
Introduction to algebraic geometry

Hong Van Le

Matematicky Ustav AVČR

Algebraic geometry can be thought as an approach to solve problems in (com-
mutative) algebra by systematical constructing necessary geometric objects, e.g.
we associate to the solution of a system of polynomial equations with an alge-
braic variety in the corresponding affine space. Further a commutative algebra is
considered as an algebra of functions on some set.

In this lecture course we shall deal with algebraic varieties in affine or projective
spaces. We shall introduce the following important concepts: dimension, regular
functions, rational maps, and tangent spaces. Many examples and exercises shall
be provided.

Prerequisite: basis knowledge on rings, ideals and modules.
Recommended textbooks: - R. Hartshortne “Algebraic Geometry, Chapter I”,

Springer 1997,
- J. Harris, “Algebraic Geometry, a first course ”, Springer
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1 Algebraic sets in affine spaces. Hilbert’s Null-

stellensatz

Algebraic geometry deals with spaces and varieties over arbitrary ring (schemes)
but the classical algebraic geometry deals mostly with a closed field k. For the
simplicity we shall take k = C. The main philosophy is to associate appropriate
geometric notions (points, sets, topology, mappings, etc.) with corresponding
algebraic notions (ideals, rings, Zariski topology, morphisms, etc.) and conversely,
appropriate algebraic notions with corresponding geometric notions.

1.1 Algebraic sets

We denote by Cn the complex n-dimensional vector space. This space is also
considered as a complex affine space, i.e. a set with a faithful freely transitive
Cn-action. We also denote this space by AnC or An once the ground field C is
specified.

The algebraic object associated to this affine space is the ring C[z1, · · · , zn]
which is also called the ring of regular functions over Cn:

Cn ⇐⇒ C[z1, · · · , zn].

A set X ⊂ Cn is called algebraic, if there exists a subset T ⊂ C[z1, · · · , zn]
such that X is the zero set of T :

X = Z(T ),

i.e. for any f ∈ T and any (z1, · · · , zn) ∈ X we have f(z1, · · · , zn) = 0. Denote by
I(T ) the ideal generated by T in C[z1, · · · , zn]. Then we have

Z(T ) = Z(I(T )).

In this way we associate

{I, I is an ideal in C[z1, · · · , zn]} ⇐⇒ { algebraic sets in Cn}.

For any (algebraic) set X we denote by I(X) the ideal in C[z1, · · · , zn] of regulars
functions which vanish on X.

1.1.1 Exercise. Show that the union of two algebraic sets is an algebraic set
and the intersection of a family of algebraic sets is an algebraic set.
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1.2 Zariski topology

How we can define the notion of “close” or “far away” between ideals in a ring?
Rephrasing, how we can define a topology on the set of ideals?

1.2.1. Definition. The Zariski topology on Cn is defined by specifying the
closed sets in Cn to be precisely the algebraic sets. Equivalently a set is said to be
open in Zariski topology, if it is a complement of an algebraic set.

1.2.2. Example. A closed set in A1
C is either a finite set (the roots of a

polynomial P ∈ C[z]), or the whole affine line A1
C (in this case P = 0). Thus this

topology is not Haussdorf. (A topology is called Haussdorf if it satisfies the second
separateness axiom which says that for any two different points we can find their
neighborhoods which have no intersection.)

1.2.3. Exercise. If A and B are topological spaces, then we can define
the product topology on the space A × B by specifying the base of this product
topology to be the collection of the sets Uα×Vβ, where Uα and Vβ are open sets in
A and B respectively. Show that the usual topology on Cn is the product topology
of the usual topology on C but the Zariski topology on C2 is not the product of
the Zariski topology on C.

Hint Examine all closed subsets in the product of the Zariski topology on C×C.

Let us define the closure Ȳ of a set Y ⊂ Cn to be the smallest closed set which
contains Y .

1.2.4. Exercise. Show that the closure of the set S = {(m,n), | m ≥ n ≥
0,m ∈ Z, n ∈ Z} ⊂ C2 is equal to C2.

Hint Let P be a polynomial on C2 such that S are roots of P . Examine the
degree of P .

If Y is an algebraic set in Cn then we can define the induced Zariski topology
on Y by specifying the open sets in Y to be the intersection of open sets in Cn

with Y .
It is easy to see that the induced Zariski topology on C1 = {z2 = 0} ⊂ C2 is

the usual Zariski topology on C1.

1.3 Affine algebraic varieties

Now we shall examine the structure of algebraic sets closer. We shall decompose
an algebraic set into its irreducible components.

An algebraic set Y is called irreducible, if it cannot be represented as the
union of two algebraic sets such that each of them is a proper subset in S . For
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example the affine line C1 = {(z2 = 0)} ⊂ C2 is an irreducible algebraic set,
because any closed set in C1 is either a finite set or the whole line C1.

1.3.1. Proposition. An algebraic set is irreducible, if and only if, its ideal is
prime.

Proof. First we show that if a set Y is irreducible, then its ideal I(Y ) is
prime. Indeed, if fg ∈ I(Y ) then Y ⊂ Z(fg) = Z(f) ∪ Z(g). Hence we get the
decomposition

Y = (Y ∩ Z(f)) ∪ (Y ∩ Z(g)),

so that Z(f) ∩ Y or Z(g) ∩ Y must be equal to Y . Consequently, f ∈ I(Y ) or
g ∈ I(Y ) which implies that I(Y ) is prime.

Conversely, let I(Y ) be prime, we shall show that Y is irreducible. If Y =
Y1 ∪ Y2, then I(Y ) = I(Y1) ∩ I(Y2). Assume that I(Y ) 6= I(Y1) i.e. there is an
element g ∈ I(Y1) \ I(Y ). Since I(Y ) is prime, and g · I(Y2) ⊂ I(Y ) we get that
I(Y2) ⊂ I(Y ). Hence I(Y2) = I(Y ), i.e. Y is irreducible. 2

An affine algebraic variety (or simply affine variety) is an irreducible closed
algebraic set with the induced Zariski topology of Cn. An open subset of an
algebraic variety is called a quasi-affine variety.

1.3.2. Example. The twisted cubic curve C = (t, t2, t3| t ∈ C) ⊂ C3 is an
affine algebraic variety. Clearly I(C) = ((z2

1 − z2), (z1z2 − z3)). To prove that
I(C) is prime, it suffices to show that the quotient A(C) = C[z1, z2, z3]/I(C) is an
integral domain. But it is easy to see that A(C) = C[z] is an integral domain.

1.3.3. Exercise. Prove that any closed subset Y in Cn has a decomposition
of into irreducible closed subsets and this decomposition is unique.

Hint: Any chain of decompositions of closed subsets of Y must stop at irre-
ducible closed subsets, since the ring C[z1, · · · , zn] is Noetherian.

1.4 Hilbert’s Nullstellensatz

Let us study deeper the correspondence between algebraic sets Yi in Cn and ideals
ai in C[z1, · · · , zn]. The following properties are obvious

a1 ⊂ a2 =⇒ Z(a1) ⊃ Z(a2).

Y1 ⊂ Y2 =⇒ I(Y1) ⊃ I(Y2).

I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).

We shall prove the following important theorem which says that the correspon-
dence between algebraic sets in Cn and radical ideals in C[z1, · · · , zn] are 1-1.
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1.4.1. Hilbert’s Nullstellensatz. Let a be an ideal in C[z1, · · · , zn]. Then

I(Z(a)) =
√

a.

Proof. First we shall prove the following

1.4.2. Lemma. Any maximal ideal m ⊂ C[z1, · · · , zn] is of the form

m = (z1 − a1, · · · , zn − an), ai ∈ C.

Consequently for any ideal a 6= C[z1, · · · , zn] we have

Z(a) 6= ∅.

Proof of Lemma 1.4.2. Let m be a maximal ideal in C[z1, · · · , zn]. Denote by
K the residue class field C[z1, · · · , zn]/m. Clearly K contains C as its subfield, and
K has a countable C -basis, since C[z1, · · · , zn] has a countable C-basis consisting
of monomials zk11 · · · zkn

n .
If K 6= C then there is an element p ∈ K \C. Element p is transcendental over

C because C is algebraic closed 1. Hence the set

(
1

p− λ
| λ ∈ C)

is uncountable and their elements are linearly independent over C, which is a
contradiction. Therefore K = C. In particular we have

zi + m = ai + m for suitable ai ∈ C.

