NON-OPERATOR REFLEXIVE SUBSPACE LATTICE

KAMILA KLIŚ-GARLICKA AND VLADIMIR MÜLLER

Abstract

In [1] various types of closedness of subspace lattice was studied. In particular, the authors defined operator reflexivity which can be regarded as a one-point closedness of the lattice. They asked if all subspace lattices are operator reflexive. In this work we give an example that the answer is negative.

Let H be a Hilbert space. By $\mathcal{B}(H)$ we denote the algebra of all bounded linear operators on H and by $\mathcal{P}(H)$ the lattice of all orthogonal projections on H. A SOT-closed sublattice of $\mathcal{P}(H)$, containing the trivial projections 0 and I is called a subspace lattice.

Recall that for any set \mathcal{S} of operators the operator-reflexive hull of \mathcal{S} is defined as

$$
\operatorname{ref} \mathcal{S}=\{A \in \mathcal{B}(H): A x \in \overline{\mathcal{S} x} \text { for all } x \in H\}
$$

It was proved in [1] that if \mathcal{L} is a subspace lattice then

$$
\operatorname{ref} \mathcal{L}=\{P \in \mathcal{P}(H): P x \in \overline{\mathcal{L} x} \text { for all } x \in H\}
$$

Recall after [1] that a projection lattice \mathcal{L} is called operator reflexive (or 1 -closed) if $\mathcal{L}=\operatorname{ref} \mathcal{L}$. In [1] authors proved that operator reflexive lattices are always SOT-closed, but they asked if all subspace lattices are operator reflexive. Here we intend to proof that it is not so.

Let M be a subspace of a Hilbert space H. We denote by P_{M} the orthogonal projection onto M. Let $M, L \subset H$ be subspaces. Write

$$
\delta(M, L)=\sup \{\operatorname{dist}\{x, L\}: x \in M,\|x\| \leq 1\}
$$

Denote by $\hat{\delta}(M, L)=\max \{\delta(M, L), \delta(L, M)\}$ the gap between M and L. It is well-known, see [2], p. 197, that $\hat{\delta}(M, L)=\left\|P_{M}-P_{L}\right\|$. Moreover, if $\hat{\delta}(M, L)<1$ then $\operatorname{dim} M=\operatorname{dim} L$.

Lemma 1. Let H be a finite-dimensional Hilbert space, $M, L \subset H$ subspaces, $\operatorname{dim} M=\operatorname{dim} L, \operatorname{dim} H=2 \operatorname{dim} M$. Let $\varepsilon>0$. Then there exists a subspace $M^{\prime} \subset H$ such that $\hat{\delta}\left(M^{\prime}, M\right) \leq \varepsilon$ and $M^{\prime} \cap L=\{0\}$.

[^0]Proof. We may assume that $\varepsilon<1$. We have $\operatorname{dim} H=\operatorname{dim} M+\operatorname{dim} L=$ $\operatorname{dim}(M \cap L)+\operatorname{dim}(M+L)$. Hence $\operatorname{dim}(M \cap L)=\operatorname{dim}(M+L)^{\perp}$. Let $V: M \cap L \rightarrow(M+L)^{\perp}$ be a surjective isometry.

Let $M^{\prime}=(I+\varepsilon V)(M \cap L) \oplus(M \ominus(M \cap L))$. Clearly M^{\prime} is a subspace and $\operatorname{dim} M^{\prime}=\operatorname{dim} M$.

Suppose that $u \in M^{\prime} \cap L$. Then $u=(I+\varepsilon V) x+y$ for some $x \in M \cap L$ and $y \in M \ominus(M \cap L)$. We have $u-x-y \in M+L$ and $\varepsilon V x \perp(M+L)$, so $\varepsilon V x=0=u-x-y$. Thus $x=0$ and $u=y$. Hence $y \in M \cap L$, and so $y=0$ and $u=0$. Consequently, $M^{\prime} \cap L=\{0\}$.

Suppose that $u \in M,\|u\|=1$. Then $u=x+y$ for some $x \in$ $M \cap L$ and $y \in M \ominus(M \cap L)$ with $\|x\|^{2}+\|y\|^{2}=\|u\|^{2}=1$. Then dist $\left\{u, M^{\prime}\right\} \leq\|u-(I+\varepsilon V) x-y\|=\|\varepsilon V x\| \leq \varepsilon$. Hence $\delta\left(M, M^{\prime}\right) \leq \varepsilon$.

