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Abstract 
The paper describes the results of experiments with a rotating golf ball moving quasi-
steadily in calm water. The motion of the ball was recorded on a digital video camera. 
The Cartesian coordinates and the angle of rotation of the ball were determined from the 
records of motion. The dimensionless drag force coefficient, Magnus force coefficient 
and translational and rotational Reynolds numbers were calculated from the time series 
of the ball coordinates and the angle of rotation for each recorded frame. The calculated 
data were averaged over rectangular cells on experimental domain on the plane of 
translational and rotational Reynolds numbers, i.e. 1.2 · 104 < Re < 1.6 · 104 and 
3.8 · 103 < Reω < 2.7 · 104.  
 
Introduction  
The investigation of aerodynamic forces on rugged spheres is mostly connected with 
ball games. In such games as baseball, golf, football, and cricket, the lateral deflection 
of a rotating ball is of great interest for the player. In golf the rotation of the ball allows 
to obtain the higher and longer trajectories; in football the spinning of the ball allows to 
score from zones, from which it would be impossible to score without spinning. The 
lateral deflection of a ball is caused by the lateral force due to simultaneous rotational 
and translational movement. The force is known as Magnus force.  

The knowledge of the Magnus force on a rugged sphere is also interesting in 
problems connected with transport of sand in rivers and channels, solid-liquid mixtures 
streams modelling, whereas a solid particle is approximated as a rugged sphere. Present 
paper deals with experimental investigation of Magnus force acting on a golf ball at 
Reynolds numbers corresponding to the sand transport in rivers and channels. The 
correspondence is achieved by using bigger model particles moving with lower 
velocities in the same fluid – in water. The drag force on a rotating golf ball is also 
investigated herein.  

Davies (1949) investigated free falling rotating golf balls in a wind tunnel. Reynolds 

number based on the wind tunnel speed and the ball diameter udRe
ν

=  was 

approximately 49 10⋅ , rotational Reynolds number 
2rReω
ω
ν

=  reached the values up to 
42.5 10⋅ . Here d is the ball diameter, u is the ball velocity, ω  is the angular velocity of 

the ball, ν  is the fluid kinematic viscosity, r  is the ball radius. From the drift of the 
balls he calculated the drag and the Magnus force. He noticed that for dimpled golf balls 
Magnus force should be much greater than that observed for smooth balls.  

Briggs (1959) investigated the lateral deflection of a free falling and rotating 
baseballs and smooth spheres. He observed that the smooth ball deflected laterally 
opposite (reverse Magnus effect) in the direction to that of the baseballs, which 
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deflected in the direction according to the classical Magnus effect. Assuming that the 
lateral force during fall is a constant, and that the lateral deflection is much smaller than 
the total distance travelled by the ball, it is a simple matter to calculate the lateral 
Magnus force that acts on the ball. The experiments were conducted at 

5 51.0 10 1.7 10Re⋅ ≤ ≤ ⋅  and 0.24 0.30≤ Γ ≤ , where r
u
ω

Γ =  is a spin parameter. The 

dimensionless numbers are bound as 2Re ReωΓ = , and the motion of the ball can be 
determined by any pair of these numbers. 

Bearman & Harvey (1976) measured the aerodynamical forces – drag and Magnus – 
on rotating and non-rotating golf balls in a wind tunnel with a wind tunnel balance. The 
balls of two types were used: with round dimples (conventional) and with hexagonal 
dimples. For the comparison with our experiments we used their data for the 
conventional golf ball. The measurements were done in ranges of dimensionless 
numbers 5 50.38 10 2.38 10Re⋅ < < ⋅ , 0.02 0.3≤ Γ ≤ . They indicated that at 

51.26 10Re > ⋅  the Magnus force coefficient MC′  and drag force coefficient dC  
determined by formulae  

 21
2M M fF C Suρ′= , (1) 

 21
2d d fF C Suρ= , (2) 

depend only on spin parameter Γ . Here MF  is the Magnus force, dF  is the drag force, 
S  is a cross-sectional area of the ball, fρ  is the water density. For lower Reynolds 
numbers the collapse of data was not observed.  
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Figure 1.   Map Re Reω×  of conducted experiments on Magnus force and drag force 
coefficients.  
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Watts & Ferrer (1987) measured with a strain gage the lateral force on a baseball in 
a wind tunnel. They indicate that the dimensionless coefficient MC′  depends only on a 
spin parameter Γ , and is not affected by the Reynolds number, though, later, Watts & 
Bahill (1990) noted, that the statement is not valid for the smooth spheres. The 
dimensionless numbers were 5 50.3 10 0.8 10Re⋅ < < ⋅ , 0.4 1.6< Γ < . 

