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SUMMARY

We consider an initial boundary value problem for the equations of
spherically symmetric motion of a pressureless gas with temperature-
dependent viscosity p(f) and conductivity x(6). We prove that this
problem admits a unique weak solution, assuming the Belov’s func-
tional relation between u(f) and x(f) and we give the behaviour of
the solution for large times.
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1 Introduction

Pressureless gas have been the object of various mathematical studies in
recent years [5, 6, 4, 8, 6, 15, 7, 5]. Physically, these models (which may be
considered as generalization of the popular Burgers model (see [16, 27, 17,
18])) have been introduced in astrophysics [28, 26] to describe sticky particles
in interstellar madium, galaxy gases or rarefied cold plasmas. Also in some
recent high-energy works [25, 24] it has been shown that classical decay of



unstable higher-dimensional objects in string theories produces pressureless
gas with non-zero energy density.

In the present work we are interested in the compressible case of a pres-
sureless gas with non-constant transport coefficients (viscosity and conductiv-
ity) in spherical symmetry. If the density dependent viscosity case has been
the object of a number of works in recent years (see for example [19, 23, 9]
and references therein for the 1D and spherical symmetries), the temperature
dependent-viscosity is much less known. After the pioneering article by C.
Dafermos and L. Hsiao [6] in the incompressible case, to our knowledge, only
the paper by S. Ya. Belov [2] deals with the compressible case. Our purpose
in the following is to test the robustness of the model in [2] on the spherically
symmetric geometry. We would like to mention that in 3d case the situation
is different and the existence and asymptotic behavior of full system of the
Navier-Stokes- Fourier system in 3D with nonideal gas ( including pressure)
were proved in the works of Feireisl and his coworkers [11, 13, 12]. With ideal
polytropic gas and density dependent viscosity the existence of solution was
proved by D. Bresch and B. Desjardins [3].

We consider the following model of compressible Navier-Stokes system for
a spherical symmetric flow of a pressureless gas

( 20v
put (pv), + == =0,

p(ve +vv,) = (u <vr + %))T ; (1)

2 20\ 2
p(6t+09T):qr+7+u UT—F? 5

\

in the domain Q x R with Q := (R, Ry), for the density p(r,t), the velocity
v(r,t) and the temperature 0(r,t). The heat flux ¢ is given by the Fourier
law ¢(0) := k(6)6,.

Writing the system in the lagrangian (mass) coordinates (x,t), with

r(z,t) == ro(z) + i v(x,s) ds, (2)

where

x 1/3
ro(z) := {Rg + 3/0 n°(y) dy] , forz e,
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we get

T =,

in the domain @ := Q x RT with  := (0, M), where the specific volume 7
(with n := %), the velocity v, the temperature 6 and the radius r depend on
the lagrangian mass coordinates.

For our pressureless model, the stress o is only viscous

= @ r2v
o(n,0) = n( )z,

the energy is normalized e = 0, and the heat flux is ¢(6) := 0,.
We consider the boundary conditions

{ tmon =0 (@)

7r|:c:0,M =0,

for t > 0, and initial conditions

Mli—o = 1’ (z), Ulimg = (), Tlimp = (), Oy = 0°(x)  on Q. (5)
The viscosity coefficient y is such that u € C?(R") and satisfy the conditions

%MQéO,M®>M>O (6)

The thermal conductivity satisfies the Belov’s condition [2]

T log () for & >0, (7)

k() = —A d_§

where A is a positive constant.



We study weak solutions for the above problem with properties
n€L¥@Qr), meLX(0,T],LXQ)), p (r*v). € Lo([0,T], L*(2)),
v e L>([0,T], LY(Q)), v € L>([0,T], L*(Q)), o, € L=([0,T], L*(Q)),

0 € L=([0,T], LA(Q)), /p 0. € L=([0,T], L2()).
(8)

and
r € C(Q) and for all t € [0,T], z — r(z,t) is strictly increasing on 2, (9)

where Q7 = Q x (0, 7).
We also assume the following conditions on the data:

n°>0on Q, n°e LY(Q),

v € LAQ), V0 o € LA(Q), (10)
0° € L*(2), infg0° > 0.
We look for a weak solution (7, v, ) such that

n(x,t) = n(z) + /Ot (7’21):,; + Qﬂ) (x,s) ds, (11)

r

for a.e. x € Q and any t > 0, and such that for any test function ¢ &
L3([0,T], H'(Q2)) with ¢, € L'([0,T], L*(2)) such that ¢(-,T) =0

/ [gbtv + <r2¢z + 277¢) p— M¢;7’4% — 2,u%] dx dt
Q

r r2

= /ng((LZE) () da, (12)

and

10
/ {(bte + 5 L e — 12000, — TQUUI¢:| dz dt = / $(0,2) 6°(x) dz. (13)
Q N Q
The aim of the present paper is to prove the following result
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Theorem 1 Suppose that the initial data satisfy (10) and that T is an ar-
bitrary positive number.