Conversely, let $v \in M^{\prime},\|v\|=1$. Then $v=(I+\varepsilon V) x+y$ for some $x \in M \cap L$ and $y \in M \ominus(M \cap L)$. Since $\varepsilon V x \perp y$, we have $\|(I+\varepsilon V) x\| \leq 1$. Since $\varepsilon V x \perp x$, we have $\|x\| \leq 1$. Thus

$$
\operatorname{dist}\{v, M\} \leq\|v-(x+y)\|=\|\varepsilon V x\| \leq \varepsilon
$$

and so $\hat{\delta}\left(M^{\prime}, M\right) \leq \varepsilon$.
Lemma 2. Let H be a finite dimensional Hilbert space, $\operatorname{dim} H=2 n$, let $M_{1}, \ldots, M_{k}, L \subset H$ be n-dimensional subspaces, let $\varepsilon>0$. Then there exists a subspace $L^{\prime} \subset H$ such that $\hat{\delta}\left(L^{\prime}, L\right) \leq \varepsilon$ and $L^{\prime} \cap M_{i}=$ $\{0\} \quad(i=1, \ldots, k)$.

Proof. We prove the statement by induction on k. For $k=1$ the statement was proved in Lemma 1. Suppose that the statement is true for some $k-1$ and let $M_{1}, \ldots, M_{k}, L, \varepsilon$ be given.

By the induction assumption, there exists a subspace $L^{\prime \prime} \subset H$ such that $\hat{\delta}\left(L, L^{\prime \prime}\right) \leq \varepsilon / 2$ and $L^{\prime \prime} \cap M_{i}=\{0\} \quad(i=1, \ldots, k-1)$.

By a compactness argument, there exists $\delta>0$ such that dist $\left\{x, L^{\prime \prime}\right\} \geq$ δ whenever $1 \leq i \leq k-1, x \in M_{i},\|x\|=1$. By Lemma 1, there exists $L^{\prime} \subset H$ such that $\hat{\delta}\left(L^{\prime}, L^{\prime \prime}\right) \leq \min \{\varepsilon / 2, \delta / 2$,$\} and L^{\prime} \cap M_{k}=\{0\}$.

We have $\hat{\delta}\left\{L^{\prime}, L\right\}=\left\|P_{L^{\prime}}-P_{L}\right\| \leq\left\|P_{L^{\prime}}-P_{L^{\prime \prime}}\right\|+\left\|P_{L^{\prime \prime}}-P_{L}\right\| \leq \varepsilon$.
We show that $L^{\prime} \cap M_{i}=\{0\} \quad(i=1, \ldots, k-1)$. Fix $i \in\{1, \ldots, k-1\}$ and suppose that there exists $x \in L^{\prime} \cap M_{i},\|x\|=1$. Then there exists $x^{\prime} \in L^{\prime \prime}$ with $\left\|x^{\prime}-x\right\| \leq \hat{\delta}\left(L^{\prime}, L^{\prime \prime}\right) \leq \delta / 2$, a contradiction with the definition of δ. Hence $L^{\prime} \cap M_{i}=\{0\} \quad(i=1, \ldots, k)$.

Let H be the Hilbert space with an orthonormal basis e_{1}, e_{2}, \ldots For $k \in \mathbb{N}$ let $H_{k}=\bigvee\left\{e_{1}, \ldots, e_{k}\right\}$. Denote by S_{H} the unit sphere in H. Fix a sequence $\left(x_{n}, y_{n}\right)_{n=1}^{\infty}$ dense in $S_{H} \times S_{H}$ such that for each $n \in \mathbb{N}$ the vectors x_{n}, y_{n} are linearly independent and $\left\langle x_{n}, y_{n}\right\rangle \neq 0$. Moreover,
we may assume that all the vectors x_{n}, y_{n} have finite support, i.e., $x_{n}, y_{n} \in \bigcup_{k \in \mathbb{N}} H_{k}$ for each $n \in \mathbb{N}$.

Fix a sequence $\left(t_{n}\right)_{n=1}^{\infty} \subset(0,1)$ consisting of mutually distinct numbers.