The map Re Reω×  of conducted experiments is presented in Figure 1. For 
determining of the motion instant characteristics, we used here the Re Reω×  notation, 
instead of Re×Γ , as most of other authors. That is done because the presumption, that 
the coefficients are influenced only by Γ , generally does not hold. Thus, for our 
research we found no motivation to mix rotational and translational velocities in a 
dimensionless number.  

 
Experimental procedure  
The experiments were carried out in a rectangular glass vessel 786 mm long, 602 mm 
wide and 990 mm high. The water depth was kept on the level 812 mm. The parameters 
of the used golf ball are presented in Table 1, the dimples of the ball surface were 
round. The temperature was about 20 ºC, the water density was 1.00 g/cm3. 
 

Table 1. The parameters of the golf ball  

Mass,  
( ±0.05g) 

Volume, 
cm3±0.05

Diameter, calculated 
from volume, cm 

Density,  
g/cm3 

45.75 40.40 4.26 1.13 
The hairlines were drawn on the ball to make possible the visualization of its 

rotation. The ball was speeded up in a special chute, ensuring the rotation in the plane of 
motion. The different initial heights of the ball at the chute and different inclinations of 
the chute were used to provide the different values of the translational and angular 
velocities of the ball motion.  

The motion of the ball was recorded by a digital video camera. Video recording rate 
was 25 frames per second. The dimensions of obtained frames were 720x576 pixels. 
One pixel equalled approximately 2 mm in the plane of motion, the error of coordinate 
determination was one pixel.  

From 23 to 32 images were recorded for a trajectory. From the images, the Cartesian 
coordinates x (t), y (t) of the ball centre and the angle of ball rotation φ(t) as the 
functions of time, were read using the free software Graph2Digit. To evaluate the 
coordinates and the angle of revolution only trajectory segments close to straight lines 
were used; on those segments the motion of the ball was more or less quasi-steady. The 
non-steady process of entry into water was rejected as well. 

 
Numerical method 
For the quasi-steady process of 2D ball motion in fluid a steady approximation of drag 
force and drag moment acting on a spherical particle was considered. In the equations of 
motion we take into account the known unsteady forces, i.e. the history force and force 
of added mass, which are supposed to be small. Under such assumption the flow around 
the particle and hence the forces are completely determined by following set of 
parameters: ρf,, μ, d, ω, u, where μ is the dynamic viscosity. Two dimensionless 
numbers, Re and Reω can be determined from the above mentioned parameters. Both 
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dimensionless coefficients – drag coefficient Cd and Magnus coefficient CM, defined in 
(5), depend on these two numbers: Cd = Cd (Re, Reω) and CM = CM(Re, Reω), 
respectively. We define Magnus force coefficient somewhat otherwise than (1), with 
purpose to make the direction of Magnus force apparent from its definition.  

According to Lukerchenko et al. (2005), the equation of the spherical particle 
translational motion is 

 d g M H m
du F F F F F
dt

ρΩ = + + + + , (3) 

where Ω is the particle volume, ρ is the particle density, and 
 ( )g fF gρ ρ= Ω − , (4) 

 [ ]M M fF C uρ ω= Ω × , (5) 

 m m f
duF C
dt

ρ= − Ω , (6) 

 ( )
0

6 ,
t

H
duF r K t d
d

πμ τ τ τ
τ

= − −∫ , (7) 

where Fg , Fm, and FH are the gravitational submerged force, the added mass force, the 
history force (Kim et al., 1998), respectively; g  is the gravity acceleration vector, CM  is 
the Magnus force coefficient and Cm = 0.5 is the dimensionless added mass coefficient. 
In history force integral  

 ( ) ( ) ( )

( ) ( ) ( )
( )( )

1
1

1
1/31/ 2 2

2 3,
2

CCC

H

u tt
K t G

r r f Re
τ τπ τ ν πτ τ τ

ν τ

−
⎧ ⎫⎡ ⎤−−⎡ ⎤⎪ ⎪⎢ ⎥− = +⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭

, (8) 

where 1 2.5C = , ( ) ( )20.75Hf Re C Re τ= + , 2 0.126C = , ( ) ( ) ( )( )11 1G Mτ β τ τ= + , 

