NON-OPERATOR REFLEXIVE SUBSPACE LATTICE

KAMILA KLIŚ-GARLICKA AND VLADIMIR MÜLLER

ABSTRACT. In [1] various types of closedness of subspace lattice was studied. In particular, the authors defined operator reflexivity which can be regarded as a one-point closedness of the lattice. They asked if all subspace lattices are operator reflexive. In this work we give an example that the answer is negative.

Let H be a Hilbert space. By $\mathcal{B}(H)$ we denote the algebra of all bounded linear operators on H and by $\mathcal{P}(H)$ the lattice of all orthogonal projections on H. A SOT-closed sublattice of $\mathcal{P}(H)$, containing the trivial projections 0 and I is called a *subspace lattice*.

Recall that for any set S of operators the *operator-reflexive hull* of S is defined as

ref
$$\mathcal{S} = \{A \in \mathcal{B}(H) : Ax \in \overline{\mathcal{S}x} \text{ for all } x \in H\}.$$

It was proved in [1] that if \mathcal{L} is a subspace lattice then

ref $\mathcal{L} = \{ P \in \mathcal{P}(H) : Px \in \overline{\mathcal{L}x} \text{ for all } x \in H \}.$

Recall after [1] that a projection lattice \mathcal{L} is called *operator reflexive* (or *1-closed*) if $\mathcal{L} = \operatorname{ref} \mathcal{L}$. In [1] authors proved that operator reflexive lattices are always SOT-closed, but they asked if all subspace lattices are operator reflexive. Here we intend to proof that it is not so.

Let M be a subspace of a Hilbert space H. We denote by P_M the orthogonal projection onto M. Let $M, L \subset H$ be subspaces. Write

$$\delta(M, L) = \sup\{\text{dist}\,\{x, L\} : x \in M, \|x\| \le 1\}.$$

Denote by $\hat{\delta}(M, L) = \max\{\delta(M, L), \delta(L, M)\}$ the gap between M and L. It is well-known, see [2], p. 197, that $\hat{\delta}(M, L) = ||P_M - P_L||$. Moreover, if $\hat{\delta}(M, L) < 1$ then dim $M = \dim L$.

Lemma 1. Let H be a finite-dimensional Hilbert space, $M, L \subset H$ subspaces, dim $M = \dim L$, dim $H = 2 \dim M$. Let $\varepsilon > 0$. Then there exists a subspace $M' \subset H$ such that $\hat{\delta}(M', M) \leq \varepsilon$ and $M' \cap L = \{0\}$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47D15; Secondary 47B20.

Key words and phrases. operator reflexive, subspace lattice.

The second author was supported by grant no. 201/06/0128 of GA CR.

Proof. We may assume that $\varepsilon < 1$. We have dim $H = \dim M + \dim L = \dim(M \cap L) + \dim(M + L)$. Hence $\dim(M \cap L) = \dim(M + L)^{\perp}$. Let $V: M \cap L \to (M + L)^{\perp}$ be a surjective isometry.

Let $M' = (I + \varepsilon V)(M \cap L) \oplus (M \ominus (M \cap L))$. Clearly M' is a subspace and dim $M' = \dim M$.

Suppose that $u \in M' \cap L$. Then $u = (I + \varepsilon V)x + y$ for some $x \in M \cap L$ and $y \in M \ominus (M \cap L)$. We have $u - x - y \in M + L$ and $\varepsilon Vx \perp (M + L)$, so $\varepsilon Vx = 0 = u - x - y$. Thus x = 0 and u = y. Hence $y \in M \cap L$, and so y = 0 and u = 0. Consequently, $M' \cap L = \{0\}$.

Suppose that $u \in M$, ||u|| = 1. Then u = x + y for some $x \in M \cap L$ and $y \in M \ominus (M \cap L)$ with $||x||^2 + ||y||^2 = ||u||^2 = 1$. Then dist $\{u, M'\} \leq ||u - (I + \varepsilon V)x - y|| = ||\varepsilon V x|| \leq \varepsilon$. Hence $\delta(M, M') \leq \varepsilon$.

Conversely, let $v \in M'$, ||v|| = 1. Then $v = (I + \varepsilon V)x + y$ for some $x \in M \cap L$ and $y \in M \ominus (M \cap L)$. Since $\varepsilon Vx \perp y$, we have $||(I + \varepsilon V)x|| \leq 1$. Since $\varepsilon Vx \perp x$, we have $||x|| \leq 1$. Thus

$$\operatorname{dist} \{v, M\} \le \|v - (x + y)\| = \|\varepsilon V x\| \le \varepsilon$$

and so $\hat{\delta}(M', M) \leq \varepsilon$.

