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Abstract

Elastic constants of cubic austenite and orthorhombic 2H martensite phases in the Cu—Al-Ni shape memory alloy were deter-
mined by ultrasonic pulse-echo technique using multiple single crystal specimens and a novel optimization based evaluation method
that minimizes the uncertainty stemming from experimental errors as well as experimental effort. Multiple martensitic single crystals
were prepared from the austenite crystal by a dedicated deformation technique. Taking advantage of the fact that the elastic con-
stants of the austenite and 2H martensite phase were evaluated on the same piece of material, soft acoustic modes and elastic prop-
erties of both phases were compared taking into account the lattice correspondence. It is found that the 2H martensite crystal
partially inherits the soft acoustic modes of the austenite and hence its elastic properties.
© 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Shape memory alloys (SMA) exhibit unique thermo-
mechanical behaviors due to thermoelastic martensitic
transformations (MT) driven by the external stress or
temperature [1-3]. It is of essential interest to know
the elastic constants of the austenite and martensite
phases, since they reflect the fundamental thermody-
namic properties; i.e., very interesting physical informa-
tion can be deduced not just from the values of elastic
constants but mainly from their temperature and stress
dependencies [3]. Knowledge of the elastic constants of
both austenite and martensite phases is also important
in modelling of SMA functional mechanical behaviors,
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since the crystal domains (separated by mobile phase
or twin interfaces responsible for shape memory phe-
nomena) interact elastically.

Elastic properties of the cubic high temperature phases
in SMAs are relatively well known [2-5], including their
temperature [3-5] and stress [2,3] dependencies. As a par-
ticular case to be focused on in this work, the §; austenite
phase in Cu-based SMAs is known for its very large elas-
tic anisotropy. It transforms to various martensitic
phases B(18R), ¥;(2H), «;(6R) depending on composi-
tion, temperature, magnitude and sense of uniaxial stress
[1]. Before the martensitic transformation occurs at M
temperature, the body-centered cubic (bcc) structure of
the austenite [4] exhibits several kinds of anomalies (elas-
tic, diffraction, phonon) over a broad temperature range
above M.. These anomalies can be viewed as a reflection
of the enhanced instability of the bce structure approach-
ing its stability limit. In particular, variation of the elastic
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constants of the f; austenite phase with temperature in
the vicinity of the phase transition has been thoroughly
investigated [3-5]. It is now generally accepted that the
main characteristic feature of the pretransformation elas-
tic instability of Cu-based SMAs is the simultaneous de-
crease of the elastic constant C’ (softening) and increase
of the Cy4 constant (hardening) with decreasing tempera-
ture. The experimental results published so far [3,4], how-
ever, prove that the softening is far from complete and
that C’ remains finite even just above M, and the same
is true for the softening of the [1 1 0] TA; phonon branch
as another premartensitic instability observed in inelastic
neutron scattering experiments [3].

There exist only very limited experimental data for
the elastic properties of the low temperature (high stress)
martensite phases in SMAs. This is mainly because of
the experimental difficulties related to the preparation
of multiple, sufficiently large single crystals of low sym-
metry martensite phases needed for the ultrasonic exper-
imental methods commonly used to evaluate the elastic
constants. Nevertheless, as regards the elastic properties
of the lower symmetry martensite phases in Cu-based
SMAs, some very limited data exist. Elastic constants
of the 2H martensite phase in CuAINi alloy were
determined solely by Yasunaga et al. [8] using resonant
ultrasound spectroscopy (RUS) technique. These con-
stants, although never verified, as far as we know, are
frequently referenced in the literature and widely used
in SMA modelling. Elastic constants of the 18R mono-
clinic martensite in a different CuZnAl alloy were
reported by Rodriguez et al. [7] and their temperature
dependence investigated by Gonzalez-Comas et al. [6].
In the present work, elastic constants of the bcc austen-
ite (B;) and orthorhombic 2H martensite phase (y;) in
CuAlINi single crystal were evaluated using an optimiza-
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tion approach towards pulse-echo overlapping acoustic
method. This newly proposed modification of the stan-
dard direct method (Section 2.3) is particularly suitable
for evaluation of elastic constants of low symmetry mar-
tensite phases in SMAs. It facilitates the work and re-
duces experimental errors.

A deformation technique allowing the mutually con-
version of the austenite and martensite single crystal
variants (Section 3.2) was developed. The elastic con-
stants of both austenite and martensite phases thus
could be firstly evaluated on the same single crystal piece
at the same temperature. Taking advantage of that, the
inheritance of soft acoustic modes from bcc f; austenite
to orthorhombic 2H martensite phase is investigated in
Section 4.3. The inheritance of elastic properties (anisot-
ropy of Young’s modulus) is discussed in Section 4.4 as
a model example for elastic property changes associated
with the martensitic transformation in SMAs.

2. Experimental methods
2.1. CuAINi single crystal

A single crystal of Cu—14.3A1-4.2%Ni (wt.%) alloy was
grown by the Bridgman method. The transformation tem-
peratures were determined by DSC as M (2H) = 288 K
and austenite start temperature, A; = 313 K. Due to the
thermal hysteresis, this crystal may exist at room temper-
ature either in the bce austenite or in the 2H martensite
phase. Four specimens (Table 1) were spark cut in the aus-
tenite phase in a prism shape (Table 2) with crystallo-
graphic orientations of the faces given in Table 1. The
crystal lattice orientations were determined by back-
reflection Laue method with an accuracy better than 2°.

Table 1

Orientations of the CuAINi single crystal specimens in austenite state

Samples Face A Face B Face C

Sample 1 0.577 0.577 0.577 —0.816 0.408 0.408 0 0.5 -0.5
Sample 2 0.988 —-0.122 0.087 —0.105 —0.052 0.993 —0.140 —0.980 —0.070
Sample 3 —-0.018 0.070 0.997 0.809 0.588 0.000 —0.585 0.806 —0.087
Sample 4 0.601 —-0.799 —0.052 0.669 0.454 0.616 0.438 0.407 —0.788
Samples 1-3 — cube (5.6 mm), sample 4 — prism (@ = 6.592 mm, b = 5.561, ¢ = 5.945).

Table 2

Shape changes of sample 4 during compression tests (Figs. 2 and 4)

Sample a (mm) b (mm) ¢ (mm) o B y

Austenite 6.592 5.561 5.945 91.665 90.935 89.85
Martensite exp. cal. exp. cal. exp. cal. exp. cal. exp. cal. exp. cal.
Variant 6 6.96 6.993 5.487 5.487 5.692 5.693 86.19 86.11 91.36 92.52 88.59 88.42
Variant 5 6.748 6.748 5.548 5.619 5.592 5.784 84.37 84.11 91.55 93.06 89.43 89.56
Variant 4 6.348 6.37 5.642 5.578 6.103 6.162 94.13 94.01 86.93 86.44 84.01 85

The thicknesses a, b, ¢ and angles o, 8, y are measured on martensite parallelepipeds as suggested in Fig. 3(b).
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The mass density p = (7.055 * 0.064) x 10° kg m 3 was
evaluated by the Archimedes technique.

2.2. Ultrasonic pulse-echo method

Elastic constants were evaluated by ultrasonic pulse-
echo method [9]. Velocities of propagation of quasi-lon-
gitudinal (qL) and quasi-transverse (qT) acoustic waves
were measured in general crystal directions. The prepo-
sition quasi refers to the fact that the acoustic waves
propagating along a general crystal direction of the
anisotropic solid are not pure longitudinal and pure
transversal but can be divided in one nearly longitudinal
wave gL with small shear component and two nearly
transversal waves qT1 and qT2 with small longitudinal
component.

Two sets of delayed broadband transducers for gen-
eration and receiving acoustic waves (10 or 30 MHz
for qL waves and 5 or 20 MHz for qT-waves) were used
with a pulse/receiver system DPR50+ (JSR Ultrasonics).
Honey was used for acoustic coupling between trans-
ducer and specimen for transverse waves and propylene
glycol for longitudinal waves. The time of flight
measurement was carried out by pulse overlapping tech-
nique implemented in a digital storage oscilloscope
LT264M (LeCroy). Results obtained by the two differ-
ent frequency bands measurements were compared and
the influence of wave dispersion to velocity measure-
ments was evaluated. It was found that the dispersion
effect contributed much less to the uncertainty in mea-
sured elastic constants than other experimental errors
and was therefore neglected.

2.3. Procedure for evaluation of the elastic constants

In order to precisely evaluate the elastic constants of
elastically anisotropic materials (as, for example, the
CuAlINi studied in this work) by the traditional pulse-
echo ultrasonic method, single crystal samples have to
be cut along the specific crystal directions with a very
high precision. Velocities of longitudinal and transverse
acoustic waves v[mnu][p gr] propagating in [mnu]
crystal directions with wave polarization in [p ¢ r] direc-
tion are measured. For cubic crystals, three independent
elastic constants C;;, Cy,, C44 may be conveniently eval-
uated from the acoustic velocities (direct traditional
method) measured in [1 0 0] (Egs. (1a) and (1b)) and
[110] (Egs. (2a)—(2c)) crystal directions.