This proves the first statement. The second follows from the fact that a must
belong to some maximal ideal. 2

Continuation of the proof of Hilbert’s Nullstellensatz. Let f be a polynomial
which vanishes on the set Z(a). We shall find a finite number m such that fm ∈ a.

We denote by R the ring C[z0, z1, · · · , zn]. Let

b := (a, 1− z0f) ⊂ R.

Clearly Z(b) = 0. By Lemma 1.4.2 we get

b = R.

1that is why Lemma 1.4.2 does not hold for the ring R
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In particular we can find solutions hi, h ∈ R and fi ∈ a to the following equation

(1.4.3)
∑

hifi + h(1− z0f) = 1.

Now let us substitute 1
f

for z0 as a formal variable in (1.4.3). We get

(1.4.4)
∑
i

hi(
1

f
, z1, · · · , zn)fi = 1.

Let m be the maximal degree of x0 in LHS of (1.4.4). Then multiplying the both
sides of (1.4.4) with fm we get

(1.4.5)
∑
i

h̃ifi = fm,

where h̃i ∈ a. This completes the proof of Hilbert’s Nullstellensatz. 2

1.4.6. Exercise. i) Prove that a system of polynomial equations

f1(z1, · · · , zn) = 0,

· · ·

fm(z1, · · · zn) = 0

has no solution in Cn iff 1 can be expressed as a linear combination

1 =
∑

pifi

with polynomial coefficients pi.
ii)Show that any point x in an algebraic set X ⊂ Cn is a Zariski closed set.

Hint. Use the Nullstellensatz for the first statement and use Lemma 1.3.2 for
the second statement.

2 Projective varieties and graded rings

2.1 Projective spaces

We denote by CP n the complex projective space whose points are complex lines
in the vector space Cn+1, i.e. 1-dimensional subspaces of the vector space Cn.
Equivalently

CP n = (Cn+1 \ {0})/C∗
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where C∗ is the group of non-zero scalars acting on Cn+1 by multiplication. This
means that we consider a point of CP n as an equivalence class of points in Cn+1

under the action of C∗ as follows. Two points (z0, · · · , zn) and (z′0, · · · , z′n) are
equivalent, if there exists a number λ ∈ C∗ such that

zi = λz′i, for all 0 ≤ i ≤ n.

The equivalent class of (z0, z1, · · · , zn) will be denoted by [z0 : z1 : · · · , : zn].

2.2 Homogeneous polynomials and graded rings

We can also define the dual action of C∗ on the ring C[z0, z1, · · · , zn] by setting

(λ ◦ P )(z0, · · · , zn) := P (λz0, · · · , λzn),

for any λ ∈ C∗. Since C∗ is abelian, the ring C[z0, z1, · · · , zn] considered as a vector
space over C can be decomposed into eigen-spaces of the action of λ for all λ ∈ C

(2.2.1) C[z0, z1, · · · , zn] = ⊕kSk.

Here Sk is an eigen-space w.r.t. weight k ∈ Hom(C∗,C∗) : λ 7→ λk,

λ ◦ P = λk · P, if P ∈ Sk,

for all λ ∈ C∗. The splitting (2.2.1) is also called a grading of the ring C[z0, · · · , zn],
since we have

(2.2.2) Sk · Sl ⊂ Sk+l.

Elements of Sk are called homogeneous polynomials. The ring C[z0, · · · , zn]
provided with the splitting (2.2.1) which satisfies (2.2.2) is a graded ring.

An ideal a ⊂ C[z0, · · · , zn] is called a homogeneous ideal, if

a = ⊕k(a ∩ Sk).

2.2.3. Example. A maximal ideal a ⊂ C[z0, z1, · · · , zn] is a homogeneous
ideal, if and only if Z(a) = {0} ∈ Cn+1.

2.2.4. Exercise. Prove that an ideal is homogeneous if and only if it can be
generated by homogeneous elements. Prove that the sum, product, intersection
and radical of homogeneous ideals are homogeneous.
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2.3 Projective varieties and homogeneous ideals

We associate to any homogeneous polynomial P ∈ Vk a function P̃ : CP n → {0, 1}
according to the following rule

P̃ ([z0 : z1, · · · , : zn]) = 0, if P (z0, z1, · · · , zn) = 0,

P̃ ([z0 : z1, · · · , : zn]) = 1, if P (z0, z1, · · · , zn) 6= 0.

Clearly the function P̃ is well-defined. So we can define for any set T of
homogeneous polynomials in C[z0, z1, · · · , zn] its zero set Z(T ) in the projective
space CP n by setting

Z(T ) := {p ∈ CP n| P̃ (p) = 0 for all P ∈ T}.

A subset Y ⊂ CP n is called algebraic, if there exists a set T of homogeneous
polynomials of C[z0, · · · , zn] such that Y = Z(T ).

2.3.1. Exercise. Show that the union of two algebraic sets is an algebraic
set. The intersection of any family of algebraic sets is an algebraic set.

For any subset Y ⊂ CP n we denote by I(Y ) the homogeneous ideals of
Y ⊂ C[z0, · · · , zn] the ideal generated by homogeneous elements f in C[z0, · · · , zn]
such that f vanishes on Y . (This ideal is homogeneous according to Exercise 2.2.4)

The Zariski topology on CP n is defined by specifying the open sets to be
the complement of algebraic sets.

Once we have a topological space the notion of irreducible (not necessary alge-
braic) sets will apply. We say that a set Y is irreducible, if it cannot be represented
as the union of two proper subsets which of them is closed in Y .

A projective (algebraic) variety is an irreducible algebraic set in CP n with
the induced topology. A quasi projective variety is an open subset in a pro-
jective variety.

2.3.2. Example. We denote by Hi ⊂ CP n the zero set of the linear function
zi. Then Hi is called a hyper-plane. It is a projective variety, because I(Hi) = (zi)
is a prime ideal. In fact an algebraic set Y ⊂ CP n is irreducible, if and only if its
homogeneous ideal is prime. To prove this we can repeat the proof of Proposition
3.1 or we observe that there is a correspondence between algebraic set Y ⊂ CP n

and its cone CY in Cn+1 which is defined by

CY := {(z0, z1, · · · , zn)| [z0, z1, · · · , zn] ∈ Y }.

They have the same ideal. The property being reducible is also preserved by this
correspondence. Thus our statement about the correspondence between homo-
geneous prime ideals and projective varieties is a consequence of the Proposition
3.1.
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The following statement shows that the projective space CP n is a compactifi-
cation of the affine space Cn.

2.3.3. Proposition. The quasi-projective variety Ui = CP n \ Hi with its
induced topology is homeomorphic to the affine space Cn with its Zariski topology.

Proof. We consider the map φi : Ui → Cn

φi([z0 : · · · : zi]) = (
z0

zi
, · · ·̂i , · · · ,

zn
zi

).

Clearly φi is a bijection. We need to show that φi is a homeomorphism, i.e. φi
and φ−1

i send closed sets into closed sets.
Let Y be a closed set in Ui. Then there is a homogeneous ideal T ⊂ C[z0, · · · , zn]

such that Y = Z(T )∩Ui. We want to find an ideal T ′ in C[z0, · · · ,̂i , ·zn] such that
φi(Y ) = Z(T ′). Let T ′ be the set of polynomials in C[z0, · · · ,̂i , · · · , zn] obtained
by restricting the set T h of homogeneous elements in T to the hyper-plane {zi = 1}
in Cn+1. This map T h → T ′ shall be denoted by ri (restriction). Then we have
for any homogeneous element t of degree d in T h

(2.3.4) ri(t)(φi(z)) = z−di · t(z), for all z ∈ Ui.

Since φi is a bijection, it follows from (2.3.4) that φi(Y ) = Z(T ′). So φi is a closed
map.

Now let W be a closed set in Cn. Then W = Z(T ′) for some ideal T ′ ⊂
C[z0, · · ·̂i , · · · zn]. We shall find a homogeneous ideal T ⊂ C[z0, · · · , zn] such that
φ−1
i (W ) = Z(T h) = Z(T ), where as before T h denotes the set of homogeneous

elements in T .
Let t′ ∈ T ′ be a polynomial of degree d. We set, cf. (2.3.4)

(2.3.5) β(t′)(z) := zdi · t′(φi(z)) ∈ C[z0, · · · , zn].

