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I shall review what I consider as some of the important physics results

in which the use of path or field integrals has played an essential role. Of

course, this is by now a rather long story and I will be far from exhaustive.
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For an introductory note on path integrals in physics see, for example,

J. Zinn-Justin, Path integral, Scholarpedia, 4(2): 8674 (2009)

(www.scholarpedia.org).

For details and more references see, for example,

J. Zinn-Justin, Path integrals in Quantum Mechanics, French version

EDP Sciences et CNRS Editions (Les Ulis 2003), English version Oxford

Univ. Press (Oxford 2005); Russian translation (Fizmatlit 2007);

J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Claren-

don Press 1989 (Oxford 4th ed. 2002).



Path integrals: the origins

The first path integral seems to have been defined by Wiener (1923), as a

tool to describe the statistical properties of the Brownian motion, inspired

by the well-known work of Einstein. If Wiener’s work is rather well known, a

less-known article of Wentzel of about the same period (1924) introduces, in

the framework of quantum optics, the notions of sums over paths weighted

by a phase factor, of destructive interference between paths that do not

satisfy classical equations of motion, and the interpretation of the sum as a

transition probability amplitude. Dirac (1933) has written a first expression

of the quantum evolution operator that resembles a path integral, but he did

not go beyond an approximate form with discrete time intervals. Of course,

the modern history of path integrals begins with the articles of Feynman

(1948) who formulates quantum evolution in terms of sums over a set of

trajectories weighted by eiS/~, where S is the value of the corresponding

classical action (time-integral of the Lagrangian).
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Fig. 1 A piecewise linear path contributing to the time-discretized path integral:

one then integrates over q1, q2, . . . , qn−1 with weight eiS(q)/~. The continuum limit

is reached by taking the limit n → ∞.



The mystery of the variational principle in classical physics

Euler–Lagrange equations

Around 1750, Euler and Lagrange develop the variational calculus. La-

grange (1788) then shows that the equations of motion of Newtonian me-

chanics can be derived from a variational principle. He constructs a math-

ematical quantity, the action integral of a Lagrangian,

A(q) =

∫ t′′

t′
dtL

(

q(t), q̇(t); t
)

,

and recovers the equation of the classical motion by expressing the station-

arity of the action with respect to variations of the trajectory q(t):

δA = 0 ⇒
d

dt

∂L

∂q̇i
=
∂L

∂qi
,

a form called Euler–Lagrange equations.



The simplest example is

L(q, q̇) = 1
2mq̇

2 − V (q) ⇒ mq̈ = −V ′(q).

In this framework, the action and the Lagrangian are pure mathematical

quantities but, technically, this formalism happens to be very useful, for

example, for systems with constraints, or to establish conservation laws

generated by continuous symmetries.

The particle in a magnetic field

Later, it was discovered that the equation of motion of a particle in a static

magnetic field B, which takes the form

mq̈ = eq̇×B(q) where ∇ ·B(q) = 0 ,

quite remarkably, can also be derived from an action principle, provided a

new mathematical quantity is introduced, the vector potential:

B(q) = −∇×A(q).



The Lagrangian can be written as

L(q, q̇) = 1
2mq̇2 − eA(q) · q̇ .

In this classical framework, the vector potential is not considered as a

physical quantity since it is defined only up to gradient. Equivalent vector

potentials are related by a gauge transformation:

A(q) 7→ A(q) +∇Ω(q).



Electromagnetism and Maxwell’s equations

Maxwell’s equations (in the vacuum) can be written as

∇ ·E = ρ , ∇×B−
∂E

∂t
= J ,

∇ ·B = 0 , ∇×E+
∂B

∂t
= 0 ,

where E and B are the electric and magnetic fields, resp., ρ the charge and

J the current densities, resp..

In quadri-covariant notation where (i, j = 1, 2, 3)

t ≡ x0 , Fi0 = Ei , Fij = −
∑

k

ǫijkBk , J0 = ρ ,

they take the form

3
∑

µ=0

∂µF
µν = Jν ⇒

3
∑

ν=0

∂νJ
ν = 0 .



These equations imply that the tensor Fµν can be expressed in terms of

a vector potential, or gauge field, Aµ(x) under the form

Fµν = ∂µAν − ∂νAµ .