C
V11 =Vpo1jp01] = %, (1a)

C
Va4 =V[001](00 )plane = \/744, (1v)

_ _ [Cu+Ci1n+2Cy
VgL =Vp10110) = 2 (2a)

CI
Vo =Upto-10) = X (2b)

C
Vey =Up1oj001 = \/744, (2c)

where p is the mass density. In case of cubic materials,
the elastic constant Cy4 is associated with the pure
shears in the (0 0 1) basal plane and the elastic constant
C’ (Eq. (3)) with pure shears [110] (1 —10).

C'=(Cn—Cp)/2. (3)

In order to characterize the elastic anisotropy of cu-
bic materials, factor 4 (Eq. (4)) is commonly expressed
as a ratio of these elastic constants:

A=Cu/C. 4)

Since Cyy is large and C’ is low for bcc materials, the
anisotropy factor for bcc is 4 > 1 and reaches values
as large as 4 ~ 13 for strongly anisotropic materials
such as CuAlINi [3,4].

In the case of lower symmetry structures, more mea-
surements on multiple samples have to be carried out
to evaluate all independent elastic constants. Specific
equations for wave velocity calculation in some sym-
metric directions of the orthorhombic structure (similar
to Egs. (1)-(2)) can be found in [9]. Since this is rather
laborious and there are difficulties with preparation of
detwinned martensite single crystals, the elastic con-
stants of many low symmetry martensite phases in
SMAs are not known yet. However, even the evalua-
tion of elastic constants of the austenite phase by the
pulse-echo method becomes problematic in the case
of strongly elastically anisotropic solids. In such cases,
certain measured acoustic wave VeloCities Uy, nyp 4, de-
pend strongly on the precision in determination of
[mnu] and [p qr] directions. Any experimental error
in specimen orientation may significantly lower the pre-
cision of the corresponding elastic constants and thus
decrease the overall data quality. The difficulties de-
scribed above lead us to develop a modified approach
(alternative to the traditional direct method) applicable
to the evaluation of elastic constants of both austenite
and martensite phases facilitating the work. Taking
advantage of the possibility to prepare a large number
of samples with different crystallographic orientations
(Table 1, Section 3.2), a weighted optimization proce-
dure (Fig. 1) was developed to minimize the effect of
experimental errors in the evaluation of elastic con-
stants Cjj.

In a general anisotropic solid, one quasi-longitudinal
gL and two quasi-transverse acoustic waves qT1 and
qT2 propagate in a given direction with mutually
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Fig. 1. Flowchart of the weighted optimization method used for the evaluation of elastic constants.

perpendicular polarization vectors. In the modified
approach, the propagation velocities v™P of longitudinal
wave qL and fast (qT1) and slow (qT2) transverse
acoustic waves were measured in multiple austenite
and martensite crystal directions n (Tables 3 and 6) with-
out specifying the wave polarization vectors. An error
function Q(Cjy) in phase velocities was introduced and
minimized with respect to all independent elastic con-
stants Cy; (1,J=1,2,...,6) as

Table 3

N
0=> W (*@?) — (P, n?))’ — min, ()

=1
where n® is a unit vector in the direction of propagation
of the pth input (measured) phase velocity, N is the num-
ber of phase velocities used in the procedure and “Opt”
denotes the resulting values of C;; obtained by the iter-
ative procedure described in Fig. 1 and w is the weight
vector discussed below. The calculated phase velocities

Velocities of propagation of qL and qT1 acoustic waves in CuAINi austenite phase

Propagation direction n

Wave velocity [10° m/s]

(direction cosines)

qL qT1

X y z exp. cal. exp. cal.

0.577 0.5771 0.577 6.032 £ 0.022 6.036 - -

0 0.5 0.5 5.679 £ 0.025 5.690 3.662 1 0.042 3.674
—-0.816 0.408 0.408 5.735 1 0.157 5.792 - -

0.988 —0.122 0.087 4.841 £ 0.266 4.744 3.621 £ 0.055 3.641
—-0.105 —0.052 0.993 4.637 £ 0.243 4.660 3.664 + 0.039 3.660
—0.140 —0.980 —0.070 4.831 £ 0.266 4.760 - -
—-0.018 0.070 0.997 4.452 1+ 0.207 4.564 3.668 +0.023 3.672

0.809 0.588 0.000 5.641 = 0.094 5.626 3.650 £ 0.043 3.674
—0.585 0.0806 —0.087 5.678 £ 0.106 5.648 3.6750.120 3.629

exp. — Experimentally measured values; cal. — values calculated inversely from refined elastic constants.
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v°(C;;,n®?) were obtained as solutions of the eigenvalue
problem [10], which can be written in the tensor form
G.j,k,1=1,2,3) as

det |F,~k — pvzéik| = 0, (6)
I'y = n;Cyuny, (7)

where Iy is the Christoffel’s matrix for the chosen
direction n and for the elastic tensor Cyy, di is the
Kronecker’s symbol. The general solutions of Eq. (6)
are three real positive eigenvalues giving wave velocities
and corresponding eigenvectors (wave polarization).
Thus, the solution for given direction n represents
propagation of three planar acoustic waves with phase
velocities (QL > qT1 > qT2) and mutually perpendicu-
lar polarization vectors. The global minimum of the
error function Q(C;;) was found by a simplex method.
When developing the weighted optimization proce-
dure we were inspired by the “self-consistent procedure”
proposed by Rodriguez et al. [7] while evaluating the
elastic constants of monoclinic 18R martensite. The
main advantage of the weighted optimization procedure
over the standard evaluation method is that it leads to
minimization of the uncertainty in evaluated elastic con-
stants stemming from the inaccuracy in the determina-
tion of the exact crystal orientation. These errors are
even larger than the experimental errors directly related
to the time of flight measurements. Moreover, in the
case of measurements made in general crystal directions,
we do not have to specify the polarization direction vec-
tors. The first step of the weighted optimization proce-
dure is the calculation of elastic constants from the
measured wave velocities all having the same weight.
Next, standard deviations o, of the wave velocities v
are determined by Monte Carlo simulation using the
starting guess of elastic constants C(L), Random vectors
of the wave propagation are generated with Gaussian
distribution (given by standard deviation o, estimated
as 2°) around the directions perpendicular to the sample
faces evaluated by the Laue method. The reciprocal val-
ues of obtained standard deviations 6, are taken as the
weights w in the final optimization generating the elastic
constants, i.e.,
w(Cym) =, ®)

v

Table 4

If there appears a considerable difference in the values of
elastic constant, a new calculation is performed until the
elastic constants remain stable.

3. Experimental results
3.1. Elastic constants of the austenite phase

The pulse-echo measurements were performed at
room temperature 7' =296 K on three austenite cubes
in nine available crystal directions (Table 1). The mea-
sured and calculated wave velocities for longitudinal
and transverse waves are given in Table 3. The denoted
error intervals stem from the orientation uncertainty.
They were determined by the Monte Carlo simulation
approach introduced above. Some data are missing in
the table because only a weak echo could be detected
in some ultrasound propagation modes due to the differ-
ences in the directions of phase and group velocities (re-
lated energy flux) of acoustic waves propagating in
general directions of strongly anisotropic CuAINi crys-
tals. The obtained elastic constants of the austenite
phase are given in Table 4. The denoted experimental er-
rors of the elastic constants were determined considering
inputs varying in the error range 1% of the mass den-
sity and the confidence intervals of phase velocities from
Table 3. The high inaccuracy of the coefficient of elastic
anisotropy A4 is mainly due to the error in the evaluation
of the C' constant. More accurate measurement of the
anisotropy coefficient 4 can be performed by the RUS
technique where resonances corresponding to low val-
ued elastic constants C' are easily and precisely deter-
mined. An increase in anisotropy factor from 4 ~ 11.6
at room temperature down to 4 ~ 12.8 at M; (175 K)
was reported in our earlier work [13] on a similar CuAl-
Ni single crystal. The present work elastic constants of
CuAlINi austenite are compared in Table 4 with a few se-
lected literature data.

3.2. Elastic constants of the 2H martensite phase

The CuAlNi austenite transforms into the ortho-
rhombic 2H martensite upon cooling below the martens-
ite start temperature M = 288 K and, due to thermal
hysteresis, remains in this phase upon heating up to

Elastic constants of the cubic austenite phase in CuAINi measured in this work and comparison with selected literature data

Source Alloy composition C11 (GPa) Cy» (GPa) Cyy (GPa) A=2Cf(C;; — Cra) C'=(Cy1 — Cp)2 (GPa)
This work Cu-14.3wt.%Al-4.2wt.%Ni 142.38 £0.70 12410 £2.06 9524 £0.42 1042 +1.24 9.14 £ 1.09

[11] Cuy.726Al1 122Nig 152 142.5 127.5 95.0 12.9 7.35

[11] Cuy.742Al;1 105Nig 152 137.0 122.7 95.0 13.3 715

[2] Cu-14.3wt.%Al4.1wt.%Ni  142.8 126.8 95.9 12.0 8.00

[12] Cu-14wt.%Al-4.1wt.%Ni 1431 124.3 94.1 10.0 9.4
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room temperature. Taking advantage of this, samples
for measurement of elastic constants of 2H martensite
phase were prepared from the austenite samples used
earlier to evaluate the austenite elastic constants. Both
measurements were carried out at room temperature.
However, the martensite phase forms upon cooling in
a self-accommodating manner with many internal twin
interfaces between and within the individual variants
so that a single crystal of the martensite phase is not ob-
tained by simple cooling. A single detwinned variant of
the 2H martensite phase, however, can still be obtained
by applying a suitable sequence of uniaxial compression
loads to the originally cube (prism) shaped austenite
crystal. Following the first compression load, the origi-
nal prismatic shape is lost and the sample attains the
shape of a parallelepiped. Upon successive compression
loads on the three different faces of the martensite para-
llelepiped, the shape of the martensite crystal changes
among various parallelepipeds corresponding to certain
variants of the 2H martensite phase. Any martensite
parallelepiped can be transformed back to the original
austenite prism specimen by heating above T'=353 K
(as a results of the deformation in the 2H martensite
state [1,2], the austenite finish temperature, Ay, is shifted
~40 K upwards).

