, c_{k} x_{k}\right\rangle+\operatorname{Re}\left\langle c_{k} T^{j} x_{k}, \sum_{t=1}^{k} c_{t} x_{t}\right\rangle \\
& \quad+\sum_{s=k+1}^{\infty} c_{s}^{2}-\sum_{s=k+1}^{\infty} c_{s} \delta_{s} \\
& \geq-\sum_{s=1}^{k-1} \sum_{t=1}^{k-1} c_{s} c_{t} \delta_{k-1}-c_{k} \cdot\left\|T^{j}\right\|\left\|\sum_{s=1}^{k-1} c_{s} x_{s}\right\|-K c_{k}\left\|\sum_{t=1}^{k} c_{t} x_{t}\right\|+\sum_{s=k+1}^{\infty} c_{s}^{2}-\sum_{s=k+1}^{\infty} \delta_{s} \\
& \geq \sum_{s=k+1}^{\infty} c_{s}^{2}-2 K c_{k}-(k-1)^{2} \delta_{k-1}-\sum_{s=k+1}^{\infty} \delta_{s} \geq \sum_{s=k+1}^{\infty} c_{s}^{2}-3 K c_{k}>a_{n_{k-1}} \geq a_{j} .
\end{aligned}
$$

Recall that a contraction T acting on a Hilbert space H is called completely nonunitary if there is no subspace $H_{0} \subset H$ reducing for T such that the restriction $\left.T\right|_{H_{0}}$ is unitary.

Corollary 2. Let $T \in B(H)$ be a completely nonunitary contraction satisfying $1 \in$ $\sigma(T)$. Let $\left(a_{n}\right)_{n=0}^{\infty}$ be a sequence of positive numbers satisfying $a_{n} \rightarrow 0$ and let $\varepsilon>0$. Then there exists $x \in H$ with $\|x\|<\sup _{n} a_{n}+\varepsilon$ such that

$$
\operatorname{Re}\left\langle T^{n} x, x\right\rangle>a_{n}
$$

for all $n \geq 0$.
Proof. Let $U \in B(K)$ be the minimal unitary dilation of T. By [NF], Proposition II.1.4, there are subspaces $M_{1}, M_{2} \subset K$ reducing for U such that $M_{1} \vee M_{2}=K$ and $U\left|M_{1}, U\right| M_{2}$ are bilateral shifts (of some multiplicity). It implies that $U^{n} \rightarrow 0$ in the weak operator topology, and consequently, $T^{n} \rightarrow 0$ in the weak operator topology.

Corollary 3. Let $T \in B(H)$ satisfies $T^{n} \rightarrow 0$ in the weak operator topology and $r(T)=1$. Let $\left(a_{n}\right)_{n=0}^{\infty}$ be a sequence of positive numbers satisfying $a_{n} \rightarrow 0$ and let $\varepsilon>0$. Then there exists $x \in H$ with $\|x\|<\sup _{n} a_{n}+\varepsilon$ such that

$$
\left|\left\langle T^{n} x, x\right\rangle\right|>a_{n}
$$

for all $n \geq 0$. In particular, this is true for each completely nonunitary contraction T with $r(T)=1$.

Better results can be obtained if we consider the Cesaro means. For $T \in B(H)$ and $n \geq 1$ write $A_{n}=\frac{1}{n} \sum_{i=0}^{n-1} T^{i}$.

Theorem 4. Let $T \in B(H)$ be a power bounded operator with $1 \in \sigma(T)$. Let $\left(a_{n}\right)_{n=0}^{\infty}$ be a sequence of positive numbers satisfying $a_{n} \rightarrow 0$ and $\varepsilon>0$. Then there exists $x \in H$ with $\|x\|<\sup _{n} a_{n}+\varepsilon$ such that

$$
\operatorname{Re}\left\langle A_{n} x, x\right\rangle>a_{n}
$$

for all $n \geq 0$.
Proof. If 1 is in the point spectrum of T then it is sufficient to take a corresponding eigenvector of norm 1. If 1 is not in the point spectrum then $\left\|A_{n} y\right\| \rightarrow 0$ for each $y \in H$ by the ergodic theorem, see [Kr, p. 73]. The proof of Theorem 1 then works word by word if we replace T^{n} by A_{n}.

We apply now the previous results to unitary operators. This gives statements about Fourier coefficients of L^{1} functions.

Let μ be a non-negative finite Borel measure on the unit circle $\mathbb{T}=\{z \in \mathbb{C}:|z|=$ $1\}$. Recall that μ is called Rajchman if its Fourier transform $\hat{\mu}(n)=\int_{\mathbb{T}} e^{-2 \pi i n t} d \mu(t)$ vanishes at infinity, i.e., $\lim _{|n| \rightarrow \infty} \hat{\mu}(n)=0$. In particular, each absolutely continuous measure is Rajchman (the converse is not true).