The gauge is defined only up to an Abelian gauge transformation

Aµ(x) 7→ Aµ(x) + ∂µΩ(x).

Then again, remarkably enough, with the introduction of this new mathe-

matical quantity, Maxwell’s equations can be derived from an action prin-

ciple with the Lagrangian density

L(A, Ȧ) = − 1
4

∑

µ,ν

FµνFµν −
∑

µ

JµAµ with Fµν = ∂µAν − ∂νAµ ,

and gauge invariant action,

A =

∫

d4xL(A, Ȧ).



General Relativity

In Einstein’s relativistic theory of gravitation (or General Relativity), the

equations of motion can also be derived from an action principle.

For example, in the absence of matter, in terms of metric tensor gij(x)

they read

Rij
(

g(x)
)

− 1
2R

(

g(x)
)

gij = 0 ,

where R is the scalar curvature and Rij the Ricci tensor.

These equations can be derived from Einstein–Hilbert’s action,

A(g) =

∫

d4x
(

−g(x)
)1/2

R
(

g(x)
)

,

where g(x) is the determinant of the metric tensor. This property still

holds in presence of a cosmological constant and matter.



The question then arises: why can all fundamental classical equations be

derived by expressing the stationarity of a local action?

At first sight, quantum mechanics in its Hamiltonian formulation, does

not give a direct answer. It should be considered as a major success of

quantum mechanics in the path integral formulation, quantum field theory

in the field integral formulation, that it provides a very simple explanation

to this property. According to Feynman, quantum evolution is given by a

path integral of the form

〈q′′|U(t′′, t′) |q′〉 = N

∫ q(t′′)=q′′

q(t′)=q′
[dq(t)] eiA(q)/~,

where U(t′′, t′) is the evolution operator, A =
∫

dtL is the classical action,

time-integral of the classical Lagrangian, and one sums over all possible

trajectories q(t) satisfying the boundary conditions at times t′ and t′′.



In the classical limit, for ~ → 0, the path integral can be calculated by

the stationary phase method and thus is dominated by paths that leave

the action stationary: these are precisely the classical paths. This property

generalizes to the relativistic quantum field theory.

As a potential non-trivial consequence, one can conclude that since the

classical equations of General Relativity follow from a variational princi-

ple, the field integral over metrics (or, more generally, spin connection) of

eiSEH/~, involving Einstein–Hilbert’s action SEH, properly regularized at

short distance (of course, a non-trivial issue), should be directly relevant to

quantum gravity. It is certainly the first term of an effective theory.



Covariance of the relativistic quantum field theory

The standard Hamiltonian formulation of relativistic quantum theory, is

not explicitly covariant. As first noticed by Dirac in a time-discretized form,

the corresponding field integral formulation, which by contrast involves the

Lagrangian, is explicitly covariant.

The basic remark is as follows: in quantum mechanics, starting from first

principles, one derives a path integral representation of the matrix elements

of the evolution operator U(t′′, t′) between times t′ and t′′ of the form

〈q′′ |U(t′′, t′)| q′〉 =

∫ q(t′′)=q′′

q(t′)=q′
[dp(t)dq(t)] exp

(

i

~
A(p, q)

)

,

where p and q are phase space variables (position and conjugate momen-

tum), and A(p, q) the classical action in the Hamiltonian formalism:

A(p, q) =

∫ t′′

t′

[

p(t)q̇(t)−H
(

p(t), q(t); t
)]

dt .



When the classical HamiltonianH is quadratic form in p, like p2/2m+V (q),

the integral over p is Gaussian and can be performed explicitly:

∫

[dp(t)] exp

[

i

~

∫ t′′

t′
dt
(

p(t)q̇(t)− p2(t)/2m
)

]

∝ exp

[

i

~

∫ t′′

t′
dt 1

2mq̇
2(t)

]

.

The integration amounts to replacing p(t) by the solution mq̇(t) of the

classical equation and thus generates the Lagrangian:

〈q′′ |U(t′′, t′)| q′〉 =

∫ q(t′′)=q′′

q(t′)=q′
[dq(t)] exp

[

i

~

∫ t′′

t′
dtL(q, q̇)

)

with

L(q, q̇) = 1
2mq̇

2 − V (q).

