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THRESHOLD COUNTING IN WAVELET DOMAIN
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Abstract

Threshold counting of AE signal is the simplest and most frequently used type of AE signal
parameterization. As the wavelet transform of AE signal appears to be useful tool for AE analy-
sis, the threshold counting applied to the wavelet decomposition represents a logical extension of
commonly used procedures. New AE signal parameters (wavelet counts) are introduced using a
two-level threshold counting of wavelet coefficients. The application of wavelet counts is illus-
trated in three examples of both real and simulated AE data. The significance of various classical
and newly introduced AE signal parameters used to AE source identification is tested using the
neural network sensitivity and factor analyses. The wavelet counts, carrying the global informa-
tion in both time and frequency domains, can replace ill-defined frequency spectrum parameters
of AE signal in a more efficient way.

1. Threshold Counting

1.1 AE signal parameterization
Threshold counting (TC) of AE signal crossings of predetermined voltage levels is one of the

oldest and most common parameterization methods in the AE analysis. The number of threshold
counts Nc or count rate, dNc/dt, simply characterizes both the continuous and burst AE signals in
time domain. TC substantially reduces information about AE signal, and saves good knowledge
on the global AE activity. TC methods are very effective as simple devices and/or digital signal
processing (DSP) procedures can be used for AE detection and quantitative evaluation. The most
efficient seems to be the dual TC (low and high amplitude threshold level, [1]), as it allows dis-
tinguishing solitary high amplitude signal bursts in quasi-continuous AE. In the most cases, the
time evolution of count rate closely correlates with, e.g. that of signal RMS value, as both quan-
tities are related to the instantaneous signal energy. The main information differences between
both signal energy measures consist in a constant noise level suppression at the TC, i.e., d.c.
component of RMS curve is eliminated. Another difference deals with the signal transform line-
arity. Contrary to the RMS measure, TC represents a highly nonlinear signal transform, which
may cause some difficulties (it is surprising that rigorous mathematical treatment of TC trans-
form properties is still insufficient). On the other hand, due to its non-linearity, the TC allows
often better recognition of some critical events (e.g. in leak detection) than linear signal treat-
ments.

The purpose of AE signal parameterization is to reduce registered signal waveform data into
the lowest possible number of signal features carrying maximum of important signal information
in a simplest form. The number and type of signal features are chosen so as to conform to vari-
ous criteria (diagnostic purpose, device capabilities, simple and effective DSP, etc.). Together
with a number of signal parameters in time domain, parameters of frequency spectra (param-
eterization in frequency domain) are often used by AE source identification procedures. The
time-frequency representation (windowed FFT, Wigner-Ville distribution, etc.) combines both
aspects of AE signal processing [2]. The most advanced processing of AE signal in the wavelet
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domain [3] may be considered as an enhancement of the time-frequency representation. The
governing wavelet transform (WT) is extremely useful in analyzing time series containing non-
stationary power at many different frequencies. In addition to its main destination (signal de-
noising and compression), the WT has shown to be very effective tool for AE signal processing
(e.g. source location in plates [4], fracture mode classification in composites [5], etc.). Also from
the computational point of view, the WT seems to be more effective than e.g. FFT used in real
time DSP of AE signals. Nevertheless, for the purpose of AE signal classification, the WT signal
representation should be parameterized to reduce the extent of input data to pattern recognition
analysis (e.g. by artificial neural networks). The simplest way to extract general features from the
AE signal decomposed by WT is threshold counting at various decomposition levels. This pro-
cedure may be introduced as an equivalent to the TC of AE signal in different frequency bands.

1.2. Definition of new AE parameters
Let us suppose, that we have a discrete, multi-level one-dimensional wavelet decomposition

of a sampled signal s(i). Let Cm(j), j=1�Nm be the approximation coefficients (m=1) or detail
wavelet coefficients at specific level m (m=2,...,L+1, where L is a number of decomposition lev-
els). The three new parameters NC1(m), NC2(m) and RCGm of each detail level and/or approxi-
mation are computed as follows:

where THk(m) (k=1,2) are counting two threshold levels. They differ with each wavelet decom-
position level. The value TH1(m) is usually set just under the level of noisy coefficients and
TH2(m) around the first quarter between the noise magnitude and maximum coefficient of corre-
sponding wavelet decomposition level. Parameter RCGm is relative gravity center of wavelet co-
efficients in analyzed signal sample:

By the computation above, we obtain 3(L+1) new parameters, which are then compared with
the following classical AE parameters (signal features) [6] in time and frequency (spectral) do-
main:

� Time domain: (1) Amplitude, (2) Rise time, (3) RMS, (4) Energy moment, (5) Relative
center of gravity, (6) ASL, (7-9) Second-order statistical moments.
� Frequency spectrum parameters: parameters of power spectral density function f(ω)
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where arbitrarily chosen six frequency bands X are related to the Nyquist frequency, ωN. A:
(0 - 0.12)*ωN; B: (0.12 - 0.24)*ωN; C: (0.24 - 0.36)*ωN; D:(0.36 - 0.48)*ωN; E: (0.48 -
0.6)*ωN; F:(0.6 - 1)*ωN.



136

2. Analysis of AE Signal Parametrization

The main goal of any parameterization is to extract maximum of useful information on given
data. On the other hand, the redundancy of computed parameters should be minimized.  Two
methods, the factor analysis and the neural network sensitivity analysis are helpful tools as to
reduce the number of extracted parameters. Both methods show us which features support the
most important information about existing problem and whether the newly developed parameters
are independent with one another.

2.1 Factor analysis (FA)
FA is a method frequently used to find linear relations among parameters and to compute

new, hypothetical variables (factors) explaining variance of parameters. FA is based on principal
component analysis (PCA). PCA has three effects:

1. orthogonalizes components of transformed input vectors so that they become uncorrelated;
2. organizes resulting orthogonal components (principal components) so that the component

with the largest variance is the first; and
3. eliminates components that contribute only little to the variance of data set.

The loss of information is minimized, and corresponds to the difference between the original and
transformed data. PCA represents linear data transform (orthogonal rotation followed by scal-
ing). It can be expressed as a matrix-multiplication Z = AP, where the original data are stored in
matrix Z, new hypothetical variables (factors) in matrix P and the factor scheme A represents re-
gression coefficients of factors to the original variables.

2.2 Sensitivity analysis of neural networks
One of the most important problems in NN-based classification systems [7] is the appropriate

choice of input pattern parameters called features. The problem of optimal feature selection con-
sists in identification of significant parameters and deletion of remaining ones from the initially
large, redundant set of features. Some pattern features can be redundant for making the correct
decision. When the number of features is relatively small, exhaustive or quasi-exhaustive search
may be used to select the best feature subset. But increasing number of attributes results in rapid
growth of the number of possible combinations. Therefore, Fidalgo [8] suggested an alternative
approach to the feature subset selection, comprising of the following steps:

1. Train the BP (back propagation)-network with outputs yj (j = 1�m) using all possible
candidate features.

2. For all training patterns, compute ∂yj/∂xi, which is the derivative of the network outputs
yj with respect to its inputs xi (i = 1�n).

3. Compute the mean absolute value of the above derivatives for each input xi to define the
sensitivity coefficient sij  as:
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where p represents the pattern index.
High values of sensitivity coefficients sij indicate �important� features for the trained BP-
networks. The differences of sij values among significant and dummy features become smaller
with increasing amount of noise. If dummy features are eliminated and BP NN training is re-
peated using only the remaining ones, the performance error becomes lower. This confirms the
advantage of eliminating dummy variables that just introduce noise. Sensitivity coefficients of
the trained BP-networks can also be calculated by BP technique algorithm. These coefficients
express the network sensitivity to the considered set of input patterns.
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3. Comparison of Parametrized AE Data

Performance of various AE signal parameterization and classification procedures including
parameterization in wavelet domain has been tested on examples of both experimental and
simulated AE data obtained by different ways.

3.1 Continuous AE data
The first example is related to relatively long records of quasi-continuous AE. AE signals

were recorded during the metal-sheet punching process described in [9]. Punching is usually ac-
companied by AE of high intensity, and AE monitoring can be used to identify occurrence of
defects on cutting tools. Computer-controlled hydraulic press has been used to cutout circle and
square pieces from 1-mm-thick carbon steel sheets (both the diameter of circle and side of the
square were 160 mm). Punching tests were performed using intact and damaged cutting tools.
The artificial damage was produced by grinding small parts of cutting tool edge (1% of circum-
ference). Four AE transducers were placed at various positions on cutting tool (matrix). Signals
from AE transducers were filtered (high-pass 100 kHz), pre-amplified (40 dB), and recorded by a
transient recorder YOKOGAWA DL708 (10 MS/s at 12 bits). The length of stored AE signals
was up to 0.5 s, so very large data were treated. Scheme of punching process accompanied by
AE signals from four transducers (A to D) is shown in Fig. 1. Localization ANN has been trained
on Pen - test data.  Hundreds of AE events superimposed on continuous AE background were
extracted from each record, and were localized using fuzzy neural networks.