Clearly β(t′) is a homogeneous polynomials of degree d. Let T := β(T ′). Since φi
is a bijection, (2.3.5) implies that φ−1

i (W ) = Z(T )∩Ui. Hence φ−1
i is also a closed

map. 2

2.3.6. Remark. The map β : T ′ → T is not a ring homomorphism. Thus if
{li} generate some ideal a, the set {β(li)} may not generate the ideal β(a), see the
following example 2.3.7.

2.3.7. Projective closure of an affine variety. If Y ⊂ Cn is an affine
variety then we shall say Ȳ ⊂ CP n is the projective closure of of Y , if Y is the
closure of φ0(Y ) in CP n, or equivalently I(Ȳ ) = β(I(Y )). So Ȳ is a projective
closure of Y iff Ȳ = Y (β(I(Y )).
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Now let us consider for example the projective closure of the twisted cubic curve
C = (t, t2, t3). The closure C̄ has an ideal I(C̄) generated by {(z2

1 − z0z2), (z1z3 −
z2
2), (z1z2 − z0z3)} but not by {β(z2 − z2

1) = z0z2 − z2
1 , β(z1z2 − z3) = z1z2 − z0z3}

(see Haris, [Algebraic geometry, the first course Example 1.10]) for a proof of the
last statement).

2.3.8. Exercise. Homogeneous Nullstellensatz. If a ⊂ S is a homo-
geneous ideal, and if f is a homogeneous polynomial such that f(P ) = 0 for all
P ∈ Z(a) ⊂ CP n, then f q ∈ a for some q > 0.

Hint. We use the correspondence between Z(a) and CZ(a) ⊂ Cn+1 to deduce
this Proposition from the Hilbert’s Nullstellensatz. 2

2.3.9. Exercise. We define the Serge embedding ψ : CP r × CP s → CPN as
follows. Set N = rs+ r + s and

ψ([x0, · · · , xr]× [y0, · · · , ys]) = [· · · , xiyj, ·]

Prove that ψ is injective and the image of ψ is a subvariety in CPN .

Hint. Show that ψ(CP r×CP s) = Z(ker θ) where θ : C[zij, i = 0, r, j = 0, s]→
C[xi, yj i = 0, r, j = 0, s]: θ(zij) = xiyj.

3 Coordinate ring and the dimension of an alge-

braic set

The most basic idea of algebraic geometry is to consider any ring or algebra as a
coordinate ring of some algebraic set.

3.1 Affine coordinate ring

We have already introduced the notion of an affine coordinate ring in example
1.3.2 for the affine twisted curve. In general case, the affine coordinate ring of an
affine algebraic set Y ⊂ Cn is defined to be the quotient

A(Y ) := C[z1, · · · , zn]/I(Y ).

A(Y ) is called the coordinate ring, since any element f ∈ A(Y ) is the restriction
of some polynomial f̃ ∈ C[Z1, · · · , zn] to Y , and moreover, as we shall see in
Corollary 3.1.3, the values f(x) ∈ C, f ∈ A(Y ), can distinguish different points in
Y .

3.1.1. Remark. Since C[z1, · · · , zn] is a finitely generated C-algebra, the
quotient A(Y ) is a finitely generated algebra. We have seen in example 1.3.2
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that the affine coordinate ring A(Y ) is an integral domain, if Y is irreducible.
Conversely, if B is a finitely generated C-algebra which is an integral domain,
then B = C[z1, · · · , zn]/a, where a is simple. So B is the affine coordinate ring of
the algebraic set Z(a).

{ finitely generated C-algebras which are domains} ⇐⇒ { affine varieties }.

For y ∈ Y we set my := {f ∈ A| f(y) = 0}. Then my is a maximal ideal in
A(Y ).

3.1.2. Proposition. (i) The correspondence y 7→ my is a 1-1 correspondence
between points y ∈ Y and the maximal ideals in A(Y ).
(ii) There is a 1-1 correspondence between closed sets in Y and perfect (radical)
ideals m in A(Y ).

Proposition 3.1.2 says that Y as a topological space can be defined by the
structure of the ring A(Y ).

Proof of Proposition 3.1.2.(i) Denote by p the projection C[z1, · · · , zn] →
A(Y ). Let m be a maximal ideal in A(Y ). Then p−1(m) is a maximal ideal in
C[z1, · · · , zn]. By Hilbert’s Nullstellensatz p−1(m) = (z1− a1, · · · , zn− an) = {f ∈
C[z1, · · · , zn] | f(a1, · · · , an) = 0}. Since I(Y ) ⊂ p−1(m) the point (a1, · · · , an) be-
longs to Y . Hence m = {f ∈ A(Y )|f(a1, · · · , an) = 0}. Thus the correspondence
y 7→ my is surjective. In fact this correspondence is 1-1 because there is a 1-1
correspondence between maximal ideals in C[z1, · · · , zn] which contain I(Y ) and
maximal ideals in A(Y ).

The second statement (ii) can be proved in the same way. We need to show
that I(Z(a)) =

√
a for any a ⊂ A. From Hilbert’s Nullstellensatz we get

p−1(I(Z(a))) =
√
p−1(a).

Hence
I(Y (a)) = p(

√
p−1(a)) =

√
p ◦ p−1(a) =

√
a.

2

From the proof of Proposition 3.1.2 we get immediately

3.1.3. Corollary. For any y 6= y′ ∈ Y there exists f ∈ A(Y ) such that
f(y) = 0 and f(y′) = 1.

3.1.4. Exercise. Show that a C-algebra A is an affine coordinate ring A(Y )
for some algebraic set Y iff A is reduced (i.e. its only nilpotent element is 0) and
finitely generated as C-algebra.

Hint. Write A = C[z1, · · · , zn]/I and use the Nullstellensatz.
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3.2 Dimension of a topological space

Let X be a topological space. Then we define the dimension of X to be the
supremum of all integers n such that there exists a chain Z0 ⊂ Z1 ⊂ · · · ⊂ Zn of
distinct irreducible closed subsets of X. This definition depends on the structure
of all closed subsets of X but we shall see that dimension is a local property.

3.2.1. Proposition. a) If Y is any subset of a topological space X, then
dimY ≤ dimX.
b) If X is topological space which is covered by a family of open subsets {Ui}, then
dimX = sup dimUi.
c) If Y is a closed subset of an irreducible finite-dimensional topological space X,
and if dimY = dimX, then X = Y .

Proof. The first and last statements follow directly from the definition. Let
Z0 ⊂ · · · ⊂ Zn be distinct closed irreducible subsets of X such that Zn ∩ Ui 6= ∅,
then {Zj ∩ Ui| j = 0, n} are closed subsets of Ui. They are all irreducible, since U
is open: if Z = (Z̄A∩U)∪ (Z̄B ∩U) then Z = [(Z ∩ (X \U))∪ (Z ∩ Z̄A)]∪ (Z ∩ Z̄B)
is not irreducible. Finally they all are distinct, since if (Zj ∩U) = (Zj+1 ∩U) then
Zj+1 = Zj ∪ (Zj+1 ∩ (X \U)) is irreducible. This proves that dimX ≤ sup dimUi.
Combining with the first statement we get the second statement. 2

3.2.2. Exercise i) Prove that dim C1 = 1.
ii) Prove that if X is an affine variety in Cn and Y ⊂ X is a proper closed subset
then we have dimY < dimX.

Hint For (ii) observe first that dimX ≥ dimY by using 3.2.3 and 3.2.4 below.
Assuming that dimX = dimY and using 3.2.4 again lead to the existence of the
relation fk + p1f

k−1 + · · · + pk = 0 for any f ∈ A(X) and pi ∈ C[h̃1, · · · , h̃m] for
some basis (h̃i) ∈ A(X) where m = dimX = dimY and k is minimal. Take f
such that f|Y = 0. Then pk = 0, so k is not minimal.

In a ring A the height of a prime ideal p is the supremum of all integers n
such that there exists a chain p0 ⊂ p1 ⊂ · · · ⊂ pn = p of distinct prime ideals.
The Krull dimension of A is defined as the supremum of the height of all prime
ideals.

3.2.3. Proposition. If Y is an affine algebraic set, then the dimension of Y
is equal to the dimension of its affine coordinate ring A(Y ).