Then the problem (3)(4)(5) possesses a global weak solution satisfying (8)
and (9) together with properties (11), (12) and (13).

For that purpose, we first prove a classical existence result in the Hélder
category. We denote by C*(£2) the Banach space of real-valued functions
on §2 which are uniformly Holder continuous with exponent o € 2, and
C*%2(Qr) the Banach space of real-valued functions on Qr := Q x (0,7)
which are uniformly Hélder continuous with exponent a in x and «/2 in
t. The norms of C%(Q) (resp. C**/2(Qr)) will be denoted by || - ||o (resp.

I 1Mla)-

Theorem 2 Suppose that the initial data satisfy

(0%, v, 0, 09,62, 63,) € (CH()°,

» X Yxx) LA v R 1

for some a € Q. Suppose also that n°(z) > 0 and 0°(z) > 0 on Q, and that
the compatibility conditions

03(0) = 03(M) =0, v°(0) = v"(M) =0,

V

hold. Then, there exists a unique solution (n(x,t),v(x,t),0(x,t)) withn(z,t)
0 and O(x,t) > 0 to the initial-boundary value problem (3)(4)(5) on Q =
Q x Ry such that for any T > 0

(/’77 77:!:) nta nzt; UV, Ugy Uty Uy 07 eza 9t7 ezx) S (CQ(QT))lz 3

and 5
(Ttts Vat, Out) € (LQ(QT)) .

Then Theorem 1 will be obtained from Theorem 2 through a regularization
process.

The plan of the article is as follows: in section 2 we give a priori estimates
sufficient to prove in section 3 global existence of a solution, then we gives
in section 4 the asymptotic behaviour of the solution for large time. In the
last section we briefly study the case of constant transport coefficients.



2 A priori estimates

In the spirit of [21], we first suppose that the solution is classical in the
following sense

{ UECl(QT)a p>07 (14)
v,0 € C'([0,T],C°()) N C°[0,T],C*)), 6 >0,
and

r>0 foralltel0,T]. (15)

Our first task is to prove the following regularity result

Theorem 3 Suppose that the initial-boundary value problem (3)(4)(5) has
a classical solution described by Theorem 2. Then the solution (n,v, v, 6,0,)
is bounded in the Hélder space CY/*Y5(Qr)

nllays + [ollls + [lvalllys + W01z + 102115 < C(T),

where C' depends on T, the physical data of the problem and the initial data.
Moreover _
O0<n<n<7y, 0<8<0<0.

Let N and T be arbitrary positive numbers In all the following, we denote
by C'= C(N) or K = K(N) various positive non-decreasing functions of N,
which may possibly depend on the physical constants M etc., but not on 7'.
We also denote by ¥ the elementary positive function: ¥(s) :=s—logs—1,
for any s > 0.

Lemma 1 Under the following condition on the data
[Nz + 117 | gy + 1%y < Y, (16)

1. The following mass-enerqy equality holds

/Q EU2 Tt e} dr = /Q B(vo)2 +1° + eo} da. (17)



2. The following “entropy” inequality holds

/Q W(0) do + /0 ' /Q (“57?27”4 6 + “g? [(M)z]?) dz dt < K(N).

3. The following estimates hold

191 oo 0,321 @)) + 10l oo 0,520 + 10]| Lo 0,1 () < K(N). (19)

Proof: 1. Multiplying the second equation (3) by v, adding the result to the
first and third equations (3), integrating on € and using (4), (5), one gets
the energy identity (17).

2. Computing the time-derivative (log#); we get

(log 0), = <“(§ér em) +"§799)2 0 + 75? [(r20).)

