Dynamical vertex approximation a step beyond DMFT

Karsten Held* IFP TU Wien

Prague, June 29, 2010

- Motivation
- Dynamical vertex approximation (DΓA)
- Effect of spin fluctuations in 3D and 2D
- Phase diagram and critical exponents
- NanoDFA**

* with A. Toschi and A. Katanin PRB 75, 45118 (2007);
PRB 80, 75104 (2009), Prog Theor Phys Suppl 176, 117 (2008)
** with A. Valli, G. Sangiovanni Phys. Rev. Lett. 104, 246402 (2010)

Motivation

Dynamical mean field theory

 Σ all topologically distinct, but local diagrams

Success story: quasiparticle renormalizations, magnetism, kinks ...

Motivation

Dynamical mean field theory

 $\boldsymbol{\Sigma}$ all topologically distinct, but local diagrams

Success story: quasiparticle renormalizations, magnetism, kinks ...

Motivation

Dynamical mean field theory

 Σ all topologically distinct, but local diagrams

Success story: quasiparticle renormalizations, magnetism, kinks ...

Not included:

non-local correlations

p-, d-wave superconductivity, pseudogaps, spin Peierls magnons, (quantum) critical behavior ...

 $k\text{-dependent}\ \Sigma$

cluster extensions of DMFT

- non-local short-range correlations
- $\bullet~d/p\mbox{-wave}$ superconductivity

Hettler *et al.*'98, Lichtenstein Katsnelson'00, Kotliar *et al.*'01, Potthoff'03

diagrammatic extensions of DMFT

dynamical vertex approximation

- short and long-range correlations
- (para-)magnons, criticality ...

Kusunose cond-mat/0602451 Toschi, Katanin, KH cond-mat/0603100 Slezak *et al.* cond-mat/0603421

cf. dual Fermions: Rubtsov et al.'08

cf. DMFT+spin-Fermion Kuchinskii et al.'05

DMFT: all (topological distinct) local diagram for Σ

Generalization: all local diagrams for n-particle fully irreducible vertex Γ

DMFT: all (topological distinct) local diagram for Σ

Generalization: all local diagrams for n-particle fully irreducible vertex Γ

 $n = 1 \rightarrow \mathsf{DMFT}$

DMFT: all (topological distinct) local diagram for Σ

Generalization: all local diagrams for n-particle fully irreducible vertex Γ

 $n = 1 \rightarrow \text{DMFT}$ $n = 2 \rightarrow \text{D}\Gamma\text{A}$: from 2-particle irreducible vertex Γ construct Σ (local and non-local diagrams)

DMFT: all (topological distinct) local diagram for Σ

Generalization: all local diagrams for n-particle fully irreducible vertex Γ

DMFT: all (topological distinct) local diagram for Σ

Generalization: all local diagrams for n-particle fully irreducible vertex Γ

local $\Gamma,$ non-local G

non-local reducible vertex Γ_{red} via parquet equations

DMFT: all (topological distinct) local diagram for Σ

Generalization: all local diagrams for n-particle fully irreducible vertex Γ

 $\Sigma = \Gamma_{red}$

local Γ , non-local G

non-local reducible vertex Γ_{red} via parquet equations

 $\begin{array}{l} \Gamma_{\rm red} \\ \rightarrow \\ {\rm non-local} \ \Sigma \\ {\rm exact \ relation \ (eq. \ of \ motion)} \end{array}$

DMFT: all (topological distinct) local diagram for Σ

Generalization: all local diagrams for n-particle fully irreducible vertex Γ

First step: restriction to ladder diagrams

lines: non-local G

crosshatched: local irreducible vertex in spin/charge channels

 $\Gamma_{S,C}(\nu,\nu',\omega) = \chi_{0,loc}^{-1} - \chi_{S,C}^{-1}$

magnons, spin-fluctuations at (A)FM phase transition G_{ij} from DMFT

D Γ **A** algorithm (full version)

D Γ **A** algorithm (restriction to ph ladders)

D Γ **A** algorithm (Moriyaesque λ correction)

$$\lambda$$
 adjusted by sum rule: $-\int_{-\infty}^{\infty} \frac{d
u}{\pi} \mathrm{Im}\Sigma_{\mathbf{k},\nu} = U^2 n(1-n/2)/2$

Results: 3D Hubbard model without λ correction

$$H = -t \sum_{\langle i,j \rangle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

cubic lattice, exact diagonalization as impurity solver

 $\Gamma_{\rm s,ir}(\nu,\nu',\omega)$ strongly frequency dependent

Results: 3D Hubbard model w/o λ correction crossover 1 0.1 PI Ann manning man PM Σ and A for $\mathbf{k} = (\pi/2, \pi/2, \pi/2)$ (on Fermi surface) Inn nn nn nn AF 0 3 2 4 1 *U/D*

Results: 3D Hubbard model w/o λ correction

Results: 3D Hubbard model w/o λ correction

Results: 3D Hubbard model w/o λ correction

Results: 3D Hubbard model with λ **correction**

Results: 3D Hubbard model with λ **correction**

 Σ and A for $\mathbf{k} = (\pi/2, \pi/2, \pi/2)$ (on Fermi surface)

Comparison with/without λ correction

Results: 2D Hubbard model (half-filling)

Results: 2D Hubbard model (half-filling)

Results: 2D Hubbard model (off half-filling)

$$t'/t = 0.3$$

$$n = 0.8$$

$$\beta = 100/D$$

less anisotropic
at strong coupling

Antiferromagnetic phase transition in half-filled Hubbard model

Antiferromagnetic phase transition in half-filled Hubbard model

2D: Mermin-Wagner theorem fulfilled!

Antiferromagnetic phase transition in half-filled Hubbard model

2D: Mermin-Wagner theorem fulfilled! 3D: critical exponent $\nu = 0.67 \pm 0.05$ agrees with Heisenberg model $\nu = 0.707...$

Logarithmic plot

Phase diagram

Rohringer, Toschi, Katanin, KH'10

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

D\Gamma A for nanoscopic systems

Valli, Sangiovanni, Gunnarsson, Toschi, KH PRL'10

DFA for nanoscopic systems

Valli, Sangiovanni, Gunnarsson, Toschi, KH PRL'10

How can we calcualte somewhat larger nanosystems?

DFA for nanoscopic systems

Valli, Sangiovanni, Gunnarsson, Toschi, KH PRL'10

・ロト ・四ト ・ヨト ・ヨト ・ヨ

How can we calcualte somewhat larger nanosystems?

Validation against exact QMC solution

Valli, Sangiovanni, Gunnarsson, Toschi, KH PRL'10

Validation against exact QMC solution

Valli, Sangiovanni, Gunnarsson, Toschi, KH PRL'10

good agreement already on DMFT level many neighbors, V favorable

Quantum point contact (104 atoms)

Valli, Sangiovanni, Gunnarsson, Toschi, KH PRL'10

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Quantum point contact (104 atoms)

Valli, Sangiovanni, Gunnarsson, Toschi, KH PRL'10

- Mott "transition" of atoms forming QPC
- expensive DFA part scales linearly with system size
- DFA vertex includes weak localization ...

Conclusion

► DFA assumption: local 2-particle irreducible F

► DFA can access short- and long-range correlations

- ► Results: 3D: Mott transition modified by AF fluctuations 3D: critical exponent $\nu \approx 0.7$
 - 2D: pseudogap, Mermin Wagner fulfilled
- ► DFA for nanoscopic systems

Outlook

- Physics: magnons, AFM & superconductivity, QCP
- ► Realistic multi-orbital calculations with LDA+DFA