The crystallographic data of the phases (austenite
bee: ap=0.5835 nm, martensite orthorhombic 2H:
a=0.4389 nm, b =0.5342 nm, ¢ =0.4224 nm) were ta-
ken from the literature [15]. The coordinate system X,
y, z in the martensite phase has been selected as shown
in Fig. 2(a) (i.e.,x|[100] ~ &, y|[0 1 0] ~ b, Z|[0 0 1] ~ ¢).
The relation between the directions and planes of aus-
tenite and 2H martensite phases in CuAINi is given by
the characteristic lattice correspondence. Six lattice
correspondence variants of the 2H martensite phase
are described by the transformation matrices given in

(a) (10014 (b)
Martensite [010]y
E *\? AUSTENITE
(TR A
= H oooofoooo
00000000
o BA
b L
(0101 ! | g
ot : e
o1)y | A [100] ot \4
it " e M M
001, \Austenite AM :ﬁM(ﬁA)

Fig. 2. Lattice correspondence (a) between the bcc austenite
(ap = 0.5835 nm) and variant 1 of the 2H orthorhombic martensite
phase (a=0.4389nm, b=0.5342nm, c=04224nm). The arrows
suggest the magnitude and sense of transformation strains 6.37%,
—8.46% and 2.37% along three basic directions of the 2H martensite
structure, respectively. Lattice correspondent atomic planes in the
austenite and martensite phases have generally different lattice spacing
(b) and are not necessarily exactly parallel each other.

Table 5. Fig. 2 shows the orientation relationship for
the variant 1. Let us remind that the transformation
matrices would be different for another martensite coor-
dinate system (with respect to a, b and c lattice parame-
ters) sometimes used in the literature. Relations between
the Miller indexes of lattice correspondent crystal planes
(h k I) and crystal directions [¢ # v] in both phases are gi-
ven by the transformation equations (9) and (10):

(hkl)y, =P;- (hk 1)}, (9)
[tu oy =Dy [fuv]y, (10)

where P and D are transformation matrices for planes
and directions, respectively (Table 5). The indexes M,
A and i refer to martensite, austenite and martensite var-
iant, respectively, superscript T denotes transpose. The
transformation stretch matrices F (Table 5) for individ-
ual variants were calculated from the lattice parameters
of the bcc and 2H structures. The matrices F enable the
calculation of dimensional changes associated with the
martensitic transformation and with the reorientation
between two distinct martensite variants i.

An example for the compression deformation proce-
dure will be illustrated for sample 4. The compression
stress—strain curves are shown in Fig. 3(a), the sample
shapes in Fig. 4 and geometrical data of individual mar-
tensite variant parallelepiped shapes (a, b, ¢, o, B, vy
introduced in Fig. 3(b)) are given in Table 2. Sample 4
was three times deformed in the austenite state by apply-
ing compression on faces A—C. Very different o—¢ re-
sponses were recorded (AM-A, AM-B, AM-C in Fig.
3(a)). After the last compression on face C, the sample
existed in the parallelepiped shape corresponding to
the variant 6 (Fig. 4, Table 2). The specimen was next
deformed again in the martensite state by applying com-
pression load on face A (6—¢ curve MM-AC in Fig.
3(a)). During the deformation, the sample changed its
shape at first into variant 5 (end of the 1st plateau)
and then into variant 4 (end of the 2nd plateau). The
two stress plateaus on the o— curve MM-AC (Fig.
3(a)) correspond to two different twinning processes in
the 2H martensite phase. Two sets of differently oriented
traces of moving twin interfaces were clearly recognized
on the sample faces by the optical microscope attached
to the stress rig.

The martensite parallelepiped single crystals for
acoustic measurements (Table 6) were prepared by ded-
icated sequences of compression loads applied subse-
quently on different sample faces. In order to minimize
the experimental error in martensite elastic constants,
it is essential that the martensite parallelepipeds used
in ultrasonic measurements are true martensite single
crystals with no internal interfaces. This is rather difficult
to achieve and must be carefully examined. To check
whether the prepared parallelepiped shapes indeed
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Table 5

Lattice correspondence (D, P) and transformation stretch (F) between the cubic austenite and orthorhombic 2H martensite in CuAINi (£, = 0.91542,
E4=1.04370, E; = 0.02002; lattice parameters — austenite: ay = 0.5835 nm; 2H martensite: a = 0.4389 nm, b = 0.5342 nm, ¢ = 0.4224 nm)

Variant Transformation matrix

Transformation stretch matrix, F, A - M

D, A — M - directions

P, A — M - planes

1 0 -1 1
1 0 0
0 1 1

2 01 1 0
10 0 1
01 -1 0
3 10 -1
01 0
10 1
4 1 01
0 10
10 1
5 110
0 01
110
6 11 0
0 0 1
1 -1 0

0

1/2
(&

-1/2 1)2 Ey 0 0
0 0 0 Ed _Es
12 1/2 0 —E Eg
12 12 E, 0 0
0 0 Ed Es
1/2 -1/2 0 E; E4
Eq 0 -E,
0 E 0
0 —Eg 0 Eq

2 0 1/2 Es 0 E
1 0 0 E, 0
Es 0 E4

0 0 E

12 0 Eq« E 0
0 1 E, E4 0
~1/2 0 0 0 E

Es —-E; 0
—-E; Eg O

correspond to fully detwinned martensite variants, their
geometrical characteristics a, b, ¢, a, 8, y (Fig. 3(b)) were
compared with theoretically calculated values corre-

-250
-200
E ik MM-AC
=)
(2]
) Iy
@ s H
| MM-AC
¢ f f
fvar6 |, Varb, X | X y Vard |
0.00 -0.02 -0.04 -0.06 -0.08 -0.10
(a) Compression strain [%)] (b)

Fig. 3. (a) Stress—strain curves of sample 4 during compression tests at
T =296 K. The curves denoted as AM-A, AM-B, AM-C correspond
to stress-induced transformation during compression loads on different
faces A—C in austenite state The two-stage curve MM-AC corresponds
to martensite twinning during compression load on face A starting
from the parallelepiped obtained before by previous full compression
on face C. (b) Orthogonal coordinate system X YZ of sample 4 (aligned
with sample edges in the austenite prism shape) and geometrical
parameters (@, b, ¢, «, f, y) used to characterize the martensite
parallelepiped shapes (Table 2, Fig. 4).

sponding to the required martensite variant. Table 2
shows results of such comparison for sample 4 used in
deformation tests described in Figs. 3 and 4. As an addi-
tional check, the polished faces A—C of the samples were
inspected for traces of twinning interfaces. Martensite
variant single crystals exhibiting satisfactory agreement
between experimental and calculated shapes typically
shown faces with no interface traces. It was empirically
found that good martensite variant single crystals were
only prepared by applying compression load sequences
suitable for each particular sample. For example, good
single crystal of the 1st 2H martensite variant (Table 5)
was obtained through a sequence of four compression
loadings on parallelepiped faces of sample 1 in a se-
quence (B — C — A — B).

Multiple martensite parallelepipeds with different face
orientations were prepared from three differently ori-
ented austenite cubes (samples 1-3 in Table 1) for the
pulse-echo ultrasonic measurements using the above
outlined procedure. The measurements were carried
out for 15 propagation directions of one quasi-longitudi-
nal (qL) and two quasi-transverse acoustic waves (qT1,
qT2). The experimentally measured wave velocities
(exp.) are given in Table 6. The elastic constants of the
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Face A Face C Face B
[0.601, -0.799, -0.052]  [0.669, 0.454, 0.616]  [0.438, 0.407, -0.788)

—

AUSTENITE ”

-0

o !

o AM-C
MARTENSITE
Variant 6
O mmac 55
Variant 5
L MM-AC -
Variant 4

L

Fig. 4. Shape changes of the sample 4 in three subsequent mechanical tests (rows, Fig. 3(2)) documented by macroscopic views of three sample faces
(columns). The photos demonstrate the large shape changes associated with transformation to individual martensite variants in subsequent
compression tests: (1) compression on face C from the austenite state to variant 6 (AM-C curve in Fig. 3); (2) followed by compressive deformation
on face A from variant 6 to variant 5§ (MM-AC curve in Fig. 3 —end of 1st plateau) and (3) further compression to variant 4 (MM-AC curve in Fig. 3
— end of 2nd plateau). See also Table 2.