Integrating on €2 and using (17) we get (18).
3. The estimate (19) follows from (17) O

Proposition 1 The following uniform bound holds on Q)

[o(2, )] < [[0°llow).- (20)

Proof: Applying the strong maximum principle to the second equation (3)
gives (20) O

Proposition 2 The following uniform lower bound holds on Q

O(x,t) =6 >0, (21)

where 0= (|| {loqe)

Proof: Multiplying, as in [1], the third equation (3) by 672, we get

A A A
wy = </§?wz)x Qmwei — %[(r%) ]2 < <K?wx)z,



-1

where w := 0!, Multiplying by 2pw? 1, we get
A
(@), < (+T) =l s,
n z 77

which implies

i(/uﬂ”dx) <0.
dt \ Jq

Integrating in ¢ and letting p — oo gives ||w(-,t)]|so < ||w°|lco; Which implies
(21) O

Lemma 2 One has the kinetic energy bound

H\ﬁ(r%)m <K, (22)
U L1(0,T,L2(%)
and the improved thermal bound
2,4
H, ", <K. (23)
N L1(0,T,L2(R)

Proof: 1. Multiplying the second equation (3) by v and integrating by parts,

we get
d L, /2 /M 2 2
— | =vdr= | réo,uoder=— | =|(rv),|° dz,
)3 g Qn[( )a]

which gives (22) by integrating in ¢.
2. Multiplying the third equation (3) by K(6) := f:o k(s) ds, for 6y > 0
arbitrary, and integrating by parts, we get

//cet / (m 9) dx+//c“m)]dx

/’CH 9dx+//€ rv
Then

S ([ R as)ars [ wZeae= [ o0 otz . e
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After the growth property (7) of x and the lower bound (21) of 6, we get

0

K(6) =—-A i(log,u(s)) ds < K,
o ds

which gives (23) by plugging into (24) after integrating in ¢, and using (22) O

Lemma 3 One has the bounds

N T T T
n Lo (0,T,L2(Q) n Le(0,T,L2(Q2)
H (ﬁ (7’221):0) < K. (26)
n 2l L1(0,T,L2(Q)

Proof: All along the proof, we denote by C' a generic positive constant,
possibly depending on the various physical constants of the problem, but
which do not depend on 7.

1. Observing that the second equation (3) rewrites (r?v); = rto, + 2rv?,
multiplying by o, and integrating on 2, we get

/Ux(rzv)t dx = / r4aidx+2/ rvio, dz.
Q Q Q

Integrating by parts

4B 02 12 do + /

— | = 7“40530[35 = — / r2v opdr — 2/ rvlo, dr = Ay + A,.
dt Jo n Q Q Q

(27)
Rewriting Ay, we have



In the same stroke
2
Ay = 2/(7’1)2)360 dr = 4/ ﬁ[(7’211)96]2 dx — 6/ ﬂ(r%)m dx.
Q Q™
Plugging into (27), we obtain

—— [ = [(r*v),]" dz + [ r o dx

3 [ L onp doe g [ £ 02onp (Jgez)z da

1 B o KU 2\ 12 v 2 -
+§/Q—2 [(77v) 4] dw+4/ﬂﬁ[(r V)] dx—6/9?(r V), dr =: ]Z:;Bj.

(28)
Let us estimate the contributions in the right-hand side.

One observes first that, after the boundary conditions (4)
vt € (0,77, 3¢(t) « (r*v)a(8(t),1) = 0.

So splitting 2 accordingly, we have

So
3 [ oot <3 [ (B (5 ot ) a




for any ¢; > 0, and a C(ey, p, Ro).

gM & [(r*v),]* dz, we have

2
Bl < go [ ot e ([ Lot i) (29)
Q Q

Ui

As the same bound clearly holds for %

By Cauchy-Schwarz in By, we have

1 / 1 1 4 ?
Bl < e / B (o))t o+ o [ Krf_em) } de. (30)
Q T

der Jo pk n

Using the same splitting: Q = (0,£)U(¢, M) (asin By) for B, and integrating
by parts, we get

34:4/Qu(7°;v)z v(r;v)x dr = —4/Qr2 (@) <Ti2 /0 @ dy) dz.

So by Cauchy-Schwarz
(u(r%)x)
N @

| By| <4/r2
Q

1 Ty (r 2
< -6 / 7"403 dr + C/ (/ v(rv)a dy) dzx.
3 Q o \Jo r
1 2
<=6 / rio? dv +C (/ £ [(r*v),]? dx) ( n dx) :
3 Q ol Q M

Using the energy estimate, Proposition 1 and (6) the last integral is bounded,
SO

T 2
i/ Mdy‘ i
0

72 r

| By| < %61 / rio? dx + C/ £ [(r?v),]? dz. (31)
Q all

Using Cauchy-Schwarz in Bs gives

Bs < C’/ H(r%)i dx + C’/ pnt dz.
ol Q

But after energy estimate
1/2
v? < Cmax(r?v)? < C (/ ﬂ(r%)i dw) :
& Ql
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SO

