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Introduction
The subject of this paper is the numerical simulation of viscous incompressible flow in two-
dimensional channels with moving walls. The Navier-Stokesequations and the continuity equa-
tion are written in the ALE (Arbitrary Lagrangian-Eulerian) form and discretized in space by
conforming finite elements satisfying the Babuška-Brezzi condition and in time by the second
order backward difference formula (BDF). The applicabilityof the developed method is proved
by the solution of a test problem of flow in a channel with a wallmoving in a prescribed way.

1. Formulation of the problem
We consider the flow in a bounded 2D domainΩt depending on timet with boundary∂Ωt =
ΓD ∪ ΓO ∪ ΓWt

, whereΓD represents inlet or parts of imepermeable fixed walls,ΓO is outlet
andΓWt

represents moving impermeable walls.
The dependence of the domain on time is taken into account with the aid of a regular ALE

mappingAt : Ω0 → Ωt, i.e. X 7→ x = x(X, t). Further, we define the ALE velocity:̃w(X, t) =
∂
∂t

x(X, t) = ∂
∂t
At(X), w(x, t) = w̃(A−1

t (x), t), t ∈ [0, T ], x ∈ Ωt and the ALE derivative of a

functionf = f(x, t): DA

Dt
f(x, t) = ∂f̃

∂t
(X, t)|X=A

−1

t
(x), wheref̃(X, t) = f(At(X), t), X ∈ Ω0.

The Navier-Stokes system attains the following ALE form:

divu = 0,
DA

Dt
u + ((u − w) · ∇) u + ∇p − ν∆u = 0. (1)

Hereu is the fluid velocity,p is the pressure andν is the kinematic viscosity. System (1) is
equipped with the following initial and boundary conditions:

u(x, 0) = u0(x), x ∈ Ω0, (2)

u|ΓD×(0,T ) = uD, u|ΓWt
×(0,T ) = w|ΓWt

,×(0,T ), (3)

−pn + ν
∂u
∂n

= −prefn onΓO × (0, T ), (4)

wherepref is a given reference pressure.
Now we describe the construction of the ALE mapping. We assume that the inlet and

outlet are straight segments given by the conditionsX1 = a andX1 = b, respectively, where
a, b ∈ R, a < b and the walls are represented by the graphs of smooth functions
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x2 = φ(X1, t), X1 ∈ [a, b], t ∈ [0, T ] (upper wall),

x2 = ϕ(X1, t), X1 ∈ [a, b], t ∈ [0, T ] (lower wall),

whereφ(X1, t) > ϕ(X1, t) for all X1 ∈ [a, b], t ∈ [0, T ]. The ALE mapping is given by the
relations

x1 = X1, x2(X, t) = ϕ(X1, t) +
X2 − ϕ(X1, 0)

φ(X1, 0) − ϕ(X1, 0)
(φ(X1, t) − ϕ(X1, t)). (5)

2. Discretization
For the time discretization we introduce a time partitiontk = kτ , k = 0, 1, . . . , τ > 0. We use
the definition of the ALE derivative, put

xn+1 = Atn+1
(X), xn = Atn(X), xn−1 = Atn−1

(X), X ∈ Ω0

and use the approximations

wn ≈ w(tn), pn ≈ p(tn), un ≈ u(tn), (6)

Then the second order backward difference formula leads to the approximation of the ALE
derivative in the form

DA

Dt
u(xn+1, tn+1) ≈

3un+1(xn+1) − 4un(xn) + un−1(xn−1)

2τ
. (7)

Substituting in the system (1), we get the system for the unknown functionsun+1 apn+1:

3un+1(xn+1) − 4un(xn) + un−1(xn−1)

2τ
− ν∆un+1(xn+1)+

+
((

un+1(xn+1) − wn+1(xn+1)
)

· ∇
)

un+1(xn+1) + ∇pn+1(xn+1) = 0, (8)

If we define the function

ûi(xn+1) = ui
(

Ati

(

A−1
tn+1

(xn+1
))

, xn+1 ∈ Ωtn+1
,

we can formulate the problem to find the functionsun+1 : Ωtn+1
→ R2 a pn+1 : Ωtn+1

→ R
satisfying inΩtn+1

the equations

3un+1 − 4ûn + ûn−1

2τ
+

((

un+1 − wn+1
)

· ∇
)

un+1 + ∇pn+1 − ν∆un+1 = 0, (9)

divun+1 = 0 (10)

and the Dirichlet boundary conditions (3) considered at time t = tn+1.
The space discretization is carried out by the finite elementmethod. It is based on a weak

formulation. In what follows, we shall carry out the space discretization of the problem to find
approximations of the functionsu := u

n+1 andp := pn+1 defined in the domainΩtn+1
, satisfy-

ing system (9) and the boundary conditions (3) – (4). To this end, we reformulate this problem
in a weak sense. Let us setΩ = Ωtn+1

and define the velocity spacesW = (H1(Ω))2, X =
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{v ∈ W ;v|ΓD∩ΓWt
= 0} and the pressure spaceM = L2

0(Ω) = {q ∈ L2(Ω);
∫

Ω q dx = 0}.
Then it is easy to find that the solutionU = (u, p) of our problem satisfies the identity

a(U,U, V ) = f(V ), ∀ V = (v, q) ∈ (X,M). (11)

Here

a(U∗, U, V ) =
3

2τ
(u,v) + ν (∇u,∇v) +

((

(u∗ − w
n+1) · ∇

)

u,v
)

− (p,∇ · v) + (∇ · u, q) , (12)

f(V ) =
1

2τ

(

4ûn − û
n−1,v

)

−
∫

ΓO

prefv · n dS,

U = (u, p), V = (v, q), U∗ = (u∗, p),

where by(·, ·) denotes the scalar product inL2(Ω). Moreover, we require thatu satisfies the
Dirichlet boundary conditions (3). The couple(u, p) represents the solution on the time level
tn+1, i.e. un+1 := u andpn+1 := p.