Let U_{μ} be the operator on $L^{1}(\mu)$ defined by $\left(U_{\mu} f\right)(z)=z f(z) \quad\left(f \in L^{1}(\mu), z \in \mathbb{T}\right)$. It is easy to see that μ is Rajchman if and only if $U_{\mu}^{n} \rightarrow 0$ in the weak operator topology.

Theorem 5. Let μ be a Rajchman measure. Let $\left(a_{n}\right)_{n=0}^{\infty}$ be a sequence of positive numbers satisfying $a_{n} \rightarrow 0$ and $\sup a_{n}<1$. Then there exists $f \in L^{1}(\mu)$ of norm 1 such that $f \geq 0$ a.e. and $|\hat{f}(n)|>a_{|n|}$ for all integers n.

If $1 \in \operatorname{supp} \mu$ then it is possible to find $f \geq 0$ such that $\operatorname{Re} \hat{f}(n)>a_{|n|}$ for all non-zero n.

Proof. Let $H=L^{2}(\mu)$ and let $U: H \rightarrow H$ be the unitary operator defined by $(U f)(z)=z f(z) \quad(f \in H, z \in \mathbb{T})$. Then $\lim _{n \rightarrow \infty}\left\langle U^{n} f, g\right\rangle=0$ for all $f, g \in H$. By Corollary 3, there is a $g \in H$ such that $\|g\|_{H}=1$ and $\left|\left\langle U^{n} g, g\right\rangle\right|>a_{n}$ for all $n \geq 1$. Set $f=|g|^{2}$. Then $f \in L^{1}(\mu),\|f\|_{1}=1$ and $|\hat{f}(n)| \geq a_{|n|}$ for all nonzero integers n.

The second statement is similar.
The previous theorem is not true for non-Rajchman measures. An example concerning the real parts is relatively simple. Recall that a set $E \subset \mathbb{T}$ is called independent if given $x_{1}, \ldots, x_{r} \in E$ and integers $m_{1}, \ldots, m_{r}, \prod_{j=1}^{r} x_{j}^{m_{j}}=1$ implies $m_{1}=\cdots=m_{r}=0$.

Example 6. Let $\left(z_{n}\right) \subset \mathbb{T}$ be an independent sequence such that $z_{n} \rightarrow 1$. Let H be the Hilbert space with an orthonormal basis $\left\{e_{1}, e_{2}, \ldots\right\}$. Let $U \in B(H)$ be defined by $U e_{i}=z_{i} e_{i}$. Clearly U is a unitary operator and $1 \in \sigma(T)$. We show that

$$
\limsup _{n \rightarrow \infty} \operatorname{Re}\left\langle U^{n} x, x\right\rangle=\|x\|^{2}
$$

and

$$
\liminf _{n \rightarrow \infty} \operatorname{Re}\left\langle U^{n} x, x\right\rangle=-\|x\|^{2}
$$

for each $x \in H$. Let $x \in H$ and $\varepsilon>0$. Write $x=\sum_{j=1}^{\infty} \alpha_{j} e_{j}$ for some complex coefficients α_{j}. Then there exists an n_{0} such that $\sum_{j=n_{0}+1}^{\infty}\left|\alpha_{j}\right|^{2}<\varepsilon$. By the Kronecker theorem there are positive integers k_{1}, k_{2} such that

$$
\left|z_{j}^{k_{1}}-1\right|<\varepsilon \quad\left(j=1,2, \ldots, n_{0}\right)
$$

and

$$
\left|z_{j}^{k_{2}}+1\right|<\varepsilon \quad\left(j=1,2, \ldots, n_{0}\right)
$$

Then

$$
\begin{aligned}
& \operatorname{Re}\left\langle U^{k_{1}} x, x\right\rangle=\operatorname{Re} \sum_{j=1}^{\infty} z_{j}^{k_{1}}\left|\alpha_{j}\right|^{2} \geq \operatorname{Re} \sum_{j=1}^{n_{0}} z_{j}^{k_{1}}\left|\alpha_{j}\right|^{2}-\sum_{j=n_{0}+1}^{\infty}\left|\alpha_{j}\right|^{2} \\
& \geq \sum_{j=1}^{n_{0}}(1-\varepsilon)\left|\alpha_{j}\right|^{2}-\varepsilon \geq(1-\varepsilon)\left(\|x\|^{2}-\varepsilon\right)-\varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, we have $\limsup _{n \rightarrow \infty} \operatorname{Re}\left\langle U^{n} x, x\right\rangle=\|x\|^{2}$. Similarly,

$$
\operatorname{Re}\left\langle U^{k_{2}} x, x\right\rangle \leq(-1+\varepsilon)\left(\|x\|^{2}-\varepsilon\right)+\varepsilon,
$$

and so $\liminf _{n \rightarrow \infty} \operatorname{Re}\left\langle U^{n} x, x\right\rangle=-\|x\|^{2}$.