In the relativistic quantum theory, the Lagrangian formulation is explicitly

relativistic covariant, in contrast with the Hamiltonian formulation.



Critical phenomena and quantum field theory

Following Wilson, it was realized that universal critical properties of a large

class of statistical models could be described by an Euclidean quantum or

statistical field theory. The field integral formulation allows establishing a

relation between classical statistical physics and quantum field theory.

For example, the critical properties of the d-dimensional Ising model

Z =
∑

{Si}=±1

exp

(

J
∑

i,j n.n.

SiSj

)

are described by the φ4 quantum field theory (in imaginary time)

Z =

∫

[dφ] exp [−S(φ)] ,

where one now integrates over all fields φ(x), x ∈ R
d and S(φ) is the

Euclidean action:

S(φ) =

∫

ddx
[

1
2

∑

µ (∂µφ(x))
2
+ 1

2φ
2(x) + 1

4!gφ
4(x)

]

.



This property generalizes to classical spin models with O(N) symmetry

like

Z =
∑

{|Si|}=1

exp

(

J
∑

i,j n.n.

Si · Sj

)

.

In addition path integral techniques allow proving directly that the N = 0

limit describes the statistical properties of polymers.

It allows using the quantum field theory renormalization group to calcu-

late universal critical properties of classical statistical systems near a con-

tinuous phase transition.



Most reliable critical exponents from O(N) symmetric (φ2)23 field theory
(Le Guillou and Z.-J. (1980) updated by Guida and Z.-J. (1998))

N 0 1 2 3

g̃∗ 1.413± 0.006 1.411± 0.004 1.403± 0.003 1.390± 0.004

g∗ 26.63± 0.11 23.64± 0.07 21.16± 0.05 19.06± 0.05

γ 1.1596± 0.0020 1.2396± 0.0013 1.3169± 0.0020 1.3895± 0.0050

ν 0.5882± 0.0011 0.6304± 0.0013 0.6703± 0.0015 0.7073± 0.0035

η 0.0284± 0.0025 0.0335± 0.0025 0.0354± 0.0025 0.0355± 0.0025

β 0.3024± 0.0008 0.3258± 0.0014 0.3470± 0.0016 0.3662± 0.0025

α 0.235± 0.003 0.109± 0.004 −0.011± 0.004 −0.122± 0.010

ω 0.812± 0.016 0.799± 0.011 0.789± 0.011 0.782± 0.0013

ων 0.478± 0.010 0.504± 0.008 0.529± 0.009 0.553± 0.012



Relation between classical and quantum statistical physics

It can be shown that for a scalar field φ in d space dimensions at temper-

ature T = 1/β, the quantum partition function reads

Z =

∫

[dφ] exp

[

−

∫ β

0

dt

∫

ddxS(φ)

]

,

where S is the Euclidean (imaginary time) action, and the (Bose) fields

satisfy the periodic boundary conditions

φ(0, x) = φ(β, x).

However, this field integral representation immediately shows that the same

partition function has the interpretation of a classical partition function in

(d+1) space dimensions with finite size β and periodic boundary conditions

in one space direction.



This remark plays a very important role in the theory of continuous phase

transitions, relating a class of classical transitions in (d+1) dimensions and

quantum transitions at zero temperature (β = ∞) in d dimensions.

More generally, the relation between classical and quantum statistical

physics maps finite temperature quantum effects to finite size effects in

the classical theory. This is most useful from the renormalization group

viewpoint.



Finite temperature QFT, finite size effects in Statitiscal Field Theory and

dimensional reduction

In particular, in this framework, high temperature is associated to dimen-

sional reduction. Technically, one expands the periodic field in Fourier (Mat-

subara) modes

φ(t, x) =
∑

ν

ei2πνt/β φν(x).

At high temperature, near a continuous phase transition, when the corre-

lation length is much larger than the thermal wave length 6λ = ~
√

2π/mT ,

only the zero-mode is critical. One can then integrate perturbatively over

all non-zero modes:

e−Seff.(φ0) =

∫

∏

ν 6=0

[dφν ] e
−S(φ) with Z =

∫

[dφ0] e
−Seff (φ0),

but must treat the zero-mode φ0 non-perturbatively.