Table 6

Velocities of propagation of gL, qT1 and qT2 acoustic waves in 2H martensite phase in CuAINi

Propagation direction n
(direction cosines)

Wave velocity (10> m/s)

qL wave qT1 wave qT2 wave

x (@) y (b) z (¢) exp. cal. exp. cal. exp. cal.
0 —0.8452 0.5344 5.176 £ 0.141 5.201 - - - -

-1 0 0 5.111 £ 0.020 5.113 2.926 +0.040 2.930 1.803 £ 0.050 1.8000
0 0.6203 0.7844 5.602 £ 0.094 5.569 2.707 £ 0.069 2.732 2.245+0.127 2.301
0.7726 0.6348 0 5.543 £ 0.019 5.536 2.343 £ 0.145 2.393 - -
0.5198 —0.8543 0 5.318 £ 0.127 5.340 2.789 +0.110 2.782 - -

0 0 1 5.770 £ 0.017 5.815 3.048 £ 0.010 3.068 1.803 £ 0.039 1.800
0.4574 0.7516 —0.4753 5.354 £ 0.049 5.296 3.177 £ 0.065 3.166 1.660 + 0.184 1.632

—0.8392 0.4597 —0.2907 5.300 £ 0.112 5.356 - - - -

—-0.273 0.4486 0.851 5.551+0.107 5.572 - - - -

—0.7729 0.0996 0.6266 5.093 £ 0.084 5.077 3.084 £ 0.112 3.104 - -
0.0322 0.9945 —0.0992 4.686 + 0.077 4.683 3.045 £ 0.040 3.058 - -

—0.5842 —0.0799 —0.8077 4.810+0.194 4.785 - - - -
0.1276 0.9916 —0.0222 4.699 +0.125 4.716 3.009 £ 0.025 3.051 2.782+0.194 2.809
0.7249 —0.1195 0.6784 4.833+£0.115 4.852 3.151+0.070 3.184 2.929 +0.192 2.868
0.6324 —0.1587 —0.7582 - - 3.204 £ 0.092 3.184 2.811+0.224 2.748

exp. — Experimentally measured values; cal. — values calculated inversely from refined elastic constants.

2H phase (Table 7) were evaluated using the optimiza-
tion method (Section 2.3) considering all results in Table
6. The experimental error intervals for individual elastic

constants (Table 7) were estimated similarly as in the
case of the austenite phase. The refined elastic constants
(evaluated considering all data in Table 6) were used to
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Table 7

Elastic constants of the orthorhombic 2H martensite phase in CuAINi measured in this work and comparison with the constants available in the
literature

Source Cy1 (GPa) Cy, (GPa) Cs3 (GPa) Cyy (GPa) Css (GPa) Cess (GPa) Cy; (GPa) Cy5 (GPa) Ci, (GPa)
This work 18446+ 1.12 151.45+0.75 238.58+1.87 66.39+0.21 22.85+0.18 60.55+0.40 86.83+1.05 70.09+1.07 140.41%0.77
[5] 189 141 205 54.9 19.7 62.6 124 45.5 115

calculate the acoustic wave velocities qL, qT1, qT2. The
obtained results (“cal.” in Table 6) can be compared
with their experimental counterparts.

4. Discussion
4.1. Austenite elastic constants

As concerns the elastic constants of the CuAINi aus-
tenite, numerous results were reported in the literature
[8,11-13,16-18]. Due to the strong elastic anisotropy,
the value of C’ is very low compared to the constants
C11, C12 and Cyy. Our results for C;; and Cyy (Table
4) agree with the literature data. However, there are dif-
ferences in the values of Cj,, C' and A. Table 8 shows a
summary of the literature data of C’ we are aware of.
Since C' varies with temperature (with T — T), results
measured on different alloys can not be compared in a
straightforward manner without taking into account
chemical composition and heat treatments resulting in
different Mg (7o) temperatures of the martensitic trans-
formation. The value of C’ (9.14 * 1.09 GPa) measured
in this present work is larger than all earlier reported
results, except that in [12] (C' = 9.2 GPa). The relatively
high value of C' just above the M; temperature results
in the low elastic anisotropy factor (4 =10.42 + 1.24)
found in the present work, and is among the lowest
of the values reported in the literature (4 = 10-13).

The standard pulse-echo method adopted by most of
the authors (Table 8) is based on direct evaluation of

Table 8

three independent elastic constants from pulse-echo mea-
surements on prism shaped specimen of supposedly exact
crystallographic orientation of the faces (1 1 0)—(1 1 0)-
(00 1) using Egs. (1) and (2). The “low-valued” quasi-
shear velocity ((1 —1 0) transverse waves along (1 1 0))
corresponding to the C’ is very difficult to measure pre-
cisely by the pulse-echo ultrasonic method, since the cor-
responding echoes of slowly propagating transverse
acoustic waves may be influenced or overlapped by faster
waves refracted at the surfaces of the specimen. We be-
lieve that the large experimental error stemming from
uncertainties in crystal orientations as well as from diffi-
culties with the measurement of the constant C’' (Eq. (3))
using the pulse-echo method could be the cause of the
scatter in the values of the elastic constants available in
the literature (Table 8).

We repeated carefully both the acoustic measure-
ments and elastic constant refinement with the error
analysis, but the results always approached the relatively
high value of C’ (Table 7). The experimental uncertainty
is still relatively large (~12%), in spite of the fact that the
present weighted optimization procedure suppresses the
importance of acoustic modes difficult to measure exper-
imentally as well as the uncertainty in determining the
crystallographic orientation. If one takes into account
the estimated confidence interval, the presently reported
value is not so far from the literature values measured by
the RUS method (7.56-8.4 GPa depending on tempera-
ture [11,13]) The resonant technique is more suitable for
evaluation of the elastic constants C’ with high preci-
sion, since C’ corresponds to the easily measurable low

Summary on the literature data concerning the C’ elastic constant of the austenite phase in CuAINi

Alloy composition Refs. M; K) c dInC'/idT ((1/K)10% Experimental method (-)
At 295K (T — My near Mg
(GPa)/([K]) (GPa)
CU2.742A11 .1()5Ni0_ 152 [1 1] 260 7.34/4 (3 5) 7.22 4.36 Pulse-echo
CU2,726A11,122Ni0.1 52 [1 1] 220 7.48/ (75) 7.23 4.25 Pulse-echo
Cu-14wt.%Al-4.1wt.%Ni [12] 249 9.41/(46) 9.20 3.20 Pulse-echo
Cu-14wt.%Al-4.1wt.%Ni [17] - 7.6-8.2%/- - - -
Cu-14.5wt.%A1-3.15wt.%Ni [18] - 8.5/ - - -
Cu-27.96at.%Al-3.62at.%Ni [11] 226 7.81/(69) 7.56 4.20 RUS
Cu-14.1wt.%A1-3.0wt.%Ni [8] - 7.05/—- - - -
Cu-14.3wt.%A1-4.1wt.%Ni [13] 170 8.40/(125) 7.98 3.97 £0.04 RUS

RUS - resonant ultrasound spectroscopy.

# Scatter in C’ in dependence on quenching treatment affecting the M temperature of the alloy.
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resonant frequencies. The decreasing trend of C’' with
decreasing temperature down to M; was confirmed in
both [11,13].

4.2. Martensite elastic constants

The development of the deformation techniques
(Section 3.2) used to prepare the martensite parallele-
piped single crystal variants for the ultrasonic mea-
surement was essential for the successful evaluation
of martensite elastic constants. Although it is outside
the scope of this work to discuss in detail the defor-
mation mechanisms of CuAlNi single crystals, the
results of the compressive deformation treatments
themselves deserve at least brief comment. Let us look
first at the stress-induced martensitic transformation
taking place during compression loads on austenite
samples. The stress-induced bcc — 2H martensite
transformation takes place in the test denoted as
AM-C in Fig. 3(a) (load axis orientation near
[11—2],). Although there is no theoretical possibility
for the existence of the habit plane between austenite
and a single lattice correspondent variant (LCV) of
the 2H phase, the transformation occurring during
the plateau range of the o—¢ curve seems to proceed
into the detwinned martensite variant. As viewed in
an optical microscope attached to the testing machine,
the deformation was localized into a single martensite
band which nucleated suddenly and propagated
through the sample until the end of the plateau. Lots
of thin martensite bands were observed to appear tem-
porarily prior to the nucleation event and near the
moving macroscopic interface within both phases.
The transformation was not reversible upon unload-
ing. On the other hand, reversible pseudoelastic o—
response with much narrower stress hysteresis was
recorded in the AM-A test (load axis orientation near
[3 —40]). This is because in this particular case, the
monoclinic 18R phase with small hysteresis was in-
duced, instead of the orthorhombic 2H martensite
phase. This is well known to occur in compression
tests on CuAINi [1] when the load axis approaches
the [011]{111] zone directions. No stress-induced
transformation was observed in AM-B test (load axis
orientation near [857]), since the transformation
stress for both bcc — 2H and bec — 18R transforma-
tions becomes very high when load axis orientation
approaches the [1 1 1] crystal direction [1]. The loading
had to be interrupted at 250 MPa compressive stress
because of the load cell limits. More information on
the anisotropy of pseudoelastic deformation of CuAl-
Ni single crystals in compression (evidence of orienta-
tion dependence of stresses, strains and Young’s
moduli) can be found in [1].