Proof. By definition the dimension of Y equals the length of the longest chain
of closed irreducible subsets in Y which correspond to the chain of prime ideals of
A(Y ). 2

Now we are going to state the following important theorem on the Krull di-
mension. We recall that the transcendence degree of an extension K over a
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field k is the maximal number of algebraically independent element in K.

3.2.4. Theorem (see e.g. Atiyah-Macdonald [Theorem 11.25] for a detailed
proof). Let k be an algebraic closed field and let B be an integral domain which is a
finitely generated k-algebra. Then the dimension of B is equal to the transcendence
degree of the quotient field K(B) of B over k.

We shall not prove this theorem but in the following exercise 3.2.5 we state some
elementary properties of the dimension which are used in the proof of Theorem
3.2.4.

3.2.5. Exercise. a) Show that the dimension of a Noetherian ring A is equal
to the dimension of the its localization Am for any maximal ideal m ⊂ A.
b) For any prime ideal p in B, we have

height p + dim(B/p) = dimB.

c) Show that the dimension of an affine variety X is equal to the maximal number
of algebraically independent elements in A(X).

(Hint: A Krull chain in a Noetherian ring A is the set of distinct prime ideals
0 ⊂ a1 ⊂ a2 ⊂ · · · ⊂ an = A where ai is the maximal ideal of ai+1. The number
n is called the length of this chain. Let l(A) be the shortest length of a Krull
chain in A. Show that if p ⊂ A is a prime ideal of A then l(p) < l(A). Prove
that l(A) is equal to the dimension of A. Apply this equality to A and Am to get
3.2.5.a. Apply this equality to p to get 3.2.5.b. To prove 3.2.5.c use the fact that
C[z1, · · · , zn] is an integral domain.)

Applying these algebraic result we shall prove

3.2.6. Proposition. a) The dimension of Cn is equal to n.
b) A variety Y ⊂ Cn has dimension n− 1 if and only if its ideal I(Y ) is generated
by a single non-constant irreducible polynomial f in C[z1, · · · , zn].

Proof. The first statement of Proposition 3.2.6 is a consequence of Theorem
3.2.4. Alternatively we can prove Proposition 3.2.6.a by induction on dimension
n. Using 3.2.5.b it suffices to show that the height of the principal ideal (zn) ⊂
C[z1, · · · , zn] is equal to 1. Assume the opposite. Let a1 ⊂ (zn) be a prime ideal
of C[z1, · · · , zn]. Let y ∈ a1 ⊂ (zn). Then y = zn · f for some f ∈ C[z1, · · · , zn].
Since a1 is prime, either zn ∈ a1 or f ∈ a1. Since a1 6= (zn) we get that f ∈ a1.
Repeating this argument for f and iterating further we arrive at a contradiction.
Hence the height of of (zn) is 1.

To prove 3.2.6.b we need to show that dimZ(f) = m − 1 if f is irreducible,
and conversely if dim(Cn/I(Y )) = m− 1, then I(Y ) is a maximal ideal generated
by an irreducible polynomial f . To show that dimZ(f) = m − 1 we use the
same argument as in the proof of 3.2.6.a replacing zn by f . Now assume that
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dim(Cn/I(Y )) = m−1, where I(Y ) is a prime ideal. If I(Y ) contains an irreducible
polynomials f and I(Y ) 6= (f) then Y is a proper closed subset of Z(f) so we can
apply 3.2.2.ii to get a contradiction. 2

3.3 Homogeneous coordinate ring

Let Y be an algebraic set in CP n and I(Y ) be its homogeneous ideal. Then we de-
fine the homogeneous coordinate ring of Y to be S(Y ) = C[z0, · · · , zn]/I(Y ).
For any y ∈ Y denote by my the set {f ∈ S(Y )| f(y) = 0}. It is easy to see that my

is a homogeneous maximal ideal of S(Y ). Unlike the affine case (see 3.1.2.i), not
every homogeneous maximal ideal a in S(Y ) is of the form my for some y ∈ Y , as
the following example shows. Let us consider the homogeneous ideal S+ = ⊕d>0Sd.
Then I(Y ) ⊂ S+. The ideal S+/I(Y ) is a homogeneous maximal ideal in S(Y ) but
it does not correspond to any point y ∈ Y . In fact by using the correspondence
Y 7→ CY we conclude that S+/I(Y ) is the only homogeneous maximal ideal in
S(Y ) which does not have the form my.

3.3.1. Proposition. (i) There is a 1-1 correspondence between points y in an
algebraic set Y ⊂ CP n and homogeneous maximal ideals my in S(Y ).
(ii) dimS(Y ) = dimY + 1.

Proof. (i) This statement follows from Proposition 3.1.2.(i) and our observation
about my above.

(ii) Using the correspondence between an algebraic set Y in CP n and its cone
CY ⊂ Cn+1 (see 2.3.2) we conclude that dimS(Y ) = dimA(CY ) = dimCY .
Clearly dimY = dim(CY ∩ {zi = 1}) for some i (3.2.1.b). Hence dimY =
dim[A(CY )/zi = 1] ≥ dimCY − 1. Now to prove that dimCY > dimY we use
3.2.2. (ii) and (3.2.1.b) which says that dimY = dimY ∩Ui. Alternatively repeat
argument of the proof of 3.2.6.b). 2

3.3.3. Exercise. i) Prove that a projective variety Y ⊂ CP n has dimension
(n − 1), if and only if it is the zero set of a single irreducible homogeneous poly-
nomial f of a positive degree.
ii) Prove that if a projective variety Y ⊂ CP n is not a hypersurface Hi then
dim(Y ∩Hi) = dimY − 1.

Hint. Use the proof of Proposition 3.2.6. (b) or alternatively use 3.2.2.ii.

4 Morphisms

Morphisms between algebraic varieties are constructed as regular maps which are
compatible with the concept of regular functions when we study small neighbor-
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hoods of a point in an algebraic variety. The notion of a regular function is defined
locally, thus its definition is the same for regular functions on affine varieties and
projective varieties.

4.1 Regular functions

4.1.1. Definitions. i) Let Y be a quasi-affine variety in Cn. A function f : Y → C
is regular at a point P ∈ Y , if there is an open neighborhood U with P ∈ U ⊂ Y
and polynomials g, h ∈ C[z1, · · · , zn] such that h is nowhere zero on U , and f = g/h
on U . We say that f is regular on Y if it is regular at every point of Y .

This definition includes the set of rational functions (g/h) as regular functions,
since we want to include the notion of a (local) inverse function for a polynomial
function.

4.1.2. Definition. Let Y be a quasi-projective variety in CP n. A function
f : Y → C is regular at a point P ∈ Y , if there is an open neighborhood U
with P ∈ U ⊂ Y and a homogeneous polynomials g, h ∈ C[z1, · · · , zn] of the same
degree, such that h is nowhere zero on U and f = g/h on U .

The condition of “the same degree” ensures that g/h is well-defined as a func-
tion on U .

4.1.3. Lemma. A regular function is continuous with respect to the Zariski
topology.

Proof. It suffices to prove that for each closed subset Z ⊂ C the pre-image
f−1(Z) is a closed set in Y . Any closed subset Z of C is a finite set of points.
Thus it suffices to prove that the pre-image of any point z ∈ C is a closed subset
of Y . Let us consider the intersection f−1(z)∩U . For f = g/h this set consists of
all y ∈ U such that g(y)− z · h(y) = 0, so it is a closed subset of U . Hence f−1(z)
is a closed subset in Y . 2

4.2 Local rings and rational functions

4.2.1. Definition. Let Y be a variety (i.e. any affine, quasi-affine, projective or
quasi-projective variety). We denote by O(Y ) the ring of all regular functions on
Y . For any point P ∈ Y we define the local ring of P on Y , OP,Y (or simply OP )
to be the ring of germs of regular functions on Y near P :

OP = lim
U→p
{(U, f), f is a regular function on U}.

4.2.2. Exercise. Prove that OP is a local ring.
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Hint. Show that the only maximal ideal in OP is the set of germs of regular
functions vanishing at P , because any other ideal contains invertible elements
f, 1/f for a somewhere non-vanishing f .

To any variety X we have associated a coordinate ring A(X). Now we shall
associate to X a field K(X) which is called the function field of X as follows.

Any element of K(X) is an equivalence class of pairs < U, f > where U is a
nonempty open subset of Y and f is a regular function on U . Two pairs < U, f >
and < V, g > are equivalent, if f = g on the intersection U ∩ V . The elements of
K(X) is called rational functions on Y .