The dilute (thus weakly interacting) Bose gas

As an example, the technique has been applied to the dilute Bose gas. The

initial field integral over fields ψ∗, ψ periodic in Euclidean time reads

Z =

∫

[dψ(t, x)dψ∗(t, x)] e−S(ψ∗,ψ)/~,

Since one is interested only in long wavelength phenomena, the two-body

potential can be replaced by a delta-function and parametrized in terms of

the s-wave scattering length a (positive because the interaction is assumed

repulsive).

For d = 3, the effective Euclidean action of the system may then be

written as (µ is the chemical potential)

S(ψ∗, ψ) = −

∫ β

0

dt

∫

d3x

[

ψ∗(t, x)

(

~
∂

∂t
+

~
2

2m
∇2
x + µ

)

ψ(t, x)

+
2π~2a

m

(

ψ∗(t, x)ψ(t, x)
)2
]

.



The reduced partition function, at leading order, takes the form of the

field integral

Z =

∫

[dφ(x)] exp [−S(φ)]

with

S(φ) =

∫
{

1

2
[∂µφ(x)]

2
+

1

2
rφ2(x) +

u

4!

[

φ2(x)
]2
}

ddx ,

where r = −2mTµ and, for d = 3, u = 96π2a/λ2.

The Euclidean action reduces to the ordinary O(2) symmetric (φ2)2 field

theory, which also describes the universal properties of the superfluid Helium

transition.



Numerical simulations in quantum field theory

The relation between classical and quantum partition function has led

to the application of statistical methods to the non-perturbative study of

quantum field theories. The idea is to replace the continuum field integral

by a lattice regularized form. Then, non-perturbative numerical techniques

become available, like strong coupling expansions or Monte-Carlo type sim-

ulations.

An outstanding example is QCD. In the absence of matter, simulations

are based on Wilson’s plaquette partition function:

Z =

∫

∏

links{ij}

dUij e−βpS(U), S(U) = −
∑

plaquettes

trUijUjkUklUli

where Uij is a group element associated to links and S the plaquette action.

The lattice formulation also yields a non-perturbative definition of QCD.



Quantization of non-Abelian gauge theories

By contrast with QED, the quantization of non-Abelian gauge theories, even

without matter fields, does not follow from simple heuristic methods.

The gauge field Aµ(x) belongs to the Lie algebra L(G) of a group G and

transforms under the adjoint representation of the group as

Aµ(x) 7→ g(x)Aµ(x)g
−1(x) + g(x)∂µg

−1(x).

For matter fields, gauge invariance is enforced by replacing derivatives by

covariant derivatives: Dµ = 1 ∂µ +Aµ.

For the gauge field action, the associated curvature

Fµν(x) = [Dµ,Dν ] = ∂µAν − ∂νAµ + [Aµ,Aν ] ,

is a tensor for gauge transformations:

Fµν(x) 7→ g(x)Fµν(x)g
−1(x).



The local gauge action

A(A) =
1

4g2

∫

d4x trFµν(x)F
µν(x),

then is gauge-invariant.

However, due to gauge invariance, not all components of the gauge field

are dynamical and simple canonical quantization is impossible. Tricks that

worked for QED, like the direct elimination of the auxiliary components

in the Coulomb gauge fail. All concepts required to quantize non-Abelian

gauge theories, like the so-called Faddeev–Popov trick and ghosts are based

on field integrals. BRST symmetry has emerged from this formalism.



Faddeev–Popov trick

The goal is to factorize the integration over gauge transformations. One

starts from a non-gauge invariant equation for the space-dependent group

element g(x), for example,

F (Ag
µ) ≡ ∂µA

g
µ(x)− ν(x) = 0 ,

where Ag
µ is the gauge transform by g of Aµ and ν(x) an arbitrary field.

The variation of the equation with respect to g: δg(x) = ω(x)g(x), ω(x)

belonging to the Lie algebra, has the form

δF (Ag
µ) = [M(Ag

µ)ω](x), M = ∂µDµ .

One then introduces spinless fermions C̄ andC, the Faddeev–Popov ‘ghosts’,

and a boson field λ all transforming under the adjoint representation.



One then uses the identity

1 =

∫

[dg dC̄dC dλ] exp
[

−Sgauge(A
g
µ, C̄,C,λ,ν)

]

with

Sgauge =

∫

ddx tr
{

λ(x) [F (Aµ)(x)− ν(x)] +C(x)M(A)C̄(x)
}

.