As regards the orientation dependence of o—¢ re-
sponses upon compression loading in the martensite

state, a variety of responses similar to that denoted as
MM-AC in Fig. 3(a) (one or two stress plateaus of var-
ious stress level and length) were recorded in various
experiments depending on load axis orientation and his-
tory. If it exists, the first low stress plateau (typically
<5 MPA) on the two stage 6—¢ curve corresponds to
the (101)y; compound twinning, the second plateau
(typically ~30 to 50 MPA) corresponds to Type I or
Type II twinning depending on the orientation of the
compression load axis. The stress—strain responses in
the martensite phase thus depend first of all on the acti-
vated twinning mode in the 2H martensite phase. As far
as we know, there exists only the data reported by Otani
et al. [14] concerning the orientation dependence of
twinning modes in CuAINi 2H martensite single
crystals. As they showed, the 2H crystals loaded in ten-
sion typically changed their orientation by twinning
once or twice before ultimately being transformed into
Bi 18R martensite phase. The 2H — 18R transforma-
tion does not commonly take place in compression since
the 2H martensite phase provides similar or even larger
compression strains along the load axis than the g{ 18R
martensite [1] for most of the crystal orientations. The
twinning processes in the 2H martensite phase during
compression deformation are currently being systemati-
cally studied and the results will be reported elsewhere.

Let us point out that good martensite parallelepiped
single crystals could only be prepared thanks to the fact
that frictional forces between grips and sample faces
did not prevent the crystals undergoing the very large
shape changes demonstrated in Fig. 4. Nevertheless, it
still happened very often that two variants were induced
in the sample and remained locked in some geometrical
configuration at the end of deformation plateaus of o—¢
curves (Fig. 3). In this case, even if the o—¢ curve
exhibited a compression strain correct for a particular
martensite variant, the required agreement between the
experimental and calculated sample shapes was not
achieved. Such martensite samples were not used in
pulse-echo measurements. The essential role of using
the sample shape measurements instead of axial strain
only for characterization of martensite variant single
crystals is evident.

As concerns the values of elastic constants of the 2H
martensite phase, we are aware solely of the frequently
referenced results by Yasunaga et al. [5] (Table 7),
who prepared martensite single crystal by cooling under
stress from the austenite phase, cut one small oriented
martensite single crystal and employed the RUS tech-
nique taking into account very low number of resonance
frequencies. Since the authors [5] did not specify the ori-
entation of the martensite coordinate system, we or-
dered their elastic constants in Table 7, so that they
best match our values. Although the results are quite
similar, there remain discrepancies to be resolved in fu-
ture work.
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4.3. Inheritance of special acoustic modes from austenite
into martensite

Looking at the martensitic transformation as being
due to the instability of the crystals with respect to
strains in the crystal lattice, it is instructive to follow
the variation of elastic constants of both phases with
temperature or stress up to the stability point [3,6,13]
as well as to evaluate discontinuous changes of elastic
constants with the martensitic transformation [6]. An
extensive recent review on temperature and stress varia-
tions of elastic constants for f-phase alloys can be found
in [3]. The discontinuous changes of elastic constants
with the martensitic transformation are focused upon
in the present work. It is essential that the elastic con-
stants of both austenite and 2H martensite phases in
CuAlINi were evaluated on the same sample at the same
temperature. In order to inspect the soft shear modes of
a crystal structure, it became common in the literature
[3] to compute the velocities of transverse acoustic waves
from elastic constants and plot variation of the acoustic
wave velocity with crystal directions in selected crystal
planes or construct wave velocity surfaces in a form of
spherical polar diagrams. This approach has been
adopted in the present work and applied to both longi-
tudinal and transverse acoustic waves with the aim of
inspecting the inheritance of soft acoustic modes and
elastic properties from the austenite to the martensite
phase.

In order to compare the velocity surfaces correspond-
ing to qL, qT1 (fast) and qT2 (slow) waves for austenite
and martensite phases they were plotted in such a way
that the lattice corresponding planes in both phases
are aligned (Fig. 5(b)). The wave velocity surfaces are
spherical polar diagram showing surfaces generated by
vectors v*, v™ expressed by

vA = v*(n*)n, (11)
W™ = M@M)n?, (12)
[M]" = SP;[n*", (13)

where n” is a direction of wave propagating in austenite,
n™ the corresponding direction in martensite, v*(n™)
and v™@™) are wave velocities in given directions, the
matrix S = diag(1/a; 1/b; 1/c) and P; is the transforma-
tion matrix for planes (Eq. (9), Table 5) and superscript
T denotes transpose.

Since the martensitic transformation is mainly related
to stability of shears, we are particularly interested in
certain special points on the velocity surfaces of trans-
verse acoustic waves. Due to the definition of qT1 as
fast and qT2 as slow waves, the minima will always ap-
pear on the qT?2 surface. Fig. 5(a) shows the part of the
qT2 velocity surface of the austenite phase for the quad-
rant cut by planes (0 0 1), and (1 0 0)a. The highly sym-

metric surface displays two kinds of special points — the
minimaat vo (12 minima) and v¢, (24 saddle points)
directions. The former corresponds to elastic constant
C’ representing the total minimum of shear stiffness in
[110]a{1l —1 0} shear systems in CuAINi [2,3]. These
low value shear modes significantly soften [3] with
decreasing temperature towards M. The v¢, minima
in planes {1 1 0}, were denoted Cs according to Nagas-
awa et al. [19]. They are saddle points on the velocity
surface as become evident in the 3D view in Fig. 5(a).
The velocity of transverse acoustic wave v¢, propagat-
ing in Cg directions characterized by angle @g from
[1 0 0]a direction in (0 1 1)5 plane (Fig. 5(f)) is given by

05 =sin '4/2(Cyy + C1;)/(3C11 + 5C12 +2Cu), (14a)
pvg, = Cs = C' +0.5(Cyy — C')sin’Os. (14b)

Softening of the Cs mode has never been reported for
CuAlNi as far as we know, but it was observed for other
materials such as NiAl, NiTi [4,19]. When the martens-
itic transformation proceeds, the shears corresponding
to C' and Cs are considered to play crucial role in the
martensite formation of bcc solids according to Burgers
scheme [4,19]. While the shears [110]5 {1 —10} (C)
bring the {1 —1 0} planes into their close-packed for-
mation within the martensite structure, the special mode
shears (1 —1 —1)4{1 —12},(Cs) are considered to be
responsible for the particular stacking structure within
the martensite [19]. Therefore, we are interested in
how the special points on the austenite velocity surfaces
corresponding to Cyy, Cr and Cg (Fig. 5(a)) are inher-
ited by the martensite phase after the phase transforma-
tion takes place.

The austenite velocity surface is compared with 1st
variant velocity surface of the 2H martensite in Fig.
5(b). It is to be noted that austenite planes (0 —1 1)4
and (011), become principal planes (00 1)y and
(1 00)y in the 1st variant of the martensite phase and
that formation of this 1st variant is favored by a com-
pression stress applied along the [1 0 0] crystal direc-
tion (Fig. 2(a)), for example. The martensite velocity
surface (Fig. 5(b)) was inspected for the special points
and the result of this search is summarized in Table 10,
where wave velocities and unit vectors in the propaga-
tion and polarization directions corresponding to the
special points are given. Local minima were found at
vy (two minima) and vy, (two minima) directions lying
in the principal martensite planes (0 0 1)y and (1 0 O)yy,
respectively. These local minima are associated with
{1 0 0)p1(0 0 1)p;and {0 0 1)p(1 O O)ys shears correspond-
ing to Css elastic constants of the martensite phase.
Total minimum was found in general martensite crystal
direction vy3 (eight equivalent minima) lying in a kind
of “valley” on the martensite velocity surface (four
equivalent valleys). There are four pairs of M3 minima
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Fig. 5. Orientation dependences of velocities of ultrasonic waves (velocity surfaces) propagating in the austenite and 1st variant martensite phases.
Part (a) shows one quadrant of spherical polar diagrams of the qT2 velocity surface of quasi-transverse waves propagating in the austenite. (b)
Comparison of the qT2 velocity surfaces of austenite and the martensite using the lattice plane correspondence. Points v and vyy3 correspond to
crystal directions in the austenite (V) and martensite (vy3) phases, in which the QT2 waves propagate with the slowest velocities. Surface sections of
the velocity surfaces of all the three acoustic waves qL, qT1 and qT2 along crystal planes A — (0 1 —1)5 (c), B— (01 1)5 (d) and C - (1 00)4 (e) are
shown for both austenite (solid lines) and martensite (dashed lines) phases. Points corresponding to special acoustic modes (see Tables 9 and 10) of
both phases are denoted. The sketch in (f) shows the geometrical details concerning the martensite special mode Cys.