Lemma 3. There exist subspaces $M_{n} \subset H \quad(n \in \mathbb{N})$ such that:
(i) $M_{n} \cap M_{m}=\{0\} \quad(m, n \in \mathbb{N}, m \neq n)$;
(ii) $M_{n} \vee M_{m}=H \quad(m, n \in \mathbb{N}, m \neq n)$;
(iii) $\left\|P_{M_{n}} x_{n}-\left\langle x_{n}, y_{n}\right\rangle y_{n}\right\| \leq 1 / n$;
(iv) there is a constant $c>0$ such that for all $m, n \in \mathbb{N}, m \neq n$,

$$
\max _{j=1,2,3}\left\|P_{M_{n}} e_{j}-P_{M_{m}} e_{j}\right\| \geq c
$$

(v) there is an increasing sequence of positive integers $\left(k_{n}\right)_{n=1}^{\infty}$ such that each M_{n} can be written as

$$
M_{n}=F_{n} \oplus \bigvee\left\{e_{2 j+1}+t_{n} e_{2 j+2}: j \geq k_{n}\right\}
$$

where $F_{n} \subset H_{2 k_{n}}$ is a k_{n}-dimensional subspace.
Proof. We construct the subspaces M_{n} by induction on n. Let $n \in \mathbb{N}$ and suppose that the subspaces M_{1}, \ldots, M_{n-1} satisfying (i)-(v) have already been constructed.

Let $L_{n}=\bigvee\left\{x_{n}, y_{n}\right\}$. By assumption, $\operatorname{dim} L_{n}=2$. Fix $j_{n} \in\{1,2,3\}$ such that

$$
\operatorname{dist}\left\{e_{j_{n}}, L_{n}\right\}=\max _{i=1,2,3} \operatorname{dist}\left\{e_{i}, L_{n}\right\} .
$$

Clearly there is a constant $c>0$ such that $\max _{i=1,2,3} \operatorname{dist}\left\{e_{i}, L\right\} \geq 4 c$ for each 2-dimensional subspace $L \subset H$. Hence dist $\left\{e_{j_{n}}, L_{n}\right\} \geq 4 c$. Let $u_{n}=\frac{P_{L_{n}} e_{j_{n}}}{\left\|P_{L_{n}^{\prime}} e_{j_{n}}\right\|}$. Fix $k_{n}>\max \left\{k_{n-1}, 2\right\}$ such that $x_{n}, y_{n} \in H_{2 k_{n}-1}$. Since $u_{n}=\frac{e_{j_{n}}-P_{L_{n}} e_{j_{n}}}{\left\|P_{L_{n}^{\perp}} e_{j_{n}}\right\|}$ and $e_{j_{n}} \in L_{n}+L_{n}^{\prime}$, thus $u_{n} \in H_{2 k_{n}-1}$.

Let $L_{n}^{\prime}=\bigvee\left\{u_{n}, e_{2 k_{n}}\right\}$. Then $\operatorname{dim} L_{n}^{\prime}=2$ and $L_{n}^{\prime} \perp L_{n}$. Let F_{n}^{\prime} be any k_{n}-dimensional subspace of $H_{2 k_{n}}$ such that $y_{n} \in F_{n}^{\prime}, u_{n}+e_{2 k_{n}} \in F_{n}^{\prime}$ and $\operatorname{dim}\left(H_{2 k_{n}} \ominus\left(L_{n}+L_{n}^{\prime}\right)\right) \cap F_{n}^{\prime}=k_{n}-2$.

For $s=1, \ldots, n-1$ let $E_{s} \subset H_{2 k_{n}}$ be defined by

$$
E_{s}=F_{s} \oplus \bigvee\left\{e_{2 j+1}+t_{s} e_{2 j+2}: k_{s} \leq j<k_{n}\right\}
$$

By Lemma 2 for the subspaces $E_{1}, \ldots, E_{n-1}, F_{n}^{\prime}$ there exists a subspace $F_{n} \subset H_{2 k_{n}}$ such that $F_{n} \cap E_{s}=\{0\} \quad(s=1, \ldots, n-1)$ and $\hat{\delta}\left\{F_{n}, F_{n}^{\prime}\right\}<$ $\min \left\{\frac{1}{n}, c\right\}$. Note that this implies that $\operatorname{dim} F_{n}=k_{n}$ and $F_{n} \vee E_{s}=$ $H_{2 k_{n}}(s=1, \ldots, n-1)$.