1Bs| < C / B r20)? da. (32)
ol

Plugging (29), (30), (31) and (32) into (28), we get

Ld [ o 9 /42 1/”1“ 4 /42
—— [ Z(r*),)? dv + | r*oidx — = v dr < ¢ rio;, dx
T GO 5 | Mo < |

+C < /Q %[(r%w dx)2

Lo [ g e [ [(0) | e
——6 [ = [(r'v)) de — — | — k|| k—0, T
47 Jo P ey Jo prs n ),
2. Multiplying now the third equation (3) by ax </€%9z) , where @ > 0
will be defined later, we find ’

rt r 2 m r
akK (m—@m) 0, = ak {(Ko—ﬁw) ] +a= [(r*).)* & (m—@m) )
n " n z n n T

As the left-hand side rewrites a/C; % x) we easily compute

4
OéK:t ( ) ( T_ ) - Oélctmr_ ]Cm
n . n
4 4 4
= a (icf— /cw) N (/cir—) + Lok (1) .
n s 2 n), 2 n/,

4 4 3 1 4(p20)
=« (/Ctr— /Cz) — 104 (IC?ET—) + oak2 Y _ 22l (r*v) .
n s 2 n/,

So integrating on 2 and using (4)

Ld [ 1K rt ?
- d —0,) | d
i ) M/Q “|(5e) o

4
— 2a/ IC2T Y /IC2T  dx —a/ﬂﬁ [(r?v),]* K (m%@m) dr =: ZC]-.

12



In order to estimate the contributions on the right-hand side, we first inte-
grate by parts in Cy

A2 2 2 z A2
01:2a/ Kﬂdw——2a/ v /7‘ Y dy dx
o n o\ 73 zJ0 n
2 x 4}(:2 x 4}(:2
:—Qa/(rg)x (/ ydy) dQE—l—GOz/nZ (/ ydy) dz.
o T 0 n ol 0 n

The first integral gives by Cauchy-Schwarz

2 T 4’C2 :c 4’C2
2@/(7’;}%(/ ydy)dx 2@/\/7| \/7< )dw
o T o N
a L n T 4](:2 2
<§ [Heopde [ ([ ay)
2 Jan al\Jo M

S0, using energy estimate

2 z pAg2 1 1 K2 2

2a/ (r g)w (/ !/ dy) dr| < —/ H[(TQU)QEH de + - C (/ = dx) ,
o T o N 2Jan 2 o n

As the second integral gives clearly the same estimate, one gets

for a positive constant C'.
4’C2
0y < / Elr20),]? dz + C </ z dx) . (35)
ol Q 7N

In the same way, we get

1 rkrd 1 ["k
= ——a —«9 9 s dr = —/ VE (—QI) —/ =0, (r*v), dy dz.
/ 2 /o Ui VEJo 1 Wrely

Using once more Cauchy-Schwarz, we get

Gyl < % eg/QHK’%Ae) } dx+(]/ (/ (), dy)de.
crct o [(20)] re([ 2 0) ([reare)

13




Finally by Cauchy-Schwarz in C'3, we have

/ 4 2
G5 < —i@,/ B (o)) dgn+E b Krf—em) } dr.  (37)
Q 3 T

Phssin (35, (3) s (57 o (34, we gt

i oo [ [(50) J o [ o
o(fFR ) g [[(50) ] =
o5 e) (e o)

o “ “[( )]
——€ — dr+— | — k|| k—0, dzx. 38
43/9772[( Ol des Jo 1! n /), (3)

Now adding the inequalities (38) and (33), we obtain
1d rK2 o, 2} / Kﬂ)r
—— a—=2 4+ [(r*v),]?| de+a | k|| k—0, dx
2dt Q{ n n ()] Q n /e
I
+ 7‘40530[3:——/— ), |* da
/ 5 | 2 1.

4 2 4 2
é/ﬂ[(r%)gf dx—i—C'(/ K ) +l 63/,1{(&9%) ] dx
all o 7 2 Q N z

(2
o5 (]
Q 7 Q
2
+C (/ H[(T’2U)z]2 dx) +61/7“40§ dx
QN Q

~late) [ B (o - g [

Under the conditions
€2 + 63 2
Y (40)

+ a"— < 2a,
S esp/

14



the two last contributions are absorbed by the left-hand side. One checks
that for this system to have a solution it is necessary that e = e3 = 1. The
second inequality then rewrites x + %2 < 2, with ¢ = —p//(pk), and has
the unique solution = a. Choosing then o = A after (7), inequality (39)
implies the following

LSt ] are [ B e (f 25 u)
‘o </ _92 ) </Q%[(’I“Q'U):c]2 dw)
e ( / gw%w d)