(Figs. 5(f) and 6) centered around the vyg direction in denoted vyg (Fig. 5(b)) are thus in fact saddle points

the (00 1)yr martensite basal plane (four equivalent in the mentioned valleys (four equivalent saddle
vms directions). The points in the (0 0 1)); basal plane points).
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Fig. 6. Velocity profile of the “valley” on the 2H martensite qT2 velocity surface. Velocity minima found in sections along (% 0 J)y; planes (crystal
planes in the [0 1 0]s zone) are plotted in dependence on angle f§ between the (A 0 J)y plane and the basal (0 0 1) plane. The cloud of points around
the M3 point are the results of 50 calculations of the velocity surface from 2H elastic constants scattering randomly within the error intervals given in

Table 7.

Let us now look more closely on the inheritance of the
austenite soft modes into particular martensite variant.
Inheritance of the soft modes into the 2H martensite
phase in CuAINi was mentioned by Yasunaga et al. [5]
and some comments on CuZnAl alloy transforming into
18R monoclinic martensite can be found in [3,6].
However, as far as we know, the inheritance was never
investigated in detail and not specifically for a transfor-
mation into a particular martensite variant selected by
external stress, since the elastic constants for both phases
in a single specimen at the same temperature were not
available. The inheritance of the soft modes is more con-
veniently presented using sections through the velocity
surfaces (Figs. 5(c)—(e)). One can straightforwardly read
from these diagrams how the velocities of qL, qT1 and
qT2 acoustic waves change along particular crystal direc-
tions with the martensitic transformation. Let us look
first at the M1 and M2 local minima. They relate to the
Cs; elastic constant of orthorhombic lattice. Considering
that both the propagation and polarization vectors in the
martensite ({10 0)y(00 1)y and (00 I)e(100)py) ex-
actly correspond (Table 10) to those representing the aus-

Table 9

tenite C' mode ({01 1)4(01 —1)5 and {0 —1 1)4(0 1 1),)
and both are pure modes (Table 9, Figs. 5(c)—(e)), it is
obvious that the Css =22.85 GPa martensite constant
was inherited from the C’ = 9.14 GPa austenite constant.
Recalling that variant 1 preferably forms under uniaxial
compressive stress applied along [0 1 0]y direction or
tensile stress along [1 0 O]y direction, we see that the
Css martensite soft shears were inherited from those aus-
tenite soft C’ shears, the interaction of which with the ap-
plied stress was minimal when the martensite phase
formed.

In order to understand where the global minima M3
on the martensite velocity surface come from, we have
to look more closely at the earlier mentioned deep val-
ley. The valley represents a major symmetry breaking
change of the austenite velocity surface introduced by
the martensitic transformation. Each valley contains
the two global minima at vy directions and one saddle
point at vy,g direction in the basal plane (0 0 1))s. The
corresponding elastic constants are Cyz = 13.22 GPa
and Cys = 13.33 GPa. Since these values are very close,
we were suspicious whether the origin of the M3 minima

Characteristics of special points on velocity surfaces of transverse acoustic waves propagating in austenite phase

Special point Mode type Ng Velocity (10° m/s) Propagation direction in Polarization direction in austenite
austenite coordinates coordinates

c T 12 1.138 0.707 —0.707 0 0.707 0.7071 0

Cs qT 24 1.980 0.755 —0.464 0.464 0.755 0.464 —0.464

Ca T - 3.674 [h k0] 0 0 1

NEg denotes number of geometrically equivalent points from symmetry reasons; qT and T denote quasi-shear and shear modes, respectively.
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Characteristics of special points on velocity surfaces of transverse acoustic waves propagating in martensite phase

Special points  Mode type  Ng  Velocity (10> m/s)  Propagation directionin  Polarization direction in Corresponding special
in martensite martensite coordinates martensite coordinates points in austenite
MI1(Css) T 2 1.800 1 0 0 0 0 -1 c

M2(Css) T 2 1.800 0 0 1 1 0 0 (o

M3 qT 8 1.369 0.673 0.722  0.160 0.673  -0.722 0160 -

MS(Cums) qT 4 1.375 0.688 0726 0 —0.688 0.726 0 Cs

M4 qT 8 1.603 0494 0.703 0.513  —0.668 0693 —-0272 (C

Cu T 2 3.068 0 0 1 0 1 0 Cu

Cu T 2 3.068 0 1 0 0 0 1 Cu

Ces T 2 2.930 1 0 0 0 1 0 Cu

Css T 2 2.930 0 1 0 1 0 0 Ca

Ng denotes number of geometrically equivalent points from symmetry reasons; qT and T denote quasi-shear and shear modes, respectively.

could be just due to experimental errors and numerical
procedures. A stability check (50 calculations) has been
carried out by calculating the velocity surfaces from ran-
domly chosen elastic constants within the range of their
error intervals (Table 7). It was found that, surprisingly,
not only the very existence of the M3 mimimum, but
also its location is stable in the range of the error inter-
vals. This is documented in Fig. 6, where the values of
the velocity minima found in sections along (% 0 )y
planes (crystal planes in the [0 1 0]y zone) are plotted
in dependence on angle B between the (40 ]\ plane
and the basal (0 0 1)y plane. It is evident from the re-
ported scatter in the location of M3 minima that the pre-
cision of its determination is good enough to distinguish
it clearly from the saddle point MS, in spite of very small
differences in velocities. Fig. 6 clearly documents the
special character of the global velocity minima of the
2H martensite phase in the “valley”’ as two M3 minima
connected through the MS saddle point in the basal
(00 1)y plane. Since the MS point best characterizes
the deep valley and hence the related martensite non-ba-
sal soft modes, we are particularly interested in its char-
acteristics (Table 10).

Since the vy;s direction lies in the symmetry plane of
the martensite structure, it was possible to express ana-
Iytically the velocity vys and propagation direction @y
of the transverse acoustic wave as a function of 2H elas-
tic constants

—K10 £ /K3, — 4KoK 1

2K, ’

sin’ @y = (15a)

2
puys = Cms

. 1 RPN
= mlnj=1‘2{2 <K1 +K231n2@’MS

_\/K6sin4@’1;,[s + Ksin® @ + Ks) }, (15b)

where K; = Cgs + (oo, K22= Ci1 — Cx, K3=(C11 — Cés)
(Ce6 — C2) + (Cr2+ Cog)”, Ka= Cs6Kp — K3, Ks5= Ces
Cz, K = K3 — 4K;, K7 = 2K, K, — 4Ky, K = K} — 4K,

Ky = K3Ks, Kio = K3K7, K11 = K1K2K4 — K3Ks — K2. The
angle @\s characterizes the propagation direction by
an angle between vy;g and [0 1 Oy in the (0 0 1)) plane
(Fig. 5(f)) in an analogy to the @g (Eq. (14a)) characteriz-
ing the Cg special mode of the austenite phase.Let us call
the acoustic mode corresponding to the vy;g direction a
martensite special mode Cys (Eq. (15b)). The obtained
value of angle Opg = 43.5° may be recalculated into the
angle @%4¢ = 47.8° between the propagation direction
and the austenite direction [1 0 0]5 using the correspon-
dence (13) of the crystallographical planes. Note that an-
gles Og and @4 (Fig. 5(f) are different and it may be
shown that polarization vectors of both modes are not ex-
actly aligned (inherited). In spite of that, the martensite
special mode Cys and austenite special mode Cg seem
to be clearly related. The wave velocity corresponding
to Cyvs mode is however smaller compared to that corre-
sponding to the Cg mode (Table 9, Fig. 5(d)); comparing
the elastic constants, Cg=27.67 GPa > Cpg=13.33
GPa. This is surprising since one would expect stiffening
of the soft modes with the martensitic transformation as
it occurs for the C' — Css inheritance (Table 10, Figs.
5(d) and (e)). In fact, only four austenite Cg modes lying
in the (011), plane (the {011}, which becomes
(0 0 1)) basal martensite plane) soften during the discon-
tinuous change of the elastic properties with the martens-
itic transformation. The remaining eight austenite Cg
modes harden. Finally, it shall be mentioned that the
direction of the wyg4 velocity lying also in the valley
(Fig. 5(b)), does not in fact mark an extremum or other-
wise special point on the martensite velocity surface.
The M4 points were included in Fig. 5(b), since they mark
the martensite modes (apparent minima in sections along
(0 1 0) planes) inherited from the remaining eight soft C’
modes of the austenite phase not related to the M1 and
M2 minima. The wave velocities corresponding to vy
directions are larger than that of the C’' mode of the aus-
tenite but smaller than that corresponding to Css mode
of the martensite (minima M1, M2). The valley character-
ized by the martensite special mode Cyg is thus an
essential feature of the 2H martensite velocity surface
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which is likely to be important for the stability of 2H
structure. The results of Gonzalez-Comas et al. [6], who
studied temperature dependence of elastic properties of
similar 18R martensite in CuZnAl, seem to suggest that
the velocity surface of the 18R phase is somehow different
(the special point MS does not exist) and that some of the
18R elastic constants vary significantly with the tempera-
ture approaching Ay. This remains to be further investi-
gated in future work.

