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Introduction

Prediction of wind field over terrain plays an important role in many engineering applications.
A numerical investigation of the flow over sinusoidal hill is presented in this work. We assume
two-dimensional, steady, turbulent flow of incompressible fluid. We have computed four test
cases with different geometries. The model is set-up for the wind flow according to Kim [1].
The introduced test cases were experimentally measured [1] and comparison with experiment
and with other numerical simulations was made. The main characteristic of this type of test
cases is the separation zone, that appears behind the hill.
The numerical method we have used is based on solving Reynolds Averaged Navier-Stokes
equations with help of Finite Volume Method. We have implemented two models of turbulence.
Mixing Length Model (T.B.) and Spalart-Allmaras turbulence model (L.P.) was used. As a
numerical scheme we have used MacCormack explicit scheme.

Computational domain

Hill geometry

According to data published in [1] we have chosen 2D domain with four different sinusoidal
single-hill terrain profiles having the following parameters:
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Figure 1: Hill geometry

Hill slope height H length L1

S3H4 0.3 4 cm 6.67 cm
S3H7 0.3 7 cm 11.67 cm
S5H4 0.5 4 cm 4.0 cm
S5H7 0.5 7 cm 7.0 cm

Table 1: Hill setup

The notation we use here to distinguish between hills with different slopes and heights is
the same as in [1]. It means the SxHy stands for the hill with maximum slope 0.x and height
y cm. The height of the whole computational domain is 0.5m and the length is 2.0m.
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Boundary conditions

For all the test cases we have used following boundary conditions:
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Figure 2: Computational domain

ΓI ... Logarithmic velocity profile u(y) = ut
κ ln

y
y0

, ut = 0.33m/s, y0 = 0.0005mm for y <
0.25m and u(y) = 7.0m/s for y > 0.25m.
ΓB ... u, v = 0.0,
ΓT ... ∂~u

∂~n
= 0.0,

ΓO ... p = const.

the rest of variables are extrapolated from the inside of the computational domain.

Numerical method

Governing system

Governing system are Reynolds Averaged Navier-Stokes equations:
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Turbulence models

For eddy viscosity computation was used Spalart-Allmaras one-equational turbulence model.
One differential equation is then added to system:
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The turbulent eddy viscosity is then:
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νT = ν̃fv1, fv1 =
χ3

χ3 + C3
v1

, χ =
ν̃

ν
(4)

where χ = ReT is Reynolds turbulent number. Model is completed by following formulas:

S̃ ≡ |Ω|+ ν̃

κ2d2
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(5)
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ft2 = Ct3 exp(−Ct4χ2) (8)

The following table gives the model constants present in the formulas above:

σ Cb1 Cb2 κ Cw1 Cw2 Cw3 Cv1 Ct1 Ct2 Ct3 Ct4
2
3

0.1355 0.622 0.41 Cb1/κ
2 + (1 + Cb2)/σ 0.3 2.0 7.1 1.0 2.0 1.1 2.0

The second turbulence model is Mixing Length Model. This model belongs to the group
of algebraic models and is presented e.g. in [3].

Numerical scheme
For computation The MacCormack explicit scheme was used:
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where artificial viscosity DW can be expressed:
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after replacing derivations we obtain:
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Results

S3Hx Test cases
For these S3Hx (gentle-sloped) test cases we all (both models) obtained small separation zones
near the wall, but mentioned experiment ([1]) obtained none. The following figures show results
gained with MLM model.

Figure 3: Flow over S3H4 hill. Separation and reattachment points marked by arrows.

Figure 4: Flow over S3H7 hill. Separation and reattachment points marked by arrows.
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S5Hx Test cases
On S5Hx (sharp-sloped) test cases were obtained following results. The following figures show
results gained with S-A model.

Figure 5: Flow over S5H4 hill.

Figure 6: Flow over S5H7 hill.

The blue color signs negative component of u (velocity in x-direction) and signalize the
separation zone.

The comparison of S5Hx (sharp-sloped) test cases is shown in following table:

Hill Experiment Standard k − ε RNG k − ε Low-Re model MLM S-A

S5H4 5.25 ± 0.5 2.5 3.42 4.55 5.0 5.8
S5H7 4.30 ± 0.3 - 3.97 4.42 4.7 5.7

Table 2: Reattachment point position (xR/H)

Results from first four columns are presented in [1], the last two columns are results from
both authors.
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Conclusion
Presented models appear to be applicable. The differences in obtained results may be caused,
by various reasons. Each model itself has its advantages and limitations. To catch separation
zones are recommended more sophisticated models e.g. EARSM models.
It is also necessary to be careful of choice of the computational mesh. Presented test cases
require very fine mesh especially at the wall, to catch great velocity gradients. In [1] author
even shows that orthogonal mesh gives different results than the non-orthogonal one.
Overall, presented results confirm that the theoretical model is applicable for the prediction of
velocity field and flow characteristics.
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