If we define X (t) := [~ 1/7% dr and Y (t) := fQ 2 dx, we observe
that, as the functlons X, Y and [,nv? dw are Ll(O T) for any T > 0, the
previous inequality is easily rewriten as

LHHY) < FOX +7) +9(0)

where f,g € L'(0,T). Applying Gronwall’s lemma ends the proof [

Lemma 4 Under the previous condition on the data, there exists two positive
constants n and 7 independent of T' such that

0<n<nlxt)<ny for(t,z) € Qr. (41)

Proof: The second equation (3) rewrites

/

p v 2 w
(logn)t:c = E9x(10g77)t + <@)t + @ 2 + 7“2u2 U@t. (42)

Using the first equation (3) and (4), there exists for any ¢ € [0,7] a £(t) € Q
such that

m(£(t),t) = 0.
Integrating (42) on [z, £(t)] x [0, ], we find

// (logn)s] dyds—// —8 (logn)s dy ds



3
//( ) dyds+/ Qidyder// 06, dy ds.
=

Then using (7) we get

2
|logn(x,t)| < C+A/ n|9z\‘(r7:)x‘ dx dt.

Applying Cauchy-Schwarz inequality and Lemma 3, we obtain
2

logn(ox’t)'éCJrC {mr4&+ﬁ[(7’v)]}d$dt ¢ o
n (J;> Qr n n

Lemma 5 Under the previous condition on the data, there exists a positive
constant 6 independent of T such that

O(x,t) <0 for (t,r) € Qr. (43)

Proof: Multiplying, as in [1], the third equation (3) by nd" ! for n > 1, we
get
4

4
mr—ﬁx) —n(n — 1)/£T—9”_29§ + n@"‘lﬂ[(r%)xP.

o), = [ non1
O < n n n

Integrating on (2

d r L
Q”dx—i-nn—l//i—ﬁn_zﬁfc:n/ﬁnl r20),]?
4 -1 [ 5 [l

i/endxgﬁ/en
dt Jg 8 Jo

Using the inequality

Then

Lo () ‘

B

< C’/r4a§da:,
Lo () Q

after Lemma 3 and Gronwall’s lemma, we get

i RO

L°°(07T;L2(Q))> ‘

Finally taking the 1/n-power and passing to the limit n — oo ends the
proof [

101100y < 116°]17n ) €xP (
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Corollary 1 For any T >0

max/ [(r%)m]? dr < K, max/ Gi dr < K, (44)
[O’T] (9] [O,T] Q
and )

max [(r*v),]” € L'(0,T), max 02 € L'(0,7). (45)
Proof:

1. Inequalities (44) follow directly from Lemma 3.
2. As (r*v), = o, after Lemma 4 and 5, one gets

[(7“21)):,;]2 < Co? < C’/ 7’40926d:v,
Q

implying the first inequality (45), after Lemma 3.
After Lemma 3

1 412 4 2
—/TKWM+/f{GL@)}Mﬁ<K,
2 Q n T n x

which implies directly the second inequality(45), by using Lemma 4 and 5 O

Proposition 3 For any T > 0, the following uniform bounds hold

max [va]lL2(0) < K, I[I(}%dwxﬂw(ﬂ) <K, (46)

and the T-dependent bound holds

. < C(T). A7
max 120 < O(T) (1)

Proof: Bounds (46) follows from Lemma 3.
To prove (47), we observe that the first equation (3) rewrites

o
logn), = —.
(log 1) ;

17



Derivating with respect to z, multiplying by (logn), and integrating on
Q, we get

jt (;/ [(log )]’ dw) = /Q(logn)x (%)xdx = —/Q(logn)xﬁ—;eza dx+/9(log77)x

Then using Cauchy-Schwarz inequality together with Lemma 5, we find

% (5 [1oem.2ac) <suwor [ (o, dov 0 [ 2

1 1
—i——/r%i dx—l——/ [(log )] da.
2 Jo 2 Jo

As, after Corollary 1, supg, 02(+,t) € L'(0,T) for any T > 0, this implies (47)
by applying Gronwall’s lemma [

Proposition 4 For any T > 0, the following uniform bounds hold

T[IOlaXHUtHL? <C, I[%%%{H‘gtHL?(Q) <C, (48)

1(r*0)aell 21 0.7:02(00) < Cy [[0aell 21 (0.7:02(0)) < C, (49)
and the (non uniform) ones
I[I(}é}XH(T Vlaall 2oy < C(T), max [0z 2y < C(T). (50)

Proof:
1. The first equation (3) rewrites

with w = r?v.