Let $M_{n}=F_{n} \oplus \bigvee\left\{e_{2 j+1}+t_{n} e_{2 j+2}: j \geq k_{n}\right\}$. We show that M_{n} satisfies (i)-(v). Condition (v) follows from the definition. Since $t_{m} \neq t_{n}$ for $m<n$, we have $M_{m} \cap M_{n}=\{0\}$ and $M_{m} \vee M_{n}=H$.

We have $P_{F_{n}^{\prime}} x_{n}=\left\langle x_{n}, y_{n}\right\rangle y_{n}$ and $\left\|P_{F_{n}}-P_{F_{n}^{\prime}}\right\|=\hat{\delta}\left\{F_{n}, F_{n}^{\prime}\right\} \leq \frac{1}{n}$. Hence

$$
\left\|P_{M_{n}} x_{n}-\left\langle x_{n}, y_{n}\right\rangle y_{n}\right\|=\left\|P_{F_{n}} x_{n}-P_{F_{n}^{\prime}} x_{n}\right\| \leq \frac{1}{n}
$$

Let Q be the orthogonal projection onto the 1-dimensional subspace generated by $e_{2 k_{n}}$. Let $m<n$. We have $P_{M_{m}} e_{j_{n}} \in H_{2 k_{m}}$, and so $Q P_{M_{m}} e_{j_{n}}=0$. Furthermore

$$
\begin{gathered}
\left\|Q P_{M_{n}} e_{j_{n}}\right\|=\left\|Q P_{F_{n}} e_{j_{n}}\right\| \geq\left\|Q P_{F_{n}^{\prime}} e_{j_{n}}\right\|-\left\|Q\left(P_{F_{n}^{\prime}}-P_{F_{n}}\right) e_{j_{n}}\right\| \\
\geq\left\|Q P_{F_{n}^{\prime}} e_{j_{n}}\right\|-\hat{\delta}\left\{F_{n}^{\prime}, F_{n}\right\} \geq\left\|Q P_{F_{n}^{\prime}} e_{j_{n}}\right\|-c
\end{gathered}
$$

and

$$
\begin{gathered}
\left\|Q P_{F_{n}^{\prime}} e_{j_{n}}\right\|=\left\|Q P_{L_{n} \cap F_{n}^{\prime}} e_{j_{n}}+Q P_{L_{n}^{\prime} \cap F_{n}^{\prime}} e_{j_{n}}\right\|=\left\|Q P_{L_{n}^{\prime} \cap F_{n}^{\prime}} e_{j_{n}}\right\| \\
=\left\|Q P_{L_{n}^{\prime} \cap F_{n}^{\prime}}\left(u_{n} \cdot\left\|P_{L_{n}^{\prime}} e_{j_{n}}\right\|\right)\right\| \geq 4 c \cdot\left\|Q P_{L_{n}^{\prime} \cap F_{n}^{\prime}} u_{n}\right\|=4 c \cdot\left\|Q \frac{u_{n}+e_{2 k_{n}}}{2}\right\|=2 c .
\end{gathered}
$$

Hence

$$
\left\|P_{M_{n}} e_{j_{n}}-P_{M_{m}} e_{j_{n}}\right\| \geq\left\|Q P_{M_{n}} e_{j_{n}}-Q P_{M_{m}} e_{j_{n}}\right\| \geq 2 c-c=c
$$

Theorem 4. There exists a strongly closed lattice $\mathcal{L} \subset \mathcal{P}(H)$ which is not operator reflexive.

Proof. Let M_{n} be the subspaces constructed in the previous lemma. Let $\mathcal{L}=\left\{0, I, P_{M_{n}}: n \in \mathbb{N}\right\}$. Clearly \mathcal{L} is a lattice and $\mathcal{L} \neq \mathcal{P}(H)$. We show that \mathcal{L} is strongly closed. It is sufficient to show that the set $\left\{P_{M_{n}}: n \in \mathbb{N}\right\}$ is strongly closed. Let $P \in \mathcal{P}(H), P \in\left\{P_{M_{n}}: n \in\right.$ $\mathbb{N}\}^{-S O T}$. Let $c>0$ be the number from the previous lemma.