This uses the notion of integration over Grassmann fields. Introducing the

identity in the formal representation of the partition function, one obtains

Z =

∫

[dg dC̄ dC dλ dAµ]

× exp

[

1

4g2

∫

ddx trF2
µν(x)− Sgauge(A

g
µ, C̄,C,λ,ν)

]

.

After the change variables Ag
µ 7→ Aµ, the integration over g(x) factorizes

and yields an infinite multiplicative constant.



After a few additional simple manipulations, one obtains the quantized

partition function

Z =

∫

[

dAµ dC̄ dC dλ
]

exp
[

−S(Aµ, C̄,C,λ)
]

,

where S, in the covariant gauge F = ∂µAµ, is the local action:

S(Aµ, C̄,C,λ)

=

∫

ddx tr

[

−
1

4e2
F2
µν +

ξe2

2
λ2(x) + λ(x)∂µAµ(x) +C(x)∂µDµC̄(x)

]

.

It was later noticed that this quantized action has a fermion-like symme-

try, the BRST symmetry. Its generalization is supersymmetry.



Quantization of the non-linear σ-model

The non-linear σ-model is a model with global O(N) symmetry with an

N -component scalar field φ(x) that lives on the sphere SN−1:

φ2(x) = 1 .

In terms of φ, the action takes the form of a free action,

S(φ) = 1
2

∫

ddx [∂µφ(x)]
2 ,

but the constraint generates interactions. Within the perturbative expan-

sion, the O(N) symmetry is realized in the phase of spontaneous symmetry

breaking and the dynamical fields correspond to Goldstone modes. First

calculations seem to indicate that the O(N) symmetry was explicitly bro-

ken by the perturbative corrections. Within the canonical formulation, a

complicated calculation showed that the breaking term actually cancelled.



However, the field integral representation gave both the correct quantized

form to all orders and the geometric explanation of the problem as due to

forgetting the O(N) invariant measure (Meetz and Honerkamp)

Z =

∫

[dφ]
∏

x

δ(φ2(x)− 1) exp [−S(φ)/g] .

Moreover, to give a meaning to the model beyond perturbation theory, one

can introduce a lattice regularization and this yields an O(N) lattice spin

model. In this way, one can establish a connection between the non-linear

σ-model and the (φ2)2 statistical field theory.



Large N techniques

In quantum field theories with O(N) or U(N) symmetries and fields in

the vector representation, physical quantities can be calculated in the large

N limit, leading to non-perturbative results. At leading order, the same

results can be obtained by summing Feynman diagrams, but field integral

techniques are much simpler and can be extended to arbitrary orders in 1/N .

Applications include the study of the (φ2)2 theory (and the calculation of

critical exponents), the Gross–Neveu model....

The basic idea is to introduces into the φ-field integral the identity

1 =

∫

[dλdρ] exp

{

i

∫

ddxλ(x)
[

ρ(x)− φ2(x)
]

}

.

For a recent review see

M. Moshe, J. Zinn-Justin, Quantum field theory in the large N limit: a

review, Phys. Rept. 385 (2003) 69 [hep-th/0306133].



Instantons, vacuum instability and large order behaviour

In simple quantum mechanics, barrier penetration effects can evaluated in

the semi-classical limit by WKB methods. Alternatively, they can be deter-

mined in the path integral framework by looking for finite action solutions

of Euclidean (imaginary time) equations of motion (instantons). However,

the latter methods generalizes simply to quantum field theory, unlike meth-

ods based on Schrödinger equation. Important physics phenomena, like the

periodic structure of QCD vacuum and the strong CP problem, the solution

of the U(1) problem are related to instantons.

Also, instantons lead to a determination of the behaviour of the perturba-

tion expansion at large orders. An important application is the summation

of the perturbative expansion to determine critical exponents from the φ4

field theory.



Instantons and the problem of non-Borel summability

In the case of potentials with degenerate classical minima, instanton cal-

culus applied to the large order behaviour indicates that the perturbative

expansion is non-Borel summable, that is, does not determine unique func-

tions. In simple quantum mechanics with analytic potentials, the problem

can be studied systematically and it can be shown that all multi-instanton

configurations must be taken into account and a generalized summation

procedure introduced.
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