We derivate formally this equation with respect to ¢ (this can be made
rigorous by taking finite difference and passing to the limit (see [1])), multiply
by w; and integrate by parts in x

d 1
— (/ —wf dx) +/ alt w ,dr = / 4rwwy <ﬁ wx) dx + / Ar pwwyy dx
dt Q2 Q 7N Q n z Q

18
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/
+/r4ﬁ Orwar W, d:c+/r4ﬂ Wy, d:c—/4m’9t wp w, dw+/47ﬂ wyw, do
o 7N n? Q N

8

6
/gﬁ ww? da:—/ﬂﬁw?’wt dx::ZDj.

Let us estimate all of these terms.

|D1|<C/\wwt0x|da:<0/wwt dx—l—/ o2 dx
Q Q Q
ngaxv2/wt2 dx—l—/r%i dz.
Q

Q Q
| Dy g(]/ | Wiy dxéi/r‘lﬂ w?, dx—kC/wf dx.
Q 3Ja M Q

|Ds| < C/ |Oswepw,| dr < E/TAH w?, déE+C/ 0? du,
Q 3Ja 1 Q

where we used Proposition 3.

|Dy| < C/ wi\wzt\ dr < Cmaxwi/ |wee| do < Cmaxwfc (1 + / wfct dw) )
0 Q 0 Q 0
|Ds| < /|wt9th| dr < (/ wf da:—l—/b’f dw),
Q

where we used Proposition 3.

| Dg| < C/ lwy|w? dr < Cmaxwi/ |wy| dr < C maxw? (1 + / w? dw) :
Q @ Q @ Q
|D;| < C | w?|lw| dv < Cmax |0’ [ w? da.
Q @ Q

|Dg| < C’/ lwaw?| do < C(max\vo\)?’/ w? d.
Q Q@ Q
So finally

CZ(/ 1wt df'f) /94/;w dz < f(t)+g(t)/ﬂ(w,?+9§) dz,  (51)

where f,g € L'(0,T), for any T > 0.
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2. We derivate formally the third equation (3) with respect to ¢ (this can
be made rigorous as previously), and multiply by 6,

<1 (9?) = thmt +‘9t <H ’UJ2) .
2 ¢ Ui ¢

Integrating by parts in z, we get

/ 4.,/
/ 02dx+/ 92d—/ﬁewdw:—/meetendx
Ql Q 7

4
/ﬁwﬁ Hztdx—l—/rﬁwmﬁ Hmtdx—/—wwxﬁtdx—l—/—wwt@tdx— ZE
Q

2
U =1

Let us estimate all of these terms.

4
|| <0/ 10:0:0,¢| dzz < g/ 2, dx+c/9§9§ dz
Q o n Q

/—92 dx+cmax9§/9§ dz.
Q Q

| Es| g(]/ |00, dx < /—92 dx+C/v28§ dx
Q Q

4
gi/ﬁﬁfct dz + C max 62.
3Ja n Q@

|Es] < /\wzé’ 0| dx < /—«92 dx—l—C/wi@g dx
Q

< —/—92 dz + C max 6> max/wg dz.
3 Jo Q 0,7

/
|Ey| < C'/ |w?0,w,| do < —6/ iuﬂﬁf dx+C/ w?w? dx
Q Q Q

/

< —e/ &uﬂﬁf der+C | w? dx,
Ql Q

after Proposition 3.

| Es| SC’/\w@twt| dxéC/ (wi +67) da.
Q Q
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Finally, collecting all of the previous estimates, we get

/ —6? dx—i—/ff— 02, dx+/ﬁ6§w2dx<g(t) <1+/(w§+0§) dx),
anl Q

(52)
where g € L*(0,T), for any T > 0.
Summing (51) and (52), we have
d 1
G |t dt) doe [ (w62 do< gt (1 s [t o dx) |
(53)

which implies estimates (48) by Gronwall’s Lemma. Bounds (49) then fol-
lows.
3. The second equation (3) rewrites

!
1
(r%)m = % vy +% 0, (7’ V)g — 5 nx(r%)m.

Taking the square and integrating on €2, we get

/QW%)ix dr < C /Q (07 + B2[(r*0)a)* + 12[(r*0)a]?) da.

< C/ v? dr + Cmgx[(r%)z]Q / (‘93; + 77:%) dz.
Q Q

So /Q(r%) C/vt dz + C(T )mgX[(r%) 2, (54)

after Corollary 1 and Proposition 3. But

%), < / ()] d,
Q

(0P < C+ 2 /Q (r20),]? da.