Let $x \in H$. Then there exists $n(x) \in \mathbb{N}$ such that

$$
\left\|P_{M_{n(x)}} x-P x\right\|<\frac{c}{2}
$$

and

$$
\left\|P_{M_{n(x)}} e_{j}-P e_{j}\right\|<\frac{c}{2} \quad(j=1,2,3)
$$

Moreover, $n(x)$ is determined uniquely and is independent of the choice of $x \in H$. Indeed, let $y \in H$ and let $n(y) \in \mathbb{N}$ satisfies

$$
\left\|P_{M_{n(y)}} x-P x\right\|<\frac{c}{2}
$$

and

$$
\left\|P_{M_{n(y)}} e_{j}-P e_{j}\right\|<\frac{c}{2} \quad(j=1,2,3) .
$$

For $j=1,2,3$ we have

$$
\left\|P_{M_{n(x)}} e_{j}-P_{M_{n(y)}} e_{j}\right\| \leq\left\|P_{M_{n(x)}} e_{j}-P e_{j}\right\|+\left\|P e_{j}-P_{M_{n(y)}} e_{j}\right\|<c .
$$

Hence $n(x)=n(y)$. Furthemore, $P_{M_{n(x)}} x=P x$. Indeed, for each $\delta \in\left(0, \frac{c}{2}\right)$ there exists $r \in \mathbb{N}$ such that

$$
\left\|P_{M_{r}} x-P x\right\|<\delta
$$

and

$$
\left\|P_{M_{r}} e_{j}-P e_{j}\right\|<\frac{c}{2} \quad(j=1,2,3)
$$

Hence $r=n(x)$ and $\left\|P_{M_{n(x)}} x-P x\right\|<\delta$. Since $\delta>0$ was arbitrary, we have $P_{M_{n(x)}} x=P x$ and $P=P_{M_{n(x)}}$.

Hence \mathcal{L} is closed in the strong operator topology.
On the other hand, the operator-reflexive hull of \mathcal{L} is the whole lattice $\mathcal{P}(H)$. To see this, let $P \in \mathcal{P}(H)$ and $x \in H,\|x\|=1$. If $P x=0$ then obviously $P x \in\{Q x: Q \in \mathcal{L}\}^{-}$. Let $P x \neq 0$ and $y=\frac{P x}{\|P x\|}$. Then there is a sequence $\left(n_{k}\right)$ such that $n_{k} \rightarrow \infty, x_{n_{k}} \rightarrow x$ and $y_{n_{k}} \rightarrow y$. Thus

$$
\begin{array}{r}
P x=\langle x, y\rangle y=\lim _{k \rightarrow \infty}\left\langle x_{n_{k}}, y_{n_{k}}\right\rangle y_{n_{k}}=\lim _{k \rightarrow \infty} P_{M_{n_{k}}} x_{n_{k}}= \\
=\lim _{k \rightarrow \infty} P_{M_{n_{k}}} x \in\{Q x: Q \in \mathcal{L}\}^{-},
\end{array}
$$

and so P is in the operator-reflexive hull of \mathcal{L}.

References

[1] V.S. Shulman and I. Todorov, On Subspace Lattices. I. Closedness type properties and tensor products, Integr. Equ. Oper. Theory 52 (2005), 561-579.
[2] T. Kato, Perturbation Theory for Linear Operators, second edition, SpringerVerlag, Berlin-Heidelberg-New York 1976.

Kamila Kliś-Garlicka, Institute of Mathematics, University of Agriculture, Al.Mickiewicza 24/28, 30-059 Kraków, Poland

E-mail address: rmklis@cyf-kr.edu.pl
Vladimir Müller, Institute of Mathematics, Academy of Sciences of the Czech Republic, Žitna 25, 115 67, Praha 1, Czech Republic

E-mail address: muller@math.cas.cz

[^0]: 1991 Mathematics Subject Classification. Primary 47D15; Secondary 47B20.
 Key words and phrases. operator reflexive, subspace lattice.
 The second author was supported by grant no. 201/06/0128 of GA CR.