Recall that a non-empty closed subset $E \subset \mathbb{T}$ is called Kronecker if for all continuous functions $f: \mathbb{T} \rightarrow \mathbb{T}$ and $\varepsilon>0$ there is an $n \in \mathbb{Z}$ such that $\sup _{z \in E}\left|f(z)-z^{n}\right|<\varepsilon$. Note that it is possible to find $n>0$ with this property.

By the Kronecker theorem, every finite independent set is Kronecker. Moreover, there are perfect Kronecker sets, i.e., Kronecker sets without isolated points, see [K, p. 184].

The next example will show that if $\operatorname{supp} \mu$ is a perfect Kronecker set then there is a sequence $\left(a_{n}\right)$ of positive numbers with $a_{n} \rightarrow 0$ such that there is no function $f \in L^{1}(\mu)$ with $|\hat{f}(n)| \geq a_{n} \quad(n \geq 0)$. This gives also a negative answer to the van Neerven problem.

First we need a simple auxiliary lemma:
Lemma 7. Let $n \geq 2$ and let $a_{1}, \ldots, a_{n} \in \mathbb{C}$ satisfy $\max _{i}\left|a_{i}\right| \leq \frac{1}{2} \sum_{i=1}^{n}\left|a_{i}\right|$. Then there are $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{T}$ such that $\sum_{i=1}^{n} \lambda_{i} a_{i}=0$.

Proof. We may assume that $a_{i}>0$ for all i. The statement is clear for $n=2$.
Let $n=3$. Let $a_{1} \geq a_{2} \geq a_{3}$. The statement is clear if $a_{1}=a_{2}+a_{3}$. If $a_{1}<a_{2}+a_{3}$, then there is a triangle with sides a_{1}, a_{2}, a_{3}. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be the angle opposite the side a_{1}, a_{2}, a_{3}, respectively. It is easy to verify that $\lambda_{1}=-1, \lambda_{2}=\cos \alpha_{3}+i \sin \alpha_{3}$ and $\lambda_{2}=\cos \left(-\alpha_{2}\right)+i \sin \left(-\alpha_{3}\right)$ satisfy the required condition.

For $n \geq 4$ we prove the statement by induction. Let $n \geq 4, a_{1}, \ldots, a_{n}>0$ and $\max _{i} a_{i} \leq 1 / 2 \sum_{i=1}^{n} a_{i}$. Without loss of generality we may assume that $a_{1} \geq a_{2} \geq \cdots \geq$
a_{n}. Then $a_{n-1}+a_{n} \leq \frac{1}{2} \sum_{i=1}^{n}\left|a_{i}\right|$ and by the induction assumption there are numbers $\lambda_{1}, \ldots, \lambda_{n-1} \in \mathbb{T}$ such that

$$
\lambda_{1} a_{1}+\cdots+\lambda_{n-2} a_{n-2}+\lambda_{n-1}\left(a_{n_{1}}+a_{n}\right)=0
$$

So the statement is true for n.
Example 8. Let $E \subset \mathbb{T}$ be a perfect Kronecker set. Then E is topologically homeomorphic to the Cantor discontinuum and there are finite families $\mathcal{P}_{m} \quad(m=1,2, \ldots)$ of closed disjoint intervals such that $E=\bigcap_{m=1}^{\infty} P_{m}$, where $P_{m}=\bigcup\left\{I: I \in \mathcal{P}_{m}\right\}$, $P_{m+1} \subset P_{m}$ for all m and $\max \left\{\operatorname{diam}(I): I \in \mathcal{P}_{m}\right\} \rightarrow 0$ as $m \rightarrow \infty$. Let μ be a positive measure such that $\operatorname{supp} \mu=E$ and $\mu(E)=1$. For each m, let F_{m} be the set of all functions

$$
f: \mathcal{P}_{m} \rightarrow\left\{e^{2 \pi i j / 2^{m}}: j=0,1, \ldots, 2^{m}-1\right\} .
$$