In order to apply the Galerkin FEM, we shall restrict the weakformulation from the spaces
W,X,M to approximate spacesWh, Xh,Mh, h ∈ (0, h0), h0 > 0, Xh = {vh ∈ Wh;vh|ΓD∩ΓWt

=
0}. Hence, we want to findUh = (uh, ph) ∈ Wh × Mh such thatuh satisfies approximately
conditions (3) and

a(Uh, Uh, Vh) = f(Vh), ∀ Vh = (vh, qh) ∈ Xh × Mh. (13)

The couple(Xh,Mh) of the finite element spaces should satisfy theBabǔska–Brezzi (BB)
condition, which guarantees the stability of the scheme: there existsa constantc > 0 such that

sup
w∈Xh

(p,∇ · w)

|w|H1(Ω)

≥ c‖p‖L2(Ω), ∀p ∈ Mh, h ∈ (0, h0). (14)

We proceed in the following way. Assuming thatΩ is polygonal, byTh we denote a triangu-
lation ofΩ with standard properties from the FEM. The pressure spaceM is then approximated
by the space of piecewise polynomial functions of degree≤ k:

p ≈ ph ∈ Mh = {q ∈ M ∩ C(Ω); q|K ∈ P k(K),∀K ∈ Th} (15)

and the velocity spaceW and X are approximated by the spaces of piecewise polynomial
functions of degree≤ k + 1:

u ≈ uh ∈ Wh = {v ∈ W ∩
(

C(Ω)
)2

;v|K ∈
(

P k+1(K)
)2

,∀K ∈ Th} (16)

Xh = Wh ∩ W.

This couple(Xh,Mh) satisfies the BB condition.
In practical computations we use the Taylor-HoodP2/P1 elements.

2. Stabilization of the FEM
The standard Galerkin discretization (13) may produce approximate solutions suffering

from spurious oscillations for high Reynolds numbers. In order to avoid this drawback, we
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apply the stabilization via streamline-diffusion/Petrov-Galerkin technique (see, e.g., [2], [3]).
We define the stabilization terms

Lh(U
∗, U, V ) =

∑

K∈Th

δK

( 3

2τ
u − ν△u + (w · ∇) u + ∇p, (w · ∇)v

)

K
,

Fh(V ) =
∑

K∈Th

δK

( 1

2τ

(

4ûn − û
n−1

)

, (w · ∇)v
)

K
, (17)

U = (u, p), V = (v, q), U∗ = (u∗, p),

where the functionw stands for the transport velocityw = u
∗−w

n+1, (·, ·)K denotes the scalar
product inL2(K) andδK ≥ 0 are suitable parameters. Moreover, we introduce the pressure
stabilization terms

Ph(U, V ) =
∑

K∈Th

τK(∇ · u,∇ · v)K , U = (u, p), V = (v, q), (18)

with suitable parametersτK ≥ 0.
Thestabilized discrete problemreads: FindUh = (uh, ph) ∈ Wh×Mh such thatuh satisfies

approximately conditions (3) and

a(Uh, Uh, Vh) + Lh(Uh, Uh, Vh) + Ph(Uh, Vh) = f(Vh) + Fh(Vh), (19)

∀Vh ∈ Xh × Mh.

The parameterδK is defined by
δK = δ∗h2

K , (20)

wherehK is the size of the elementK measured in the direction ofw. The parameterδ∗ ∈ (0, 1]
is an additional free parameter. Further, we put

τK = τ ∗ ∈ (0, 1]. (21)

The nonlinear problem (19) is (on each time level) solved iteratively. Starting from an
initial approximationU (0)

h and assuming that already iterateU
(k)
h has been computed, we define

U
(k+1)
h ∈ Wh × Mh by

a(U
(k)
h , U

(k+1)
h , Vh) + Lh(U

(k)
h , U

(k+1)
h , Vh) (22)

+Ph(U
(k+1)
h , Vh) = f(Vh) + Fh(Vh),

∀Vh ∈ Xh × Mh.

For each time leveltn+1 we set

U
(0)
h := (2ûn − û

n−1, p̂n). (23)

As numerical experiments show, only a few iterations (22) have to be computed on each time
level.

Obviously, problem (22) is linear. It is equivalent to the linear algebraic system

Su + 2τ(B + C)p = f, BT u = 0, (24)
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Figure 1: Velocity vectors att = 1.7 andt = 3.3

whereu ∈ Rnh andp ∈ Rmh are vectors whose components represent degrees of freedom
defining the velocityu and the pressurep, respectively,S is a nonsingularnh × nh matrix and
B andC arenh × mh matrices. The solution of this system was realized by the direct solvers
UMFPACK ([1]), which works sufficiently fast for systems withup to105 equations.

4. Test problem
In the test problem we considered the following data:a = −2, b = 2, ϕ(X1, t) =

sin t (cos(πX1) + 1) /4, X1 ∈ [−1, 1], ϕ(X1, t) = 0, X1 ∈ [−2, 1) ∪ (−1, 2], φ(X1, t) =
1, X1 ∈ [−2, 2], t ∈ [0, T ]. Further, we setpref = 0, u0 = (1, 0),uD = (1, 0) at the inlet,
otherwiseuD = (0, 0), τ = 0.01, ν = 0.001.

Figure 1 shows the velocity field at timet = 1.7 andt = 3.3.
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