Constitutive models

Part 2
Elastoplastic



Elastoplastic material models

» Elastoplastic materials are assumed to
behave elastically up to a certain stress limit
after which combined elastic and plastic
behaviour occurs.

 Plasticity Is path dependent — the changes In
the material structure are irreversible
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Stress-strain curve of a hypothetical material
Idealized results of one-dimensional tension test
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Real life 1D tensile test, cyclic loading
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Mild carbon steel

before and after heat treatment
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The plasticity theory covers the
following fundamental points

* Yield criteria to define specific stress
combinations that will initiate the non-elastic
response — to define initial yield surface

* Flow rule to relate the plastic strain increments to
the current stress level and stress increments

 Hardening rule to define the evolution of the
yield surface. This depends on stress, strain and
other parameters



Yield surface, function F,.& K..)=0

* Yield surface, defined in stress space separates stress states
that give rise to elastic and plastic (irrecoverable) states

 For initially isotropic materials yield function depends on
the yield stress limit and on invariant combinations of
stress components

* Asasimple example Von Mises ... F =0 4.qive = Oyielg =

 Yield function, say F, is designed in such a way that

0

F <0 stress state within the surface
F =0 onthesurface
F >0 outside, iInadmissible for analytical plasticity



Three kinematic conditions are to be
distinguished

* Small displacements, small strains
— material nonlinearity only (MNO)

« Large displacements and rotations, small strains
— TL formulation, MNO analysis

— 2PK stress and GL strain substituted for engineering
stress and strain

* Large displacements and rotations, large strains
— TL or UL formulation
— Complicated constitutive models
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Rheology models for plasticity

(a) Rigid—Perfectly Plastic
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(b) Elastic—Perfectly Plastic

SIS LTSS 17777

€

(¢) Rigid—Linear Work Hardening
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(d) Elastic—Linear Work Hardening



Loading, unloading, reloading and cyclic loading in 1D
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|sotropic hardening In principal stress space

Original yield curves —_
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(a) Mises Circles (b) Tresca Hexagons

von Mises expressed by principal stresses and 1D yield stress in tension

F=[(0,-0,)" +(0,-05)" +(05-0,)"]-20y, =0

Tresca expressed by principal stresses and 1D yield stress in tension

F=(o,-0,)—0,=0, o,>0,>0,



Loading, unloading, reloading and cyclic loading in 1D

Kinematic hardening

initial yield stress
stress

loadi
reloading OadlE —

e
-/r
/ '// / mioading strain

\

+ new yield stress 1




Kinematic hardening in principal stress space

S

Instead of F(o;;) =0 (as in case of isotropic hardening)

we take F (o, — ;) = 0,where ¢; = cg;;, C... constant



Von Mises yield condition, four hardening models

1. Perfect plasticity — no hardening | 2. Isotropic hardening

3. Kinematic hardening s 4. Isotropic-kinematic



Different types of yield functions
F=F(o;) --- nperfectplasticity

means no hardening, material starts to flow and is inclided to do so forever.
It practice it is stabilized by the "healthy' material structure which exists
around the plasticity region.

Plastic material flow is caused by motion of dislocations.
Definition of dislocations...

Generally, the hardening depends on blocking the motion of dislocations (free flow)
which depends on the permanent plastic strain 55’.
F=F(o;—¢«;) --- kinematic hardening

where ¢;; = ¢ g; and c is a constant.

F=F(oy,&) - non-isotropic hardening

hardening depends on every component of ¢; in a different way
F=F(o;,, K) --- isotropic hardening

!

where K = K(gijp) Is a scalar function of gif, usually an invariant.

Generally, which is not general at all, we could have
F=F(o,¢;,K)

jr =y



Plasticity models — physical relevance

* \VVon Mises
- no need to analyze the state of stress
- a smooth yield sufrace
- good agreement with experiments
 Tresca
- simple relations for decisions (advantage for hand calculations)
- yield surface Is not smooth (disadvantage for programming,
the normal to yield surface at corners is not uniquely defined)
 Drucker Prager
a more general model



1D example, bilinear characteristics

4 stress der =deg +de,

do do N do
E. E E

do _j/ 5

—/ tan #=E, ... tangent modulus
Oy —

Strain hardening parameter

plastic
| |
a = E, = 5E B H’
total " E-E, 1-E,/E
tana=E strain>

... elastic modulus o — de; =dez, ... means total or elastoplastic



Strain hardening parameter again

Upon unloading and reloading the effective stress must exceed
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Initial yield %o|—
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Geometrical meaning of the strain hardening parameter is
the slope of the stress vs. plastic strain plot
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How to remove elastic part
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1D example, bar (rod) element
elastic and tangent stiffness

. . .
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Results of 1D experiments must

be correlated to theories capable

to describe full 3D behaviour of
materials

e Incremental theories relate stress increments to strain increments

 Deformation theories relate total stress to total strain



Relations for incremental theories
isotropic hardening example 1/9

Relation between increments and rates : Itirgo(lj—(t7 =0

Parameter only
Let the yield surfaceis F(o;, ;) =0

!

iIncrement of deformation dependson F and o
If F <0 elastic

F=0 and o, <0 elastic

F=0 and o, >0 -elastoplastic

F=0 and &, =0 neutral-itmeansthaté; =0
F >0 gobacktoyieldsurface



Relations for incremental theories
isotropic hardening example 2/9

Flow rule is assumed in the form (Drucker,1947)
= ﬂ,q Eq. (1) ... increment of plastic deformation has a direction
normal to F while its magnitude (length of vector) is not yet known
Where

is SWM
OF defines outer normal to F

aaﬂ 5031 In six dimensional stress space

F can be expressed as a total differential

szﬁngJr@F ; 8F . oF ..
ofept 0&; o O&;

which must be zero during plastic deformations, so dF =0




Relations for incremental theories
isotropic hardening example 3/9
oF . OFy

0&,, O&y,

the condition dF = 0 can be expressed in the form
qdo’' —p' de"=qc'-p' £ =0 eq. (1)
stress increments are