Lemma 2. Let H be a finite dimensional Hilbert space, dim H = 2n, let $M_1, \ldots, M_k, L \subset H$ be n-dimensional subspaces, let $\varepsilon > 0$. Then there exists a subspace $L' \subset H$ such that $\hat{\delta}(L', L) \leq \varepsilon$ and $L' \cap M_i =$ $\{0\}$ $(i = 1, \ldots, k)$.

Proof. We prove the statement by induction on k. For k = 1 the statement was proved in Lemma 1. Suppose that the statement is true for some k - 1 and let $M_1, \ldots, M_k, L, \varepsilon$ be given.

By the induction assumption, there exists a subspace $L'' \subset H$ such that $\hat{\delta}(L, L'') \leq \varepsilon/2$ and $L'' \cap M_i = \{0\}$ $(i = 1, \dots, k - 1)$.

By a compactness argument, there exists $\delta > 0$ such that dist $\{x, L''\} \ge \delta$ whenever $1 \le i \le k - 1$, $x \in M_i$, ||x|| = 1. By Lemma 1, there exists $L' \subset H$ such that $\hat{\delta}(L', L'') \le \min\{\varepsilon/2, \delta/2, \}$ and $L' \cap M_k = \{0\}$.

We have $\hat{\delta}\{L', L\} = \|P_{L'} - P_L\| \le \|P_{L'} - P_{L''}\| + \|P_{L''} - P_L\| \le \varepsilon.$

We show that $L' \cap M_i = \{0\}$ (i = 1, ..., k-1). Fix $i \in \{1, ..., k-1\}$ and suppose that there exists $x \in L' \cap M_i$, ||x|| = 1. Then there exists $x' \in L''$ with $||x' - x|| \leq \hat{\delta}(L', L'') \leq \delta/2$, a contradiction with the definition of δ . Hence $L' \cap M_i = \{0\}$ (i = 1, ..., k). \Box

Let *H* be the Hilbert space with an orthonormal basis e_1, e_2, \ldots For $k \in \mathbb{N}$ let $H_k = \bigvee \{e_1, \ldots, e_k\}$. Denote by S_H the unit sphere in *H*. Fix a sequence $(x_n, y_n)_{n=1}^{\infty}$ dense in $S_H \times S_H$ such that for each $n \in \mathbb{N}$ the vectors x_n , y_n are linearly independent and $\langle x_n, y_n \rangle \neq 0$. Moreover,

we may assume that all the vectors x_n, y_n have finite support, i.e., $x_n, y_n \in \bigcup_{k \in \mathbb{N}} H_k$ for each $n \in \mathbb{N}$.

Fix a sequence $(t_n)_{n=1}^{\infty} \subset (0, 1)$ consisting of mutually distinct numbers.

Lemma 3. There exist subspaces $M_n \subset H$ $(n \in \mathbb{N})$ such that:

- (i) $M_n \cap M_m = \{0\} \quad (m, n \in \mathbb{N}, m \neq n);$
- (ii) $M_n \vee M_m = H$ $(m, n \in \mathbb{N}, m \neq n);$
- (iii) $||P_{M_n}x_n \langle x_n, y_n \rangle y_n|| \le 1/n;$
- (iv) there is a constant c > 0 such that for all $m, n \in \mathbb{N}, m \neq n$,

$$\max_{j=1,2,3} \|P_{M_n} e_j - P_{M_m} e_j\| \ge c;$$

(v) there is an increasing sequence of positive integers $(k_n)_{n=1}^{\infty}$ such that each M_n can be written as

$$M_n = F_n \oplus \bigvee \{ e_{2j+1} + t_n e_{2j+2} : j \ge k_n \},$$

where $F_n \subset H_{2k_n}$ is a k_n -dimensional subspace.

Proof. We construct the subspaces M_n by induction on n. Let $n \in \mathbb{N}$ and suppose that the subspaces M_1, \ldots, M_{n-1} satisfying (i)–(v) have already been constructed.