4.2.3. Remark. i) There exists a natural addition and multiplication on
K(X), so K(X) is a ring. For any element < U, f >∈ K(X) with f 6= 0, the
element < U \ U ∩ Z(f), 1/f > is an inverse for < U, f >. Hence K(X) is a field.

ii) There exists natural maps O(X)
ip→ OP

jp→ K(X). Clearly ip and jp are
injective. So we consider O(X) and OP as sub-rings of K(X).

4.2.4. Theorem. Let Y ⊂ Cn be an affine variety with affine coordinate ring
A(Y ). Then
i) O(Y ) ∼= A(Y ).
ii) for each P the local field OP is isomorphic to the localization A(Y )mP

, where mP

is the maximal ideal of functions vanishing at P (see 3.1.2), moreover dimOP =
dimY .
iii) K(Y ) is isomorphic to the quotient field K(A(Y )) of A(Y ) and hence the
dimension of K(Y ) is equal to the dimension of A(Y ).

Proof. ii) Let us first prove the second statement. Let α be the natural inclusion
A(Y ) → O(Y ). This map i descends to a map ᾱ : A(Y )mP

→ OP . This ᾱ is
injective since α is injective and ᾱ is surjective by definition of a regular function.
So OP ∼= A(Y )mP

. Hence

dimOP = dimA(Y )m
3.2.5.a

= dimA(Y )
3.2.3
= dimY.

This proves 4.2.4.ii.
iii) Using remark 4.2.3 ii) we get that the quotient field K(OP ) of OP is a

subfield of K(Y ), so by 4.2.4.ii K(A(Y )) ⊂ K(Y ). But any rational function is in
some OP , so K(Y ) ⊂ ∪P∈YK(OP ) = K(A(Y )). This proves 4.2.4.iii.

i) Clearly

O(Y ) ⊂ ∩P∈YOP
4.2.4.ii

= ∩mP
A(Y )mP

,

where mP are maximal ideals. We shall show that

(4.2.5) ∩mP
A(Y )mP

= A(Y ).
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It suffices to show that if (a, x) ∈ A(Y )m for all maximal ideal m, then (a, x) =
(ā, 1) for some ā ∈ A(Y ). Using induction argument we can assume that x is
irreducible, and therefore the principal ideal (x) is simple.

Let mP be a maximal ideal containing x. Since (a, x) ∈ ∩QA(Y )mQ
there is

some y 6∈ mP and b ∈ A(Y ) such that

K(A(Y )) 3 (a, x) = (b, y).

From t(ay − xb) = 0 using integrality of A(Y ) we get ay ∈ mP . Since mP is
maximal, and y 6∈ mP we get a ∈ mP . Now using the fact that A(Y )/(x) is an
integral domain and mP/(x) is a maximal ideal in A(Y )/(x) we easily get⋂

{ maximal m|m ⊃ x} = (x).

Hence a ∈ (x) and therefore (a, x) = (ā, 1) for some ā. This proves (4.2.5). This
completes the proof of (i) and Theorem 4.2.4. 2

4.2.6. Remark. Some authors say that f is a regular function on an affine
variety X if f belong to A(X). This definition does not work for a quasi-affine
variety, in particular for open set in X, so we can not have the notion of local
regularity.

Before stating a structure theorem for projective varieties let us introduce a new
notation. For a homogeneous prime ideal p in a graded ring S we denote by S(p)

the subring of elements of degree 0 in the localization of S w.r.t. the multiplicative
subset T consisting of the homogeneous elements of S not in p. Here the degree of
an element (f/g) in T−1S is given by deg f−deg g. Clearly S(p) is a local ring with
maximal ideal (p · T−1S)∩S(p), since any y ∈ S(p) \ {p · T−1S)∩S(p)} is invertible.
In particular the localization S((0)) is a field, if S is a domain.

4.2.7. Theorem. Let Y be a projective variety. Then:
i) O(Y ) = C,
ii) OP = S(Y )(mP ), where mP ⊂ S(Y ) is ideal generated by homogeneous elements
f vanishing at P ,
iii) K(Y ) ∼= S(Y )((0)).

Except statement (i), which is an analog of the Louiville theorem, the other
statements (ii) and (iii) of Theorem 4.2.7 are similar to that ones in Theorem 4.2.4.

Proof of Theorem 4.2.7. ii) As in the proof of Theorem 4.2.4 we begin with the
second statement. This is a local statement, so we shall apply Theorem 4.2.4.ii
to this situation. We cover CP n by open sets Ui = CP n \ Hi (see Proposition
2.3.3) and let φ : Ui → Cn be the homeomorphism defined in 2.3.3. Now we define
φ∗ : O(Cn)→ O(U0) by

(4.2.7.1) φ∗(f)(z) = f(φ(z)).
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We shall show that this definition is correct, i.e. if locally f = g/h, where g, h ∈
C[z1, · · · zn], then φ∗(f) = g̃/h̃ where f̃ , g̃ are homogeneous polynomials of the
same degree in C[z0, · · · , zn]. Using (2.3.5) and substituting t′ in (2.3.5) by g and
h resp. we have

g(φ(z))

h(φ(z))
=
z
−deg(g)
0 β(g)(z)

z
−deg(h)
0 β(h)(z)

,

where β(g) (resp. β(h)) is a homogeneous polynomial of degree deg(g) (resp.

deg(h)). Hence homogeneous polynomials g̃ = β(g)z
deg(h)
0 and f̃ = z

deg(g)
0 β(f)

satisfy the required conditions.

4.2.8. Lemma The map φ∗ : O(Cn)→ O(Ui) is a ring isomorphism.

Proof Clearly φ∗ is a ring homomorphism and φ is injective, since f ∈ kerφ∗

iff f = 0. To see that φ is surjective, we observe that if f = (g̃/h̃) ∈ O(U0), where
g̃ and h̃ are homogeneous of the same degree then

f(z) =
r(g̃)(φ(z))

r(h̃)(φ(z))
,

where r is defined in (2.3.4) and we replace t in (2.3.4) by g̃ (resp. h̃). So

f = φ∗(
r(g̃)

r(h̃)
).

2

Now let us continue the proof of Theorem 4.2.7.ii. Let Yi = Y ∩ Ui. We can
consider Yi as an affine variety in Ui = Cn. Using Lemma 4.2.8 and Theorem
4.2.4.ii we get OP ∼= A(Yi)m′P

where Yi 3 P and m′P is the maximal ideal of A(Yi)
corresponding to P . Since zi 6∈ mP and β−1(mP ) ⊂ m′P we can construct a map
φ∗ : A(Yi)m′p → S(Y )(mP ) as follows

(g, h)
φ∗7→ (z

deg(h)
i β(g), z

deg(g)
i β(h)) (4.2.8.1)

(cf. 4.2.7.1). Clearly φ∗ is a ring homomorphism whose kernel is empty because
β−1(mP ) ⊂ m′P . It is easy to check that φ∗ is surjective, so φ∗ is an isomorphism
which proves (ii).

iii) First we note that K(Y ) = K(Yi) since any pair (U, f) representing an
element in K(Y ) is equivalent to an element (U ∩Yi, f|(U∩Yi)). By Theorem 4.2.4.iii
we get that K(Y ) = K(Yi) is the quotient field K(A(Yi)) of A(Yi). Using the
natural isomorphism φ∗ in (4.2.8.1) which extends to an isomorphism between the
quotient field K(A(Yi)) and S(Y )((0)) we prove the statement (iii).
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i) Let f ∈ O(Y ) be a global function. Then f is regular on Yi and therefore, by
4.2.4.i) we have f ∈ A(Yi). Using the isomorphism φ∗ : A(Yi) = S(Y )(zi) (see the
proof of (ii) above, here we consider A(Yi) as a subring of A(Yi)m′P

) we conclude

that φ∗(f) has the form gi/x
Ni
i where gi ∈ S(Y ) is a homogeneous polynomial

of degree Ni. Recall that S(Y )N denotes the subspace of S(Y ) with grading N .
Choose a number N ≥

∑
Ni and note that S(Y )N · (φ∗(f)) ⊂ S(Y )N . Hence we

get S(Y )N · φ∗(f)q ⊂ S(Y )N . In particular xN0 · φ∗(f)q ∈ S(Y )N ⊂ S(Y ) for all q.
Thus the subring S(Y )[φ∗(f)] ⊂ K(S(Y )) is contained in x−N0 S(Y ). Since S(Y )

is a noetherian ring, S(Y )[φ∗(f)] is finitely generated S(Y )-module. Therefore
φ∗(f) is integral over S(Y ), or equivalently there are a1, · · · , am ∈ S(Y ) such that

(4.2.9) φ∗(f)m + a1φ
∗(f)m−1 + · · ·+ am = 0.