Clearly F_{m} is a finite set. Since E is Kronecker, for each $f \in F_{m}$ there is a positive integer n_{f} such that

$$
\sup _{z \in E}\left|z^{n_{f}}-\sum_{I \in \mathcal{P}_{m}} f(I) \cdot \chi_{I}\right|<2^{-m-1}
$$

where χ_{I} denotes the characteristic function of I. Let $n_{m}=\max \left\{n_{f}: f \in F_{m}\right\}$. Define a sequence $\left(a_{j}\right)$ by $a_{j}=2^{-m / 2}$ for $n_{m}<j \leq n_{m+1}$ (where we set formally $n_{0}=0$). We show that there is no function $g \in L^{1}(\mu)$ such that $|\hat{g}(j)| \geq a_{j}$ for all $j>0$. Let $g \in L^{1}(\mu), g \neq 0$. Since the step functions are dense in $L^{1}(\mu)$, we can find m_{0} such that

$$
\sum_{I \in \mathcal{P}_{m_{0}}}\left|\int_{I} g(z) d \mu\right|>0.9\|g\|_{1} .
$$

Find $m_{1} \geq m_{0}$ such that

$$
\sup _{I \in \mathcal{P}_{m_{1}}}\left|\int_{I} g(z) d \mu\right| \leq 0.4\|g\|_{1}
$$

and $\|g\|_{1}<2^{m_{1} / 2}$. By Lemma 7, there are complex numbers $\lambda_{I} \in \mathbb{T} \quad\left(I \in \mathcal{P}_{m_{1}}\right)$ such that

$$
\sum_{I \in \mathcal{P}_{m_{1}}} \lambda_{I} \cdot \int_{I} g(z) d \mu=0
$$

Let $f: \mathcal{P}_{m_{1}} \rightarrow\left\{e^{2 \pi i j / 2^{m_{1}}}: j=0,1, \ldots, 2^{m_{1}}-1\right\}$ be a function satisfying

$$
\left|f(I)-\lambda_{I}\right|<2^{-m_{1}-1} \quad\left(I \in \mathcal{P}_{m_{1}}\right) .
$$

Then

$$
\begin{aligned}
& \left|\int z^{n_{f}} g d \mu\right| \leq\left|\int\left(z^{n_{f}}-\sum_{I \in \mathcal{P}_{m_{1}}} f(I) \chi_{I}\right) g d \mu\right|+\left|\sum_{I \in \mathcal{P}_{m_{1}}} \int f(I) \chi_{I} g d \mu\right| \\
& \leq 2^{-m_{1}-1} \cdot\|g\|_{1}+\sum_{I \in \mathcal{P}_{m_{1}}}\left|\lambda_{I}-f(I)\right| \cdot\left|\int_{I} g d \mu\right|+\left|\sum_{I \in \mathcal{P}_{m_{1}}} \lambda_{I} \int_{I} g d \mu\right| \\
& \leq 2^{-m_{1}}\|g\|_{1}<2^{-m_{1} / 2} \leq a_{n_{f}} .
\end{aligned}
$$

References

[B] B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, NorthHolland, Amsterdam, 1988.
[HW] R. Harte, A. Wickstead, Upper and lower Fredholm spectra II, Math. Z. 154 (1977), 253-256.
[K] Y. Katznelson, An Introduction to Harmonic Analysis, John Wiley \& Sons, New York, 1968.
[Kr] U. Krengel, Ergodic Theorems, de Gruyter Studies in Mathematics 6, Walter de Gruyter, Berlin-New York, 1985.
[L] R. Lyons, Seventy years of Rajchman measures, J. Fourier Anal. Appl., Kahane special issue (1995), 363-377.
[M1] V. Müller, Local spectral radius formula for operators in Banach spaces, Czechoslovak Math. J. 38 (1988), 726-729.
[M2] V. Müller, Power bounded operators and supercyclic vectors, Proc. Amer. Math. Soc. 131 (2003), 3807-3812.
[M3] V. Müller, Orbits of operators, in: Advanced Courses of Mathematical Analysis, Cadiz, p. 53-79, 2004.
[M4] V. Müller, Power bounded operators and supercyclic vectors II, Proc. Amer. Math. Soc. 133 (2005), 2997-3004.
[NF] B. Sz-Nagy, C. Foiaş, Harmonic Analysis of Hilbert space operators, Akadémiai Kiadó/North Holland, Budapest/Amsterdam, 1970.
[N] J.M.A.M. van Neerven, On the orbits of an operator with spectral radius one, Czechoslovak Math. J. 45 (1995), 495-502.

Université Lille 1, UFR Mathématique, 59655 Villeneuve d'Ascq, France Catalin.Badea@univ-lille1.fr
Mathematical Institute, Czech Academy of Sciences, Zitna 25, 11567 Prague Czech Republic
muller@math.cas.cz