Plugging into (54) and taking € > 0 small enough gives the first estimate
(50).
The third equation (3) rewrites

then

1
00— 1% g2 4 779 - L0 + L5+~ 6.
K KT n
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Taking the square and integrating on €2, we get
/ 02, dr < C/ (05 + 62 + [(r*v),]* + 67 + n262) da.
Q Q

Using the inequality [(r*v),]* <4 [,,[(r%v).]? dx - [[(r*v)4.)? dz, and Corol-
lary 1, together with Proposition 3 and the first bound (50), we can bound
the right-hand side, which provide us with the last estimate (50) O

Proof of Theorem 3
1. From the proof of Lemmal3 we have
1/2

0, 1) — e, 6] < |t — £]2 ( / RN dt)

T 1/2
<Ot — 1|2 </ / rto? d dt) <Ot -tV
0 Q

After Proposition 3
o) = (e’ ) < Cla = (14 [ 2 do) < Cla =22
Q

so we find that n € CV2Y4(Qr).
2. From the proof of Lemmal3 we have

T 1/2
10(x,t) — 0(z,t)| < |t — /|2 </ 6> dt)
0

T 1/2
<Ot — 1]V (/ / 210,60, dx dt) <Ol =12
0 Q

After Propositions 3 and 4

T
In(z,t) —n(2,t)| < Clz—a'|*/? (T . max/ 0? dx +/ /Hit dx) < Clz—a'|M2,
0,77 Jo 0o Ja

so we find that § € CY/%1/4(Qr). As we have also after Propositions 4

1/2
0,(2.1) — 0. (D) < | — /|12 ( [ dt) <o =2,
Q

we deduce as in [21], using an interpolation argument of [22], that 0, €
01/3’1/6(QT)-

The same arguments holding verbatim for r?v and (r?v),, we have that
v, v, € CV31/6(Qr), which ends the proof [
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3 Existence and uniqueness of solutions

To complete the proof of strong solution locally in time we apply the idea of
Dafermos and Hisao [6] together with using the crucial Theorem 3. To get
the existence of weak solution we apply method of [14].

3.1 Proof of existence
Theorem 4 Let the conditions on the data
vo, 0y € C*(Q), no € CHV(Q) with v = 1/3,
1gf no(x) > 0, %f Oo(z) > 0,
and the following extra condition of compatibility
Volp=o,m = 0,

be satisfied.
The system of equations (1) together with conditions (3)-(7), where r is
defined in (2) then for t € (0,00), has a solution v,n,0 such that

v,0 € CPHIHS(Q % (0,T%)), pe CHIT2(Q x (0,T7)).

Proof:
We can rewrite our system (3) by the following way
wy = ay(z, t)Wey + byw, + ¢1(z,t)
O = as(x,t)0p + bo(x,1)0, + Co(z, 1) (55)
Nt = Wy,
where
w=r
ar(x,t) = 7‘4%
b, 1) = rt (120 — e )
a(z,t) = —Suw? (56)
az(w,t) = 7’4%
by(z,t) = ”’ffﬂ 417 drk + 7“4%
e, 1) = E(w,)?



From Theorem 3, it follows that

Hai||01/3,1/6 < Nl, ||Ci||cl/3,l/6 < NQ,

il c1/sar6 < Ny + Nyl|nzllcr/sass, for i =1,2. (57)
Applying the Schauder estimates to the solutions (55); 2 gives
||u||c2+1/3,1+1/6 < Ny + ]\76-H7]3EH01/371/67 (58)

||77||02+1/3,1+1/6 < N7 + NSH"];EHCI/B,I/(L

Derivating (55)3 with respect to x and integrating over (0,7%), T* < 1
with respect to t, we get

nallcrrsars < NoTl ™0 waallcrrsase + Nio. (59)

All of the previous estimates give us the following

Hw||02+1/371+1/6(QT*) < Nll, (6())
H9||c2+1/3,1+1/6(QT*) < Nyo,

where N;, ¢+ = 1,...12 are constants.
From the previous arguments and a priori estimates, we know that there
exist subsequences (vg, Nk, Ok, i) such that

e v, — v in LP(0,T* C°Q)) strongly and in LP(0,T*, H'(S2)), weakly
for any 1 < p < o0,

e v, —vae. inQx(0,7%) and in L>(0,T*, L*()) * weakly,

o (v); — vy in L*(0,T*, L*(Q)) weakly,

e 0, — 0 in L*(0,7*,C°Q)) strongly and in L?*(0,T*, H'Q)) weakly,
e 0, — O ae inQx(0,7%) and in L>(0,T*; L?(2)) weakly,

o 1, — 1 in C°(Q x (0,T)),

o r2((ruy),) converge to A in L*(0,T*, H'(Q)) weakly,

. n(n;f)r“ (0x), — Ay in L2(0, T, L*(Q2)) weakly,

[ ]
=

Oy (r?uy) — Az in L>(0,t, L*(Q)) weakly *,
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. —'{(en)’A 0, converge to Ay in L*(0,T*; L*(2)) weakly.