(φ∗(f) is a root of the characteristic polynomial).

For the sake of convenience of the reader we shall reproduce the proof of (4.2.9) from
the book of Atiyah-Macdonald.

Let x1, · · · , xk be a system of generators of S(Y )[f ]. Denote by Mf the endomor-
phism of S(Y )[f ] defined by the multiplication with f . Then

Mf (xi) =
∑

aijxij , ∀i

(4.2.10) ⇐⇒
∑
j

(δijMf − aij)xj = 0, ∀i.

Multiplying the LHS of (4.2.10) with the adjoint matrix of (δijMf−aij) we get det(δijMf−
aij) annihilates all xi, so det(δijMf − aij) = 0. Decompose this polynomial and substi-
tuting f = φ∗(f) we get (4.2.9).

Now we observe that deg φ∗(f) = 0, so (4.2.9) still valid if we replace ai by
their homogeneous component of degree 0, i.e. we can assume that ai ∈ C. Thus
φ∗(f) is algebraic over C, so φ∗(f) ∈ C, hence f ∈ C. 2

4.3 Morphisms between varieties

We have met and used the notion of isomorphism between two particular varieties
in Lemma 4.2.8. In general, a morphism φ : X → Y is a continuous map such
that for every open set V ⊂ Y we have φ∗(O(V )) ⊂ O(φ−1(V )), i.e. φ preserves
the structure sheaf. We denote by Mor(X, Y ) the set of all morphisms from X to
Y .

4.3.1. Proposition. Let X be a variety and let Y be an affine variety. Then
there is a natural bijective map of sets

α : Mor(X, Y )→ Hom(A(Y ),O(X)).
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Proof. A morphism φ ∈ Mor(X, Y ) defines a homomorphism φ∗ : O(Y ) →
O(X). Since Y is affine, by (4.2.4.i) this natural transformation defines a map α.
We first show that map α is injective, i.e. if φ1 and φ2 are two different morphisms,
then φ∗1 and φ∗2 are different homomorphisms.

Any map φ : X → Y ⊂ Cn can be written in the following form

(4.3.2) φ(P ) = (ξ1(P ), · · · , ξn(P )) ∈ Y ⊂ Cn.

Clearly O(X) 3 ξi = φ∗(z̄i) where z̄i the image of zi in A(Y ) = C[z1, · · · , zn]/I(Y ).
From (4.3.2) we see immediately that α is injective.
Now we shall show that α is surjective. Let φ̄ be a homomorphism from A(Y )

to O(X). Let ξi = φ̄(z̄i) ∈ O(X). We shall define a continuous map φ : X → Cn

by (4.3.2). To complete the proof it suffices to show that φ(P ) ∈ Y and φ∗ = φ̄.
First we shall show that for any f ∈ I(Y ) we have f(φ(P )) = 0 which shall imply
that φ(P ) ∈ Y . Since φ̄ is a homomorphism of C-algebras we have

f(φ(P )) = f(ξ1(P ), · · · , ξn(P )) = f(φ̄(z̄1(P )), · · · , φ̄(z̄n(P ))) = φ̄(f(z̄1, · · · z̄n))(P ) = 0.

The second statement φ∗ = φ̄ follows by checking

φ∗(z̄i)(P )
def
= z̄i(φ(P )) = z̄i(ξ1(P ), · · · , ξn(P )) = φ̄(z̄i)(P ).

2

Now we shall say that a morphism (φ, φ∗) : X → Y is an isomorphism, if φ
and φ∗ admit inverse. In the category of differentiable manifolds with structure
sheaf consisting of differentiable functions we can replace the global condition of
invertibility of φ∗ by the local invertibility of the tangent map Dφ. Analogously in
the category of (complex algebraic) varieties we can replace the condition of global
invertibility of φ∗ by invertibility of the induced homomorphism φ∗P : Oφ(P ),Y →
OP,X for all P ∈ X.

4.3.3. Example. Let Hd ⊂ CP n be a hyper-surface defined by a homogeneous
polynomial P d of degree d. We shall show that CP n \Hd is isomorphic to an affine
variety. First we shall find an embedding φd : CP n → CPN such that φd(Hd)
lies in some hyper-plane {zj = 0} in CPN . Then we shall show that φ∗d induces
an isomorphism of local rings Oφ(P ),φ(CPn) and OP,CPn for all P ∈ CP d. This
shall imply that φd(CP n \Hd) is isomorphic to an affine variety φd(CP n \Hd) ⊂
CN = CPN \ {zj = 0} with the induced ring of regular functions. In particular
Oφ(P ),φ(CPn) = j∗OP,CPN , where j is the restriction map.

The map φd can be chosen as a Veronese map of degree d

φd : CP n → CPN
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[z0, · · · zN ] 7→ [· · ·XI · · · ]

where zI ranges over all monomials of degree d in z0, · · · , zn. Clearly φd is an
embedding. Since P d can be written as a linear combination of zI , this proves
the first statement. To show that φ∗d induces a local isomorphism for all P it
suffices to do it for any P ∈ U0 ⊂ CP n. In this case OP,CPn = C[z1, · · · , zn]mP

and
it is easy to check that φ∗d(Oφ(P ),CPN ) = OP,CPn , so φ∗d : Oφ(P ),φ(CPn) → OP,CPn

is surjective. The kernel of φ∗d at P consists of regular functions g/h ∈ OP,CPN

such that (g/h)(φ(UP )) = 0 for some neighborhood P ∈ UP ⊂ CP n, hence g ∈
I(φ(UP )), so φ∗d is injective.

4.3.4. Exercise. (i) Let X ⊂ Cn be an affine variety and f ∈ O(X). Define
the open set Xf ⊂ X by

Xf := X \ Z(f) = {x ∈ X| f(x) 6= 0}.

Prove that O(Xf ) = O(X)|Xf
[1/f ]. Using this show that (Xf ,O(Xf )) is an affine

variety.
(ii) Prove that on any variety Y there is a base for the topology consisting of

open affine subsets.

Hint. (i) Let X̃ := Z(I(X), f ·zn+1−1) ⊂ Cn+1. Show that the projection from
Cn+1 → Cn maps X̃ bijectively onto Xf . Show that the inverse of this projection
pull zn+1 to f−1.

(ii) If Y is an affine variety or quasi-affine variety, then reduce (ii) to (i). If Y
is projective or quasi-projective, use the fact that Y can be covered by quasi-affine
varieties (see Proposition 2.3.3 and consider the intersection (Ui ∩ Y ).

4.3.5. Exercise. Let f : X → Y be a morphism between affine varieties.
Prove that the image φ(X) is also an affine variety.

Hint. Extend φ to a morphism e ◦ φ : X → Cn where e : Y → Cn is the
canonical embedding. Show that I(e◦φ(X)) = ker(e◦φ)∗ : C[z1, · · · , zn]→ A(X).

4.4 Rational maps

The notion of a rational map is an extension of the notion of a rational function.
A rational map is a morphism which is only defined on some open subset of a
variety.

4.4.1. Definition. Let X, Y be varieties. A rational map φ : X → Y is an
equivalence class of pairs < U, φU > where U is a nonempty open subset of X, φU
is a morphism of U to Y , and < U, φU > is said to be equivalent to < V, φV > if
φU and φV agree on U ∩ V .
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The rational map φ is dominant, if for some pair < U, φU > the image of φU
is dense in Y .

4.4.1.a. Example Let Y = {(z1, z2) ∈ C2| z1z2 = 1}. Define a map φ : Y → C
by setting : φ(z1, z2) = z1. Then φ is a dominant rational map.

A birational map φ : X → Y is a rational map which admits an inverse,
i.e. there is a rational map ψ : Y → X such that ψ ◦ φ = IdX and φ ◦ ψ = IdY .
If there is a birational map from X to Y , we say that X and Y are birational
equivalent, or simply birational.

The equivalence notion of rational maps is very strong, since any open set is
dense in Zariski topology.