1 2

2r duM
u dt

= , ( )
( ) ( ) ( ) ( )( )4 4

5

31 C C

C

C
β τ

φ τ φ τ φ τ φ τ
=

⎡ ⎤+ +
⎣ ⎦

, 3 0.07C = , 4 0.25C = , 

5 22.0C = , ( ) ( )
( )

2

1

M
M

τ
φ τ

τ
= , ( )2 2

2 3 2

2r d uM
u dt

= . The expression for the history force with 

the kernel ( ),K t τ τ−  proposed by Kim et al., 1998, is valid for Re  up to 150, and 
particle to fluid density ratios from 5 to 200. For 1Re  it makes the Basset expression 
for the history term, that was derived for a creeping flow. The conditions of the present 
experiments evidently do not satisfy the conditions of the history term validity. 
However, because of the lack of a more convenient expression, we used the 
aforementioned; on the other hand, in our experiments the force is small, due to the 
quasi-steadiness of the ball motion.  

The forces acting on a particle and their orientation are shown in Figure 2. dF  is 

directed oppositely to curve tangent unit vector τ , MF  is parallel to curve normal unit 
vector n . The values of coefficients Cd , and CM can be calculated independently.  

Since the scalar product of unit vector τ  and Magnus force MF  equals zero, the 
Magnus force can be cancelled from (3), and the drag coefficient Cd can be expressed as  
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( )
2 2

4 2

g H m f

d

f

duF F C
dtC

d u

ρ ρ τ

π ρ

⎧ ⎫+ −Ω +⎨ ⎬
⎩ ⎭= . (9) 

Similarly, multiplying (3) by n  the Magnus force coefficient CM can be expressed: 

 
( )

[ ]
m f g H

M
f

duC F F n
dtC

u n

ρ ρ

ρ ω

⎧ ⎫Ω + − −⎨ ⎬
⎩ ⎭=

Ω ×
. (10) 
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Figure 2   The forces acting on the rotating particle moving translationally in calm 
water. 

 
The kernel of the history force integral has a singularity at the upper integration 

bound. Thus, for numerical calculation of the history force integral, an approximate 
method was used, similarly to that proposed by Brush et al. (1964) for calculation of the 
Basset force:  

 

( )

( )

0 0

1
2

2
0 0

,

2

t t t t

t t

t t t t t

t t

du du duK t d Kd Kd
d d d

du du du du rKd t d Kd t
d dt r d dt

τ τ τ τ τ
τ τ τ

πμτ τ τ τ
τ τ πμ

−Δ

−Δ

−−Δ −Δ

−Δ

− = +

⎡ ⎤≈ + − = + Δ⎢ ⎥⎣ ⎦

∫ ∫ ∫

∫ ∫ ∫
, (11) 

where tΔ  is small.  
Equations (9) and (10) allow the calculation of the dimensionless coefficients for 

each point of recorded particle trajectory, provided that the first and the second time-
derivatives of the particle coordinates and of the angle of rotation are known. Before the 
first and the second derivatives were calculated, experimental data x (t), y (t) were fitted 
using the least square method with polynomial functions up to the third power of t, and 
φ (t) was fitted with rational function (a + t) / (b + ct). The used functions were chosen 
with the condition, that they should be simple and provide a good fit. 

The drag force coefficient and the Magnus force coefficient were calculated 
numerically for each frame of a particle trajectory, except for the first two and the last 
two frames for which the second derivatives were not available. The corresponding 
values of Reynolds number Re and rotational Reynolds number Reω were also 
calculated for each frame of each particle motion record.  
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The following procedure was applied to average the experimental data. The 
experimental area Re vs. Reω (1.2 · 104 < Re < 1.6 · 104 and 3.8 · 103 < Reω < 2.7 · 104) 
was split into 5x10 cells, whose dimensions grow as geometric series. The use of 
geometric series for the length and width of a cell along Re and Reω axes makes the 
cells look uniform in logarithmic coordinates. For a cell, where at least four data points 
existed, Cd and CM were calculated as an arithmetic mean of all data points in the cell. 
In most cases a cell comprised points from more than one trajectory. The positions of 
the individual cells were represented by the values of Re and Reω, which were the 
geometric mean of the values on the responsible boundary. The experimental data and 
the cells are illustrated in Figure 3.  
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Figure 3   The Re Reω×  map of the experimental data and the cells. 