6=E¢" =E(£-¢") eq. (iii)

| ]

elastic total plastic deformations

Denoting p = —{

matrix of elastic moduli



Relations for incremental theories
isotropic hardening example 4/9

Combining the relations for flow rule (1),

dF =0 (11) and for stress increments (1i1) we get
.— Row vector

Still to be determined Dot product and quadratic form ... scalar

Lambda is the scalar quantity determining the magnitude
of plastic strain increment in the flow rule



Relations for incremental theories
isotropic hardening example 5/9

Now, for the stress increment we can write
6=E&" =E(¢-¢") with £  =1q

Substituting for 4 we get the stress increment
as a function of total strain increment in the form

6 =EF¢ / diadic product
with
FEP _F _ Eq (Eq)’

p'9+q'Eq

where p sti hée\to be determined

equal to zero for perfect plasticity



Relations for incremental theories

isotropic hardening example 6/9

ok . Oy At time t
651P1 @6‘;1

Assume von Mises yield conditio 1

where J, = 3;S; IS the second deviatoric |nvar|ant

Determination of p = —{

oF
to evaluate — we need o, = f (&;)

O&;
Experiments suggest that
‘o, = f(W"), W' = jaij de; -~ workdone by plastic increments
Chain rule A new constant defined

oF oF d'c, OW"
os" 0" o, OW" @5 T

1)




Relations for incremental theories
isotropic hardening example 7/9

in 1D the elastic work done W* = 1(‘o, + %) '&”

1D bilinear characteristics ‘o, =(°c, + E* '&")
1

—WF = SEF (‘o - c?)

t
ayv — GF\)/:AZEtJ E_:gE :E E_E
oo, E 3 o, 3 SE-E

sofinalyp=Ao, 0, O 31}T



Relations for incremental theories
isotropic hardening example 8/9

Ssummary.[For given g;; and o, and §; we can compute 6 as follows

O =5(01 + 0, +03)

S :{311 Sy S33 Sy Sp3 S31}T ={o 117 Om O 70y 03370 015 Oy 031}T
q ={Sy; Sy, Sz3 251, 25, 2331}T

2 EE'

" 3E-E’

B T
p= A{Gll Oy O33 015 O3 (731}

A

a=p'q, b=Eq, c=q'Eq=q'b
bb'
da+C

EEP —F —

6=E¢



J2 theory, perfect plasticity 1/6

alternative notation ... example of numerical treatment

{o}=[E{e}...Hooke's law
{G}:{JXX ny O, Z-xy Z-yz Ty

{g}:{gxx gyy 522 7/xy 7/yz 7/ZX}T
o, =30, +0,+0,) meanstress

T

stress deviator

{S} — {Gxx 0Oy =0, 0, =0, Ty Ty, Ty !

second Invariant of stress deviator
_ 1 2 2 2 2 2 2
Jo, =Jd, =3(S;, + Sy St ZSXy + 23yZ +25;)

or J,=21{s}'[M]{s}, with [M]=diag(1112,2,2)



J2 theory, numerical treatment ...2/6

one can prove that

{s}' [MHo}={s}' [MI{s}, since s, +s,+s,=0
and also[E][M |{s}=2G{s}, with G=E/(1+ u)

von Mises effective stress . =4/3J, = \/ 3H{s} [M]{s}/2

yield criterion{for perfectly plastic behaviour o, = o,




J2 theory, numerical treatment ...3/6

Flow rulejaccording to Prandtl - Reuss hypothesis
. oF
Ry

{o}=[E{c"}=[El{s —&"}... Hooke's law
{6}=[El{}-[El{"}=[E]{c} - 2G{s} ... its time derivative, increment
no plastic deformation in elastic region can be expressed by
If o <o, then 1 =0,

else 4 >0

= A[M J{s}... A4 Isso far unknown parameter

endif

Six nonlinear differential equations + one algebraic constraint (inequality)
There is exact analytical solution to this. In practice we proceed numerically



J2 theory, numerical treatment ...4/6

Differentiating plasticity condition o = o,
: 0. . 3s' Ms
Oett = ?S } 20 N
= s'Ms=0andalsos'M¢é =0

Substituting for ¢

s' ME¢ = 2G s Ms

and realizing that

2GAs'Ms =4GA), =4GAo’, 13=4GAlcl 3
we get

_3s'ME¢  3s'¢ System of six nonlinear
differential equations

4Gol 208
finally / to be integrated

6 =E"¢ |with EEP:E—gssT
Oy

0




J2 theory, numerical treatment ...5/6
predictor-corrector method, first part: predictor

s
1
1. known stress o, T 3b. plastic part of increment (1-r) As,

4. s, =8, +TI As;
5. AA=3(1-r)s. Ae/(20%)

S

6. 6,,=6;—-2GAls,

3a. elastic part of increment r As;



J2 theory, numerical treatment ...6/6
predictor-corrector method, second part: corrector

Correction
For s, =ps., findpginsuchaway that
O etf (st+At) =0y

Oit (B Stia) = Oy

! S
B O (Sia) =0y 1 A
Ny L |
O etf (St+At) . 2GAAN Sc B
Stoat — Stear = (1= ) Seon _ : :
and since the spherical part of the stress tensor HRTS
,. N

does not enter into plasticity considerations we have

Cint = Orint — (1_ IB) Stiat



Secant stiffness method and the method of radial return
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