4.4.2. Lemma. Let X and Y be varieties and let φ and ψ be two morphisms
from X to Y such that there is a nonempty open subset U ⊂ X with φ|U = ψ|U .
Then φ = ψ.

Proof. Morphisms φ and ψ can be composed further with any morphism χ
from Y to another variety Z leaving U unchanged. Therefore we can assume that
Z = CP n = Y . We consider the map

(φ× ψ) : X → CP n × CP n.

Using the Serge embedding (3.2.9) we can provide CP n×CP n with a structure of
a projective variety. Denote by 4 the diagonal in CP n×CP n. Then 4 is a closed
subset of CP n × CP n. By assumption we have φ× ψ(U) ⊂ 4. But any open set
U is dense, hence (φ× ψ)(X) ⊂ 4. 2

The following theorem can be seen as an extension of Theorems 4.3.1. If X, Y
are affine, then Mor(X, Y ) = Hom(A(Y ), A(X)) ⊃ Hom(K(Y ), K(X)). Denote
by Mord(X, Y ) the subset of dominant rational maps from X to Y .

4.4.3. Theorem. For any variety X and Y there is a bijection B between sets

Mord(X, Y ) ∼= Hom(K(Y ), K(X)).

Proof. Let φ ∈ Mord(X, Y ) be a dominant rational map represented by <
U, φU >. Let f ∈ K(Y ) be a rational function, represented by < V, f >, where V
is an open set in Y and f is a regular function on V . We define B by

B(φ) < V, f >:=< φ−1(V ), φ∗(f) > .

Clearly B(φ) is a homomorphism from K(Y ) to K(X).
Now we shall construct an inverse B−1. Let θ : K(Y ) → K(X) be a homo-

morphism of C-algebras. We shall reduce the construction B−1θ in Mord(X, Y )
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to the case that Y is an affine variety and then use Proposition 4.3.1 where such
case has been treated.

To define an element φ in Mord(X, Y ) it suffices to define a map φ from X to
an open set UY of Y . By Exercise 4.3.4 (ii) Y can be covered by affine varieties,
so we shall choose UY being one of them. We have A(UY ) ⊂ K(Y ) so we shall use
the restriction of θ to A(UY ) to construct B−1(θ) ∈ Mord(XY ) and prove that it
is a dominant rational map.

Let y1, · · · , yk be generators of A(UY ). Then θ(yi) are rational functions on
X. Let UX be an open set in X where all θ(yi) are regular functions on UX . This
implies that θ defines a homomorphism from A(UY ) to O(UX) whose kernel is
empty since θ is a homomorphism of the quotient field. Since UY is an affine variety,
Proposition 4.3.1 yields that θ gives rise to an element B̃(θ) ∈Mor(UX , UY ). Since
θ is injective on A(UY ) the image B̃(UX) cannot be contained in an algebraic set in
UY , hence B̃(θ) is a dominant rational map from X to Y . The proof of Proposition
4.3.1 yields that B̃ is inverse of B restricted to A(UY ), and hence B̃ = B−1. 2

4.4.4. Corollary. Two varieties X and Y are birationally equivalent, if and
only if K(X) is isomorphic to K(Y ) as C-algebras.

Proof. Suppose that X and Y are birational equivalent, i.e. there are rational
map φ : X ⊃ U → Y and ψ : Y ⊃ V → X which are inverse to each other.
We shall find two open dense sets U1 ⊂ X and V1 ⊂ Y such that U1 isomorphic
to U1. Then ψ ◦ φ is represented by < φ−1(V ), ψ ◦ φ > . By assumption the
composition φ ◦ ψ is the identity on ψ−1(U). Now let U1 = φ−1(ψ−1(U)) and
V1 = ψ−1(φ−1((V )). It is easy to see that U1 and V1 isomorphic via φ and ψ.
Hence K(X) = K(U1) = K(V1) = K(Y ).

The second statement follows from theorem 4.4.2 directly. 2

4.4.5. Exercise. Prove that the quadratic surface Q : xy = zw in CP 3 is
birational to CP 2 but not isomorphic to CP 2.

Hint. Show that Q is isomorphic to the Serge embedding of CP 1 × CP 1, so it
is birational equivalent to CP 2.

4.4.6. Remark. We should mention here a famous fact that every irreducible
variety X is birational to a hypersurface in CP n. There are two ways to see this.
The first one relies on the statement that if X is a projective variety in CP n, a
general projection πp : X → CP n−1 gives a birational isomorphism from X to its
image X̄. Iterating this projection we arrive in the end at a birational isomorphism
of X to a hypersurface (see J. Harris 7.15 and 11.23 for more details).

Alternatively we can simply invoke the primitive element theorem to say that
if x1, · · · , xk is a transcendence base for the function field of X, then K(X) is
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generated over k(x1, · · · , xk) by a single element xk+1 satisfying an irreducible
polynomial relation

F (xk+1) = ad(x1, · · ·xk)− xdk+1 + · · ·+ a0(x1, · · · , xk)

with coefficient in K(x1, · · ·xk). Clearing denominators we may take F to be an
irreducible polynomial in all (k + 1) variable. So by 4.4.4 X is birational to the
hypersurface in Cn+1 given by this polynomial. See Hartshorn 4.9 for more details.

5 Smoothness and tangent spaces

5.1 Zariski tangent spaces

We shall start with the affine case. Suppose that X ⊂ Cn is an affine variety. A
tangent vector δx0 at a point x0 ∈ X is a “rule” to differentiate regular functions
in x0, i.e. it is a C-linear map δ : O(X)→ C satisfying the Leibniz rule

δx0(f · g) = f(x0)δx0(g) + g(x0)δx0(f),

for all f, g ∈ O(X). Such a map is called derivation of O(X) in x0. It follows
that δx0(f

n) = nfn−1(x0)δx0(f) and so, for any polynomial F = F (y1, · · · , ym) we
get

δx0(F (f1, · · · , fm)) =
m∑
j=1

∂F

∂yj
(f1(x0), · · · , fm(x0))δ(fj).

This implies that a derivation at x0 is completely determined by its values on a
generating set of the algebra O(X). As a consequence the set of all derivations in
x0 is a finite dimensional subspace of Hom(O(X),C).

5.1.1. Definition. The Zariski tangent space Tx0 of a variety X at a point
x0 is defined to be the set of all tangent vectors at x0: Tx0X := Derx0(O(X)).

Tx0X is a finite dimensional linear subspace of Hom(O(X),C).

5.1.2. Exercise. Let δ be a tangent vector in x. Prove that
(i) δ(c) = 0 for every constant c ∈ O(X).
(ii) If f ∈ O(X) is invertible, then δ(f−1) = − δf

f(x)2
.

Since O(X) = C ⊕ mx for all x ∈ X we see that any element δ ∈ TxX is
determined by its restriction to mx. The Leibniz formula shows that the restrition
to m2

x vanishes. Hence δ induces a linear map δ̄ : mx/m
2
x → C.

5.1.3. Lemma. Given an affine variety X and a point x ∈ X there is a
canonical isomorphism

TxX → Hom(mx/m
2
x,C),
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given by δ 7→ δ̄ := δ|mx.

Proof. We have seen that δ 7→ δ̄ is injective. Let λ ∈ Hom(mx/m
2
x,C). Let C

be a complement of m2
x in mx, so λ : C → C is a linear map. Now we extend λ to

a linear map δ : O(X) = C⊕ C ⊕m2
x → C by putting δ|C⊕m2

x
= 0. 2

5.1.4. Lemma. For all z ∈ Cn we have TzCn = { ∂
∂zi |z
}, i = 1, n.

Proof. Let z = (a1, · · · , an). The maximal ideal in C[z1, · · · , zn] corresponding
to z is mz = (z1 − a1, · · · zn − an). We define the derivation map

D : mz/(mz)
2 → Cn : f 7→ (

∂f

∂zi |z
, i = 1, n).

Clearly {D(zi − ai), i = 1, n} form a basis of Cn, hence D is an isomorphism .
Now Lemma 5.1.3 follows immediately from Lemma 5.1.3. 2

5.1.5. Exercise. If Y ⊂ X are affine varieties in Cn and x ∈ Y then
dimTxY ≤ dimTxX.

Hint. The surjectionA(X)O(X)→ O(Y ) = A(Y ) induces a surjection mx,X/m
2
x,X →

mx,Y /m
2
x,Y .

The space (mx/m
2
x) is called the cotangent space of X at x.