Let $L_n = \bigvee \{x_n, y_n\}$. By assumption, dim $L_n = 2$. Fix $j_n \in \{1, 2, 3\}$ such that

dist
$$\{e_{j_n}, L_n\} = \max_{i=1,2,3} \text{dist} \{e_i, L_n\}.$$

Clearly there is a constant c > 0 such that $\max_{i=1,2,3} \operatorname{dist} \{e_i, L\} \ge 4c$ for each 2-dimensional subspace $L \subset H$. Hence $\operatorname{dist} \{e_{j_n}, L_n\} \ge 4c$. Let $u_n = \frac{P_{L_n^\perp} e_{j_n}}{\|P_{L_n^\perp} e_{j_n}\|}$. Fix $k_n > \max\{k_{n-1}, 2\}$ such that $x_n, y_n \in H_{2k_n-1}$. Since $u_n = \frac{e_{j_n} - P_{L_n} e_{j_n}}{\|P_{L_n^\perp} e_{j_n}\|}$ and $e_{j_n} \in L_n + L'_n$, thus $u_n \in H_{2k_n-1}$.

Let $L'_n = \bigvee \{u_n, e_{2k_n}\}$. Then dim $L'_n = 2$ and $L'_n \perp L_n$. Let F'_n be any k_n -dimensional subspace of H_{2k_n} such that $y_n \in F'_n$, $u_n + e_{2k_n} \in F'_n$ and dim $(H_{2k_n} \ominus (L_n + L'_n)) \cap F'_n = k_n - 2$.

For $s = 1, \ldots, n-1$ let $E_s \subset H_{2k_n}$ be defined by

$$E_s = F_s \oplus \bigvee \{ e_{2j+1} + t_s e_{2j+2} : k_s \le j < k_n \}.$$

By Lemma 2 for the subspaces $E_1, \ldots, E_{n-1}, F'_n$ there exists a subspace $F_n \subset H_{2k_n}$ such that $F_n \cap E_s = \{0\}$ $(s = 1, \ldots, n-1)$ and $\hat{\delta}\{F_n, F'_n\} < \min\{\frac{1}{n}, c\}$. Note that this implies that dim $F_n = k_n$ and $F_n \vee E_s = H_{2k_n}$ $(s = 1, \ldots, n-1)$.

Let $M_n = F_n \oplus \bigvee \{e_{2j+1} + t_n e_{2j+2} : j \ge k_n\}$. We show that M_n satisfies (i)–(v). Condition (v) follows from the definition. Since $t_m \neq t_n$ for m < n, we have $M_m \cap M_n = \{0\}$ and $M_m \vee M_n = H$.

We have $P_{F'_n} x_n = \langle x_n, y_n \rangle y_n$ and $||P_{F_n} - P_{F'_n}|| = \hat{\delta}\{F_n, F'_n\} \leq \frac{1}{n}$. Hence

$$||P_{M_n}x_n - \langle x_n, y_n \rangle y_n|| = ||P_{F_n}x_n - P_{F'_n}x_n|| \le \frac{1}{n}.$$

Let Q be the orthogonal projection onto the 1-dimensional subspace generated by e_{2k_n} . Let m < n. We have $P_{M_m}e_{j_n} \in H_{2k_m}$, and so $QP_{M_m}e_{j_n}=0.$ Furthermore

$$\begin{aligned} \|QP_{M_n}e_{j_n}\| &= \|QP_{F_n}e_{j_n}\| \ge \|QP_{F'_n}e_{j_n}\| - \|Q(P_{F'_n} - P_{F_n})e_{j_n}\| \\ &\ge \|QP_{F'_n}e_{j_n}\| - \hat{\delta}\{F'_n, F_n\} \ge \|QP_{F'_n}e_{j_n}\| - c \end{aligned}$$

and

$$\|QP_{F'_n}e_{j_n}\| = \|QP_{L_n\cap F'_n}e_{j_n} + QP_{L'_n\cap F'_n}e_{j_n}\| = \|QP_{L'_n\cap F'_n}e_{j_n}\| = \|QP_{L'_n\cap F'_n}e_{j_n}\| = \|QP_{L'_n\cap F'_n}u_n\| = 4c \cdot \|Q\frac{u_n + e_{2k_n}}{2}\| = 2c.$$

Hence

$$||P_{M_n}e_{j_n} - P_{M_m}e_{j_n}|| \ge ||QP_{M_n}e_{j_n} - QP_{M_m}e_{j_n}|| \ge 2c - c = c.$$

Theorem 4. There exists a strongly closed lattice $\mathcal{L} \subset \mathcal{P}(H)$ which is not operator reflexive.