The initial idea of these tests was to identify process changes and small cutting tool defects
directly according to the changes of some typical (spectral) AE signal features. Hundreds of
punching tests have been performed and analyzed by using classical AE signal parameterization
mentioned above. Neither FA nor NN sensitivity analysis showed any important differences
between tests with intact and damaged tools (the energy weighted probability summations of the
fuzzy located events were finally used to recognize and localize cutting tool defects, which is
discussed elsewhere [9]).  Recently, the stored signals were re-analyzed using the TC param-
eterization in wavelet domain. Figure 2 illustrates the time evolution of resulting wavelet domain
counts NC1(m) derived from one AE signal recorded during the test #V005. The whole record

Fig. 1a. Scheme of metal punching process.
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Fig. 1b. AE signals of metal punching process, recorded by four AE transducers (zoomed part b
of the process in Fig. 1a) placed on cutting tool [9].

Fig. 2. Time development of AE signal parameters NC1 (m = 1 to 6) during the metal sheet
punching (NCi(m) are plotted in logarithmic scale).
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Fig. 3. Logarithmic NC1 and NC2 curves (solid and dashed lines, respectively) during the tests
#V005 (left), #V007 (middle), and #V010 (right). Counts of the wavelet approximations are at
the top, and counts of wavelet details m = 2 to 6 are below.

of about 400 ms was first eight-times down-sampled, which resulted in 500,000 signal samples.
Down-sampled signal was then divided into 24 equidistant time intervals (windows), and the
wavelet decomposition was applied to each interval (mother wavelet db1, L=5 detail levels).
Subsequently, two-level threshold counting was performed on the wavelet coefficients of five
details and low frequency approximation, which resulted in 2(L+1) parameters in each time in-
terval (144 data in sum). This procedure represents ca. 3500 times data reduction, saving a global
information on time and frequency changes of the whole process. The detailed NC1,2(m) curves
are shown in Fig. 3: The wavelet parameters NC1(m) and NC2(m), evaluated in 24 time win-
dows, are plotted so that counts of the wavelet approximation (m=1) are on the top, and below
are counts of wavelet decomposition details of m = 2 to 6 (down from low to high frequency de-
tails). Low-amplitude level counts NC1 are plotted as solid lines, and high-level NC2 curves as
dashed lines. NCi curves, evaluated at all three tests in the same manner, can be compared.
Threshold counting levels and other parameters of all tests were the same. Punching tests were
performed using the cutting tool with very small damage. The only difference was the quality of
punched metal sheets (degree of surface corrosion), which is pronounced mainly at the wavelet
approximation level (no visible corrosion was at the sheet #V007 in the middle of Fig. 3). At all
three parts of Fig. 3 we can see that NCi  curves have very similar form at all wavelet decompo-
sition levels. This means that no remarkable changes in signal spectrum are observed during the
running process, and an attempt to recognize different process stages by using spectral parame-
ters has no sense.

3.2 Classification of simulated AE data
In this section, the use of new wavelet-domain parameters is demonstrated also on a simu-

lated AE data, generated for the testing of NN-based AE source classification procedure [10].
Different time functions of AE sources were assumed to simulate and classify various emitting
defects. At first, it was necessary to train a BP-NN, to classify the original source functions, and
finally, the most significant AE parameters of generated waveforms were tested.
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The training AE waveforms (input data) were generated as a convolution of the source func-
tion (having different forms) with a Green's function. The Green's function has been obtained
experimentally as a transfer function between the AE source and sensor measured during the
pulse laser excitation of a steel plate (representing the impulse source of propagating elastic
waves) at a distance 140 mm from the source [10]. Its graph is shown at the top of Fig. 4. Input
patterns for the classification BP-network are composed of the following 14 parameters extracted
from the �input signal� z(t): amplitude, rise time, RMS value, energy moment, ASL, gravity
center of signal, second to fourth statistical moments, six spectral parameters, and above defined
parameters in wavelet domain.