Figs. 5(c)—(e) also provide information on the fast
qT1 transverse acoustic waves not considered in Figs.
5(a) and (b). The maxima on the qT1 velocity surface
corresponding to Cyy elastic constant of the austenite
(C44A in Figs. 5(c)—(e)) are inherited by the martensite
phase as either Cy4 and Cgq elastic constants. The wave
velocities in the martensite phase corresponding to Cyy
and Cgs modes are rather similar (Table 9) and smaller
compared with the velocity corresponding to the parent
C44 austenite mode. The velocity of qT1 fast acoustic
wave thus exhibits softening almost everywhere except
in the direction close to [1 1 1]5. If we take the ratio of
maximum and minimum characteristic shears 4°™ as a
criterion for elastic anisotropy of the orthorhombic 2H
structure,

_Cu
Cus’

We find (4°" = 3.49) that the 2H martesite is less elasti-
cally anisotropic than the bcc austenite. Since geometri-
cal details of the martensite acoustic modes (particularly
Cwms) depend strongly on the actual values of the mar-
tensite elastic constants, we would like to obtain first
an independent confirmation of the martensite elastic
constants by the RUS method (this work is currently
in progress) before going further with the interpretation
of the presented results.

We should also briefly comment on the inheritance of
the velocity surface corresponding to the longitudinal
acoustic waves qL. The qL surface primarily brings infor-
mation on the Cj; elastic constant (Eq. (1a)). However,
since the velocity in general crystal directions of aniso-
tropic crystals depends also on other elastic constants
(e.g., Eq. (2a) holds for the velocity in [0 1 1]5 direction
of the austenite phase), the qL velocity is orientation
dependent. The shape of the qL surface of the austenite
is in the first approximation inherited by the product
martensite phase (Figs. 5(c)—(e)). It seems that softening
(in a sense that velocity is lower in the martensite phase)
prevails for most of the crystal directions, though there
are some specific directions (e.g. (1 0 1))y and (—10 1)y
(Fig. 5(e))), where the gL velocity significantly increases.
The gL surface is relatively uninteresting for the lattice
stability of martensitically transforming bcc alloys, but
important for the anisotropy of elastic properties of both
phases and change of elastic properties with the transfor-
mation (Section 4.4).

A (16)

The changes of the velocity of longitudinal ultrasonic
waves with the stress-induced martensitic transforma-
tion were measured experimentally in our previous work
dealing with CuAlINi cubes [2]. Fig. 7, which has been
redrawn from data reported in [2], shows a relative
change of the velocity of qL-wave propagating in
[0 —1 1]a direction perpendicularly to the compression
load axis [1 0 0]5 during a pseudoelastic test on CuAINi
single crystal cube (M = 193 K). In the elastic range, the
velocity at first slightly increases with increasing applied
stress (this corresponds to positive third order elastic
constant [2]). When the stress-induced transformation
starts at ¢ = 350 MPa, however, the wave velocity dras-
tically decreases (8%). Reverse stepwise change of the
velocity is observed during the reverse transformation

(a) 7 CuAlNi single crystal
0,08  cube, T=297K
load axis [100],....L -ALIL,
| transf. dir. [0-11],...H
0,06
£ 1
T 0,04~
n ]
0,02
0,00 ; , - I : I : , .
0 100 200 300 400
Compression stress o, [MPA]
(b} Austenite
0
X -
§ o [100]44 O
= 7 [010]y4
- —4 wave /1 7 | ¥/
2> Logs 2
® 8 | LA
> \“\!"\ - H
= . Martensite
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Fig. 7. In situ ultrasonic measurement on CuAlINi single crystal cube
M;=193K, a= 10 mm, faces (011)4, (0 —11)4, (100),), redrawn
from [2]). The cube was deformed pseudoelastically at T =297 K
(M; + 104 K) in compression (a) along the [1 00] crystal direction
(AL < 0). The velocity of the longitudinal acoustic wave qL propagat-
ing along perpendicular [0 —1 1] crystal direction was measured
simultaneously with the transverse dimensional change (AH > 0). (a)
The strains are plotted as a function of the applied stress. (b) The
relative velocity change AV/V, was normalized with respect to the
transverse dimensional change AH > 0. The cube changes into prism
with the stress-induced transformation upon loading (inset in (b)).
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upon unloading (at lower stresses due to the hysteresis).
When the transformation is finished, the original values
of strain and acoustic velocity are perfectly restored at
~300 MPa stress level and decrease upon further
unloading down to zero stress. Notice the excellent
reproducibility of the measured velocity out of the trans-
formation range. When the qL velocity was measured in
different crystal directions — i.e., along the second per-
pendicular direction [011]o or along the load axis
[100]4 (different experiment set up with ultrasonic sen-
sors mounted inside the compression grips), a slight in-
crease in the qL velocity upon forward loading was
recorded in agreement with the calculated qL surfaces
in Fig. 5(c)—(e).

These results provide direct experimental evidence
that elastic constants of SMA single crystals change sig-
nificantly with the stress-induced martensitic transfor-
mation and that these changes can be measured by
ultrasound. The ultrasound would also detect thermally
induced transformations and, due to elastic anisotropy,
even twinning processes during martensite deformation.
In situ ultrasonic measurements of acoustic wave prop-
agation can be equally well applied to polycrystalline
SMA samples transforming in thermomechanical cycles.
Experiments on NiTi bars and wires [20,21] show large
effects and very good reproducibility of acoustic wave
velocities and attenuation measured in situ during ther-
momechanical cycles. The interpretation in terms of
elastic property changes, however, is not as straightfor-
ward. Nevertheless, an idea to use ultrasound for non-
destructive in situ studies of martensitic transformations
in SMAs, similarly as e.g., electric resistivity, is currently
seriously investigated. The combined electrical resistivity
and ultrasonic in situ experimental method proposed in
[21] can be utilized to distinguish various deformation/
transformation processes in activated NiTi wires.

4.4. Elastic property changes with the austenite to
martensite transition

Although some qualitative conclusions on the change
of elastic properties with martensitic transformation can
be deduced already from the orientation dependence of
the acoustic wave velocities in Fig. 5, if we want to dis-
cuss the change of the elastic properties and anisotropy
quantitatively [22], it is necessary to refer directly to the
orientation dependence of some elastic properties. Since
Young’s modulus E is of wide interest, its variation with
crystal direction was calculated from the measured elas-
tic constants of both austenite and martensite phases
from its definition [23,24] (Eqgs. (17)—(19)). The compli-
ance tensor Sy is reciprocally related to the stiffness
tensor Cipum, 1.€.,

Sijklcklmn = 5im5jn- (17)

The component S;;1; in a given direction d is calcu-
lated for an arbitrary rotation (direction cosines a;) of
the compliance tensor Sy;

7z
Sii11 = Am@1n01p@14Smnpg (18)

and Young’s modulus E(d) in the direction d is calcu-
lated as

E(d) = 1/Syyy;. (19)

This procedure is applicable for general anisotropic sol-
ids and hence for both the austenite and martensite
phases. Alternatively, Young’s modulus in a given crys-
tal direction [A k [] for the cubic austenite phase can also
be conveniently calculated directly from the elastic con-
stants Cj; [23]

R Cn+Cp
Ewa  (Ci— C12)(Ci1 +2Cy2)
i+ P+ PP 1 1

T R+t R (Cu —Cp 2c44)' @

The results are again presented using two interpene-
trating spherical polar diagrams (Fig. 8) showing Young’s
moduli surfaces for austenite and 1st variant of the mar-
tensite phase (Fig. 2(a)). Similarly as in the case of wave
surface comparison (Fig. 5), the Young’s moduli surfaces
in Fig. 8(a) are plotted for directions normal to the austen-
ite lattice planes and lattice correspondent martensite
planes (13). Only half of the surface is shown in Fig.
8(a) since the front plane is the mirror symmetry plane.

When analyzing the Young’s moduli changes with
phase transformation using Fig. 8, one immediately no-
tices the large anisotropy of Young’s modulus in both
phases. In spite of the discontinuous change in elastic con-
stants, the anisotropy of austenite is partially inherited by
the martensite. The anisotropy of Young’s moduli of the
2H martensite is characterized by three mutually orthog-
onal mirror planes (principal martensite planes A—C in
Fig. 8(a)) of the orthorhombic elastic symmetry. The aus-
tenite Young’s modulus surface has a complex shape with
spikes of large moduli pointing along cube diagonals as
common for bec solids with large positive elastic anisot-
ropy factor A4 [22,24]. Three sections of the Young’s mod-
uli surfaces along planes A—C are shown in Figs. 8(b) and
(c) to present quantitative information on the change of
the Young’s modulus with the transformation. The aus-
tenite crystal was elastically hardest particularly along
four cube diagonals (1 1 1)5 and softest along the three
{00 1), directions. The 2H martensite in contrast be-
comes hardest in the [0 0 1]y martensite crystal direction
but very soft in the [1 0 0]y (Figs. 8(b)—(d)). Note that
both the [0 0 1]y; and [1 0 0]y directions are lattice corre-
spondent to the face diagonal (0 1 1) directions in the
austenite phase. This represents the major symmetry
breaking change in the anisotropy of Young’s modulus
with the transformation. As regards the minima, the
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Fig. 8. Orientation dependence of Young’s moduli of phases in CuAlNi single crystal calculated from elastic constants: (a) two interpenetrating
spherical polar diagrams (half space) with Young’s moduli surfaces of the austenite (solid line) and variant 1 of the 2H martensite (dotted line),
(b—d) sections along three basic martensite planes, A — (0 —1 1) (b), B— (100)4 (c), C— (011)4 (d).