Proof. Let M_n be the subspaces constructed in the previous lemma. Let $\mathcal{L} = \{0, I, P_{M_n} : n \in \mathbb{N}\}$. Clearly \mathcal{L} is a lattice and $\mathcal{L} \neq \mathcal{P}(H)$. We show that \mathcal{L} is strongly closed. It is sufficient to show that the set $\{P_{M_n} : n \in \mathbb{N}\}$ is strongly closed. Let $P \in \mathcal{P}(H), P \in \{P_{M_n} : n \in \mathbb{N}\}$ \mathbb{N} }^{-SOT}. Let c > 0 be the number from the previous lemma.

Let $x \in H$. Then there exists $n(x) \in \mathbb{N}$ such that

$$||P_{M_{n(x)}}x - Px|| < \frac{c}{2}$$

and

$$||P_{M_{n(x)}}e_j - Pe_j|| < \frac{c}{2}$$
 $(j = 1, 2, 3).$

Moreover, n(x) is determined uniquely and is independent of the choice of $x \in H$. Indeed, let $y \in H$ and let $n(y) \in \mathbb{N}$ satisfies

$$||P_{M_{n(y)}}x - Px|| < \frac{c}{2}$$

and

$$|P_{M_{n(y)}}e_j - Pe_j|| < \frac{c}{2}$$
 $(j = 1, 2, 3).$

For j = 1, 2, 3 we have

 $||P_{M_{n(x)}}e_j - P_{M_{n(y)}}e_j|| \le ||P_{M_{n(x)}}e_j - Pe_j|| + ||Pe_j - P_{M_{n(y)}}e_j|| < c.$ Hence n(x) = n(y). Furthemore, $P_{M_{n(x)}}x = Px$. Indeed, for each

 $\delta \in (0, \frac{c}{2})$ there exists $r \in \mathbb{N}$ such that

$$\|P_{M_r}x - Px\| < \delta$$

and

$$||P_{M_r}e_j - Pe_j|| < \frac{c}{2}$$
 $(j = 1, 2, 3).$

Hence r = n(x) and $||P_{M_{n(x)}}x - Px|| < \delta$. Since $\delta > 0$ was arbitrary, we have $P_{M_{n(x)}}x = Px$ and $P = P_{M_{n(x)}}$.

Hence \mathcal{L} is closed in the strong operator topology.

On the other hand, the operator-reflexive hull of \mathcal{L} is the whole lattice $\mathcal{P}(H)$. To see this, let $P \in \mathcal{P}(H)$ and $x \in H$, ||x|| = 1. If Px = 0 then obviously $Px \in \{Qx : Q \in \mathcal{L}\}^-$. Let $Px \neq 0$ and $y = \frac{Px}{\|Px\|}$. Then there is a sequence (n_k) such that $n_k \to \infty$, $x_{n_k} \to x$ and $y_{n_k} \to y$. Thus

$$Px = \langle x, y \rangle y = \lim_{k \to \infty} \langle x_{n_k}, y_{n_k} \rangle y_{n_k} = \lim_{k \to \infty} P_{M_{n_k}} x_{n_k} =$$
$$= \lim_{k \to \infty} P_{M_{n_k}} x \in \{Qx : Q \in \mathcal{L}\}^-,$$

and so P is in the operator-reflexive hull of \mathcal{L} .

References

- [1] V.S. SHULMAN AND I. TODOROV, On Subspace Lattices. I. Closedness type properties and tensor products, Integr. Equ. Oper. Theory 52 (2005), 561-579.
- [2] T. KATO, Perturbation Theory for Linear Operators, second edition, Springer-Verlag, Berlin-Heidelberg-New York 1976.

KAMILA KLIŚ-GARLICKA, INSTITUTE OF MATHEMATICS, UNIVERSITY OF AGRI-CULTURE, AL.MICKIEWICZA 24/28, 30-059 KRAKÓW, POLAND *E-mail address*: rmklis@cyf-kr.edu.pl

VLADIMIR MÜLLER, INSTITUTE OF MATHEMATICS, ACADEMY OF SCIENCES OF THE CZECH REPUBLIC, ŽITNA 25, 115 67, PRAHA 1, CZECH REPUBLIC *E-mail address*: muller@math.cas.cz