 
Results 
Calculated values of drag and Magnus coefficients with standard deviations versus 
Reynolds translational and rotational numbers are presented in Table 2. The average 
standard deviation for dC  is 6% and for MC  12%, the values were in most cases 
computed from the data from different trajectories (see Figure 3), what means that the 
reproducibility of the experiments was good. 

The plots of drag and Magnus coefficients compared with data of other authors are 
presented on Figures 4, 5. As can be seen from the comparison, the values of the 
coefficients and the tendencies are in a good accordance with data of other authors. 
Within the accuracy of such investigations, it can be said that the baseball results on 
Magnus force coefficient do not differ much from that of golf balls. 
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Table 2. 
Re Reω dC  dCΔ  MC  MCΔ  Re Reω dC  dCΔ  MC  MCΔ  
12057 9183 0.751 0.0126 0.130 0.0133 13596 7548 0.650 0.0652 0.124 0.0145 
12057 11173 0.758 0.0406 0.112 0.0100 13596 9183 0.594 0.0478 0.117 0.0152 
12057 13593 0.774 0.0370 0.092 0.0115 13596 11173 0.607 0.0540 0.103 0.0100 
12057 16538 0.776 0.0305 0.073 0.0076 13596 13593 0.591 0.0692 0.082 0.0124 
12057 20120 0.836 0.0233 0.055 0.0037 14438 4191 0.657 0.0232 0.099 0.0442 
12057 24479 0.889 0.0067 0.043 0.0032 14438 5099 0.635 0.0344 0.120 0.0084 
12804 5099 0.626 0.0065 0.074 0.0106 14438 6204 0.625 0.0342 0.096 0.0124 
12804 9183 0.665 0.0282 0.106 0.0088 14438 7548 0.557 0.0360 0.128 0.0095 
12804 11173 0.678 0.0410 0.106 0.0094 14438 9183 0.552 0.0326 0.123 0.0109 
12804 13593 0.708 0.0608 0.091 0.0114 14438 11173 0.568 0.0490 0.110 0.0117 
12804 16538 0.768 0.0688 0.072 0.0068 15332 6204 0.537 0.0330 0.116 0.0167 
12804 20120 0.736 0.0052 0.055 0.0046 15332 7548 0.484 0.0409 0.122 0.0141 
13596 4191 0.639 0.0495 0.065 0.0084 15332 9183 0.485 0.0157 0.126 0.0030 
13596 5099 0.664 0.0611 0.115 0.0197       
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Figure 4   Drag force coefficient. 
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Figure 5   Magnus force coefficient. 
 
Conclusions 
The experimental investigation of the drag and Magnus forces on a golf ball moving 
translationally and simultaneously rotating in calm water was conducted. The motion of 
the ball during experiments was quasi-steady. The trajectories of the ball were recorded 
on a digital video-camera, and from them the coordinates of the ball motion were 
obtained. 

The drag and the Magnus force coefficients were calculated numerically from the 
trajectories of the ball motion, by formulae (9), (10), that were obtained from equation 
of motion (3). The calculated data were averaged over rectangular cells on plane Re vs. 
Reω, 1.2 · 104 < Re < 1.6 · 104 and 3.8 · 103 < Reω < 2.7 · 104. The coefficients were 
presented in tabulated form. They were found to be in satisfactory agreement with the 
coefficients measured by other authors in the adjacent ranges of Reynolds numbers, see 
Figures 4, 5.  
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Notation 

dC  - drag force coefficient; 
Cm - added mass coefficient; 

MC  - Magnus force coefficient; 
d - ball diameter; 

dF  - drag force; 

Reω   - rotational Reynolds number; 
S - cross-sectional area of the ball; 
t - time; 
u - ball velocity; 
x (t), y (t) - coordinates of ball centre; 



Colloquium FLUID DYNAMICS 2007 
Institute of Thermomechanics AS CR, v. v. i., Prague, October 24 - 26, 2007 

p.9  

gF  - gravitational submerged force; 

HF  - history force; 

mF  - added mass force; 

MF  - Magnus force; 
g  - gravity acceleration vector; 
n  - normal to curve unit vector; 
r - ball radius;  
Re  - translational Reynolds number; 

φ(t) - angle of ball rotation; 
Γ  - spin parameter; 
μ  - fluid dynamic viscosity; 
ν  - fluid kinematic viscosity; 
ρ  - ball density; 

fρ   - water density; 
τ  - tangent to curve unit vector; 
ω  - ball angular velocity; 
Ω  - ball volume. 
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