Different AE signal sources Sp (p indicates the pattern index) were simulated as a linear
combination of three source functions ("waves"): wave1, wave2, wave3 , weighted by randomly
generated coefficients ap, bp, cp:

Sp =  ap . wave1 +  bp . wave2 +  cp . wave3

In order to obtain more comparable results, these coefficients are normalized so that their
sum equals to one. The graphs of the source "waves" and their combination are also shown in
Fig. 4, along with the �input signal� zp(t)  computed as a convolution of the AE source function
Sp with the Green function G:

zp(t) = conv(Sp ,G).

500 training patterns were generated for the training of 50 neural networks of the same architec-
ture (topology 45-19-3, resulting error < 0.01). Only initial weights were set differently among
the trained NN's. The averages of sensitivity coefficients calculated for all tested networks are
presented in Table 1 (shaded by values).

Each of the three columns in Table 1 contains 24 values corresponding to input signal fea-
tures. Only 9 wavelet parameters at 3 highest frequency detail levels were considered in this
analysis, as the low frequency wavelet coefficients differ little for various model sources. From
Table 1 we can see that the most important are pattern features number 6, 11, 14, 15 and 24. It
means that the generated signal waveforms differ mostly at higher frequencies and a linear com-
bination of different source "waves" can be estimated ("source classification") using the relative
signal gravity centers in time domain and gravity centers of wavelet decompositions.

The application of PCA has proven (see Table 2) that the new �wavelet counting parameters�
(parameters number 16 to 24) represent new, linearly independent information. Nevertheless, this
information seems to be unimportant for the estimation of the composed signal "weights" as ex-
pected, while the linearly dependent classical parameters appear to be more important in this
case.

Finally, numerical experiment with NN training has proven that for successful learning it is
possible to use only the spectral parameters (features number 10 - 15) or just wavelet decomposi-
tion parameters (features number 16 - 24) giving very similar results.

3.3. Recognition of AE sources in polymer composite samples
The last example demonstrates importance of various AE parameters in recognition of AE

signals coming from three types of model GFRP composite specimens. Unidirectional reinforced
composite samples of three special forms were prepared and tested in [11] so that the three dif-
ferent damage mechanisms prevailed during the specimen loading (delamination, fiber breaks,
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Fig. 4. Graphs of the source model functions ("waves" 1,2,3, and their linear combination) and
the input signal resulting from the convolution of the source and Green's function.

and matrix cracks). The data (AE signal parameters) from specimens of different forms are used
to see the significance of various AE parameters for the recognition of the three different AE
source mechanisms. The NN with AE parameter inputs was trained to indicate the highest value
on particular output corresponding to each specimen form (AE source mechanism). In Table 3
we can see that resulting NN sensitivity coefficients show similar picture as in Table 1 for simu-
lated signals. Again, as the most important features (all five wavelet decomposition levels were
considered in this case) seem to be the centers of gravity of spectral or wavelet parameters.

4. Conclusions

The wavelet transform of AE signal is now broadly used as very useful tool for AE signal
analysis in time-frequency domain. New AE signal parameters based on wavelet transform
(wavelet counts) were introduced here as a logical extension of commonly used AE signal
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Table 1. Sensitivity analysis of trained BP-networks.

Table 2. Factor scheme (PCA) of tested signal parameters.
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threshold counting procedures. These new AE signal parameters are defined as numbers of
threshold crossing counts of wavelet coefficient amplitudes at various wavelet decomposition
levels. Two predetermined threshold values are used in a simplest case, which can differ at vari-
ous wavelet decomposition levels. Thresholds should be selected in a similar way as recom-
mended in standard threshold counting of original AE signal.  The applications of wavelet counts
have been illustrated on three examples of both real and simulated AE data. Numerical tests have
been performed using the neural-network sensitivity and factor analyses. Test results show which
of various classical and newly introduced AE signal features are significant for AE source identi-
fication procedures. As the most important features seem to be the centers of gravity of spectral
or wavelet parameters. The wavelet counts, carrying the global information in both time and fre-
quency domains, can replace ill-defined frequency spectrum parameters of AE signal in a more
efficient way. The strategy of neural network sensitivity analysis seems to be very useful to re-
veal the most significant AE signal features in various applications.

Table 3. NN sensitivity analysis results of tested AE parameters significance for the recognition
of three different AE source mechanisms acting in loaded composite samples.
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