Young’s modulus increases along all three (0 0 1), direc-
tions with the transformation, but since the increase is
smallest along the [0 1 O]y direction, the martensite crys-
tal becomes softest there (global minimum of the Young’s
modulus in the martenite). If we take the difference be-
tween minimal and maximal Young’s moduli as an alter-
native qualitative criterion for the elastic anisotropy, we
find the 2H martensite is less elastically anisotropic com-
pared to the austenite phase. The anisotropy of the
Young’s modulus surface of the austenite phase is domi-
nated by the soft C' shear modes. It appears that the
anisotropy of the Young’s modulus of the 2H martensite
phase is partially inherited from the austenite phase
(C' — Css) but modified particularly as a consequence
of the soft non-basal shears corresponding to the deep val-
ley on the qT2 velocity surface (Cs — Cyss) discussed in
Section 4.3.

Let us discuss briefly potential changes of the Young’s
modulus of the crystal with the stress-induced martensitic
transformation. From a practical perspective, one is
mainly interested in the change of Young’s modulus along
the direction of the load axis. Hence in doing that we have
to at first check which martensite variant becomes in-
duced by the applied stress. Let us consider the particular
case of the pseudoelastic test shown in Fig. 7. In this case,
the austenite cube sample with faces (1 00)4, (01 —1)4,
(01 1), is compressed along the [1 0 0] direction. Two

lattice correspondent martensite variants can be stress in-
duced (1st and 2nd in Table 5) because they are equally
preferred by the applied compression stress (the 1st and
2nd variants provide largest strain). If the variant 1 for
which Figs. 8 and 4(a) apply is induced, the Young’s mod-
ulus increases in the [1 0 0]4 direction ([0 1 O]y direction
in the martensite phase, contraction 8.46%), decreases in
[01—1]s direction ([1 00y, dilatation 6.37%) and
strongly increasesin [0 1 1] direction ([0 0 1]y, dilatation
2.37%). In this very special geometrical case, the austenite
cube changes after the transformation into the martensite
prism as suggested in the inset in Fig. 7(b). The increase of
the Young’s modulus along the load axis with the trans-
formation was found in the present case. However, this
does not have to be always the case. Note that variant 1
will be also induced in the case where the same cube is
“pulled” in tension along the [0 1 —1] direction. In this
case, Young’s modulus of the sample is predicted (Fig.
8(c)) to decrease with the stress-induced transformation
into the 2H martensite phase. In fact, due to the orienta-
tion dependence of Young’s moduli of both phases and
selection of martensite variant by the applied stress, the
change of Young’s modulus of the sample with the trans-
formation depends on load axis direction and sense of
loading as calculated and shown in Fig. 9. While in com-
pression, an increase in Young’s modulus is observed for
most of the load axis orientations except the corner near
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Fig. 9. Orientation dependence of the relative change of the Young’s
modulus with stress-induced bcc-2H martensitic transformation
(100 x (Env — EA)/EA is plotted over basic stereographic unit) upon
uniaxial loading in tension and compression.

{11 1), directions, in tension, the Young’s modulus de-
creases for wide range of load axis orientations near the
{(111)4<011)4o—<11 1), zone and increases elsewhere.
The decrease in Young’s modulus with the phase transfor-
mation might have consequences on the stability of mac-
roscopic deformation (localized vs. quasi-homogeneous
deformation behavior) in pseudoelastic tests on CuAINi
single crystals.

It should be pointed out that the orientation depen-
dence of Young’s modulus does not fully characterize
the peculiar elastic properties of the 2H martensite phase.
In a similar fashion, one can investigate the orientation
dependence of shear moduli or Poisson ratio in both
phases and look at the inheritance of such elastic proper-
ties. For example, when the orientation dependence of
Poisson ratio v, is calculated from the elastic constants
of the austenite, large negative values are obtained for
some geometrical configuration of m and m vectors.
The negative value of v,,, means that CuAINi crystal
pulled in a direction n extends in perpendicular direction
m. This property called auxeticity is rather common
among strongly elastically anisotropic bec solids. This
auxeticity of the austenite phase is partially inherited into
the orthorhombic 2H martensite as noticed also by
Rovatti [25] who investigated theoretically the elastic
properties of 2H crystal based on Yasunaga et al.’s con-
stants [8].

Let us finally briefly comment on the macroscopic elas-
tic property changes of SMA polycrystals transforming in
thermomechanical loads. They can be measured experi-
mentally by ultrasonic or mechanical means. The changes

of the elastic properties of NiTi with the transformation
were evaluated by ultrasound [20]. These results, although
rather difficult to properly interpret, are interesting from
the point of view of mechanics modelling and engineering
applications of SMAs. The macroscopic elastic properties
of polycrystalline SMAs (e.g., Young’s modulus of NiTi
wire [21]) obviously depend very much on the crystallog-
rahic texture of the parent austenite phase. Particularly,
the Young’s modulus of a polycrystalline specimen de-
pends on the load axis direction with respect to the tex-
ture. The question is how this macroscopic elastic
anisotropy of the polycrystal is inherited by the martens-
ite phase. This is a problem of the texture transformation
accompanying martensitic transformation in SMAs. The
texture which appears in the stress-induced martensite
phase reflects partially the parent austenite texture. How-
ever, it is, in addition, strongly modified by the martensite
variant selection under stress (as was investigated experi-
mentally, e.g., for B19’ martensite in NiTi [26]). The
Young’s modulus of the SMA polycrystal in fully de-
formed martensite state thus depends on the deformation
history (on the previously applied stress state). In partic-
ular, since very different martensite textures typically ap-
pear in SMA polycrystals deformed in tension and
compression [26], Young’s modulus of deformed SMAs
is expected to be different after deformation in tension
and compression. In the particular case of CuAINi poly-
crystals transforming to 2H phase, larger Young’s modu-
lus would be expected after compression than after
tension, since the increase of the Young’s modulus pre-
vails for most of the crystal orientations in compression
but not in tension (Fig. 9).

In view of the above discussion, the question of
whether the martensite is softer or harder than the austen-
ite raised frequently in the SMA modeling studies seems
to have in fact little practical meaning. The martensite sin-
gle crystal is elastically softer or harder than the austenite
crystal depending on the direction we speak about. This is
a consequence of the discontinuous change in elastic
properties with the transformation, elastic anisotropy
and lattice correspondence of both phases. The question
whether the martensite polycrystal is elastically softer or
harder than the austenite polycrystal is difficult but mean-
ingful. Fig. 8(a) does not suggest any simple conclusion on
the polycrystal Young’s moduli change with the
bee — 2H transformation, except the obvious qualitative
comment that the texture in parent austenite state and po-
tential martensite variant selection during transformation
would have a strong influence. Discussion of the polycrys-
tal moduli is hence beyond the scope of this work. We can
only remark that, in a deformed state, the Young’s mod-
ulus of SMA polycrystals might depend on the deforma-
tion history, sense of load etc. and may be curiously
different after tension and compression deformation due
to the different selection of martensite variants by the ten-
sion and compression stress [26].
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5. Summary and conclusions

Single crystals of CuAlNi alloy existing at room tem-
perature either in austenite or martensite state were
grown and cut into the cube shape (a ~ 5.6 mm) in aus-
tenite state. Taking advantage of the easy deformation
twinning in the martensite state, multiple parallelepiped
shaped samples were prepared by a compression defor-
mation method. Ultrasonic pulse-echo measurements
of the velocities of acoustic wave propagation were car-
ried out on the austenite cubes as well as on the martens-
ite parallelepiped shaped samples.

Elastic constants of cubic austenite and orthorhombic
2H martensite phases were evaluated using a newly devel-
oped optimization method which is based on inversion of
ultrasound wave velocities measured in redundant num-
ber of general crystal directions. This method allows the
minimization of uncertainties in evaluated elastic con-
stants stemming from the experimental error in exact
determination of the crystal orientation. It is believed that
the optimization approach is more precise and less labori-
ous particularly for low symmetry materials such as the
orthorhombic 2H martensite phase in CuAINi.

Taking advantage of the fact that the elastic con-
stants of the austenite and 2H martensite phase were
evaluated on the same material, soft acoustic modes
and elastic properties of both phases were compared
taking into account the lattice correspondence. The fol-
lowing conclusions were drawn: (i) The elastic properties
change significantly with the martensitic transformation.
(ii) The elastic properties of the austenite phase includ-
ing the soft acoustic modes are only partially inherited
by the martensite phase. (iii) Two soft acoustic modes
of 2H martensite phase were identified —(1 0 0)yy
(00 1)p; and {0 0 1)pg(1 0 0)ys corresponding to Css mar-
tensite elastic constant and soft non-basal shears corre-
sponding to martensite special mode described by Egs.
(15a) and (15b). (iv) The 2H martensite crystal is less
elastically anisotropic than the austenite. (v) Whether
the martensite crystal is softer or harder than the austen-
ite crystal depends on the crystal direction considered.
This is a consequence of the discontinuous change in
elastic properties with the transformation, elastic anisot-
ropy and lattice correspondence of both phases.
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