5.1.6. Definition. Let A be a noetherian local ring with maximal ideal m and
residue field k = A/m. We say that A is a regular local ring, if dimk m/m2 =
dimA.

5.2 Nonsingular varieties

5.2.1. Definition. Let Y ⊂ Cn be an affine variety and let f1, · · · , fl ∈
C[z1, · · · , zn] be a set of generators for the ideal of Y . We say that Y is non-
singular at a point P ∈ Y if the rank of the matrix [(∂fi/∂xj)]P at P is n − r
where r is the dimension of Y . We say that Y is nonsingular, if it is nonsingular
at every point. The following theorem explains that the notion of nonsingularity
does not depend on the choice of (f1, · · · , fn), i.e. on the choice of embedding
Y → Cn.

5.2.2. Theorem. Let Y ⊂ Cn be an affine variety. Let P ∈ Y be a point.
Then Y is nonsingular at P , if and only if the local ring OP,Y is a regular local
ring.

Proof. Let I(Y ) ⊂ C[z1, · · · , zn] be the ideal of Y and let f1, · · · fl be a set of
generators of I(Y ). Denote by I(Y )P the image of I(Y ) in the local ring mP,Cn .
Then the rank of the Jacobian matrix JP = ||(∂fi/∂xj)||P is the dimension of the
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space D(I(Y )P ) ⊂ Cn, where D : mP,Cn → Cn is defined in Lemma 5.1.4. Since D
is an isomorphism we have

(5.2.3.a) rank J = dimD(I(Y )P ) = dim((I(Y )P + m2
P,Cn)/m2

P,Cn).

Denote by j the surjection Cn[z1, · · · , zn]→ O(Y ) = A(Y ) and by jP the induced
surjective map from mP,Cn → mP,Y (see also 5.1.5). The kernel of j is I(Y ) and
the kernel of jP is I(Y )P . Thus

(5.2.3.b)
mP,Y

m2
P,Y

=
mP,Cn/(ker jP )

(mP,Cn/ ker jP )2
=

mP,Cn

I(Y )P + m2
P,Cn

.

Now since dim(mP,Cn/m2
P,Cn) = n, taking into account (5.2.3.a) and (5.2.3.b) we

get

(5.2.4) dim(mP,Y /m
2
P,Y ) + rank J = n.

Let dimY = r. Then according to Theorem 4.2.4 ii) OP is a local ring of
dimension r. By definition Op is regular if dim m/m2 = r. From (5.2.4) we get
that this relation is equivalent to the relation rank J = n− r. 2

5.2.5. Exercise. Let X ⊂ Cn be an affine subvariety. Prove that

Tx0X = {δ ∈ Tx0Cn| δ(f) = 0 for all f ∈ I(X)} ⊂ Tx0Cn = Cn.

Hint Compare with 5.1.5.

Theorem 5.2.2 motivates us to give the following definition of (non)singularity
of a variety. Let Y be a variety (not necessary affine). Then a point P ∈ Y is
nonsingular if the local ring OP,Y is a regular local ring. Y is nonsingular if it
is nonsingular at every point. Y is singular, if it is not nonsingular.

5.2.6. Example. Let H := Z(f) ⊂ Cn be a hypersurface where f ∈
C[z1, · · · , zn] is an irreducible polynomial, hence I(H) = (f). Then the tangent
space in a point x0 ∈ H is given by (see 5.2.5)

Tx0 := {a = (a1, · · · , an)|
∑

ai
∂f

∂xi
(x0) = 0}. (5.2.6.1)

Let Y be a singular point of H. Then by definition the ring OP,H is not regular,
i.e. dim(mY,H/(mY,H)2) 6= dimOP,H . But OP,H = A(H)mP,H

and then using 3.2.5.a
and 3.2.6.b we get

dimOP,H = dimA(H) = n− 1.
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Thus Y is singular, iff dimTx0H 6= n− 1. Using (5.2.6.1) we se that the set Hsing

of singular points of H is given by

Hsing = Z(f,
∂f

∂z1

, · · · , ∂f
∂zn

) ⊂ H.

5.2.7. Proposition. Let X be an irreducible affine variety. Then the set
Xsing of singular points is a proper closed subset of X whose complement is dense.

Proof. We can assume that X is an irreducible closed subvariety in Cn of
dimension d. Let f1, · · · , fl be a set of generators of I(X). By Theorem 5.2.2

Xsing = {x ∈ X| rk[
∂fj
∂zi

(x)] < n− d}

is a closed subset defined by vanishing of all (n−d)×(n−d) minors of the Jacobian
matrix J .

To show that Xsing is a proper subset of X we apply 4.4.5 to get X birational to
a hypersurface H ⊂ CP n. Since birational maps preserve the dimension of variety
and they map singular points/nonsingular points to singular points/nonsingular
points, applying 5.2.6 we get 5.2.7. 2

5.3 Projective tangent spaces

Consider now a projective variety X ⊂ CP n. We may also associate to it a
projective tangent space at each point p ∈ X, denoted TpX which is a projective
subspace of CP n. One way to do this is to choose an affine open subset U ∼= Cn ⊂
CP n containing p and define the projective tangent space to X to be the closure
in CP n of the tangent space at p of the affine variety X ∩ U ⊂ U = Cn.

There is another way to describe the projective tangent space to a variety
X ⊂ CP n at a point p ∈ X. Let X̃ ⊂ Cn+1 be the cone over X and p̃ ∈ X̃ be
point lying over p. Then the projective tangent space TpX is the subspace of CP n

corresponding to the Zariski tangent space Tp̃X̃ ⊂ Tp̃Cn+1 = Cn+1.

6 Completion

6.1 What is the completion of a ring?

Let R be an abelian group and let R = m0 ⊃ m1 · · · be a sequence of subgroups
(a descending filtration). We define the completion R̂ of R w.r.t. the mi to
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be the inverse limit of the factor groups R/mi which is by definition a subgroup
of the direct product

R̂ := lim
←
R/mi

:= {g = (g1, g2, · · · ) ∈
∏
i

R/mi|gj ∼= gi( mod mi) for all j > i}.

If R is a ring and all mi are ideals then each of R/mi is a ring. Hence R̂ is also
a ring.

If moreover mi = mi for some ideal m ⊂ R then

m̂i := {g = (g1, g2, · · · ) ∈ R̂| gj = 0 for all j ≤ i},

is called the m-adic filtration of R. The corresponding completion R̂ is denoted
by R̂m. We write m̂ = m1.

6.1.1. Exercise. If m is a maximal ideal, then R̂m is a local ring with maximal
ideal m̂.

Hint. Show that R̂/R̂m = R/m which is a field.

6.1.2. Example. If R = C[z1, ..., zn] and m = (z1, ..., zn), then the completion
with respect to m is the formal power series ring R̂m = C[[z1, ..., zn]]. Indeed, from
the map C[[z1, ..., zn]]→ R/mi sending f to f+mi we get a map C[[z1, ..., zn]]→ R̂m

sending

f 7→ (f + m, f + m2, · · · ) ∈ R̂m ⊂
∏

R/mi.

The inverse map is given as follows

(6.1.3) R̂m 3 (f1 + m, f2 + m2, · · · ) 7→ (f1 + (f2 − f1) + (f3 − f2) + · · · .

Here the condition fj ∼= fi( mod mi) for j > i implies that deg (fi+1− fi) ≥ i+ 1.
Thus the RHS of (6.1.3) is a well-defined formal power series.

6.1.3. Definition. If the natural map R → R̂m is an isomorphism we call R
complete w.r.t. m.

When m is a maximal ideal, we say that R is a complete local ring.

6.2 Why to use the completion of a ring?

In the algebraic geometry we don’t have a version of the implicit function theorem,
since the inverse of a polynomial map is not a polynomial map. But the inverse
can be represented by a formal power series which is a case of complete rings. The
analog of the implicit function theorem for complete rings is the following Hensel’s
Lemma.
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6.2.1. Theorem (Hensel’s Lemma). Let R be a ring that is complete w.r.t.
the ideal m, and let f(x) ∈ R[x] be a polynomial. If a is an approximate root of f
in the sense that

f(a) ∼= 0( mod f ′(a)2m)

then there is a root b of f near a in the sense that

f(b) = 0 and b ∼= a( mod f ′(a)m).

If f ′(a) is a nonzero-divisor in R, then b is unique.
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