After the definition of r(z,t), one has
t
r(z,t) = ro(z) +/ v(x, t)dt" a. e. Q x (0,T7),
0

then

relet) = el ) = ( (s, 1)ds) 3

> e(x —y) \/(a:,y,t) € Qx (0,z) x (0,77).

Then from the previous computations we get

r(z,t) —r(y,t) = ez —y) \[(z,y,t) € 2 x (0,2) x (0,T7),

and finally
ferk — f rin C°(Q x (0,T%)).

Moreover, it implies that
o 7, — nae. in Qx(0,7%) and L*(Q2x(0,T*)) strongly for all s € (1,00),

o A= (&(r*v),) in L*(0,T% H'(Q)),
o Ay— W@x in L2(0,T*, L*()),

(r?v), in L°°(0, T, L*(Q2)),

[ J
N

)

I
Si=

o Ay ="(r?), in L0, T%, [3(2)).
So we can pass to the limit in the weak formulation of (1), and (1)3, and we

get a weak solution of (3).

3.2 Proof of uniqueness

Let n;,v;,0;, i = 1,2 be two solutions of (3), and let us consider the differ-
ences: N =1, — 19, 0 =61 — b6y and v = v; — vs.
The following auxiliary result holds
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Proposition 1

\r?-—r?\<<1/kn2——nndx.
Q

Proof. from the definition of r(z

(z,
@—W—%Wﬂ(@w3
mym=3 (3 — pd) = Mypm=33 [Ty —iy)ds < ¢ [ (9 — m)da,

t), we see that

where
1< <cri=ri+e(ra—ry) O

Now, we subtract (3)s for n2,w2,62 from (3)y for ny, wy, 0 (w1 = rivy, wy =

r3vy) in order to get

Jo(wo — wy)¢ do = —{ Jollrg —11) ‘“w + 2=t ’“mwlz}%daj}

21

-{Lmﬁ%wrwm»+%wz w?) + 2t} g.da.
(61)
Setting ¢ = wy — w; we obtain

ld w? 4#2 2
5% dx—k/ﬂ 2 —(wy)* = E_ I;, (62)
where

o I = [ {(r; — r‘f)‘;lwlxwwdx
o I, = |, 4”1”; n’flmwlrwmdx,

o Is= |, %(w% — w?)w,dr,

’I“ ’I“
o [, = fQ 13 32 wlwxdx

Then it follows that
L ool + fy bt Plde <

< c<||77||2(||(?a01)ac||2 + [ (w1)ell2 + [ (w1)awll2)[well2 + ([[(wi)ell2 + ||(wz)mllz)l|wllzllwmllz>,
(63)
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where ¢ is a constant.

Now substracting (3)3 for 7o, w, 85 from (3)3 for ny, w, 01 (wy = rivy, we =

r3vy) in order to get

fgcv(%—el)twdxz—{fg{mwz—enﬁ S (1 — 1) (61)o bhadot

2 n1m2
Jof5 m L(ry —11)(61), + M( O )ofthada}+
+ Jo {2 (w2 — wi)a(wr + w2), + %(wl)ﬁ + B2 (wy)7 o da.
(64)
Setting ¢ = 05 — 61 we get the following estimate
A3 [ 1617 + do [, O (0 — 2)2dx < 300, i, (65)

where

o T = Jo Sy — 1) (01)0}0,da

Q mne

Jo = [, 2 (ry — 1)) (6)),0,dx

° m
o Jy= [, %(91) 0,dx
o Ji=J, ™ B2 ((wy — wy)x (w1 + we)0dz

fQ M2(771 72) ) Odr

271

[} J@' = fQ M(wl)iﬁdx

m

Assuming that p € C?(RT) then

43 Jo 10Pde + o =202(0,)2dw < {di[[nllall[|(62)aell2 + dallnlla ]| (B1)xll2 + ds 10112161 )aell2} 1621+
{dallwe|l2([[(w2)zl2 + [[(w1)all2) + dsl[nll2ll (wi)aell2 + dsllnl2]l(w1)ezll2 ]2,

(66)
where d;, ©+ = 1,..6 are constants. From continuity equation it follows that

a3 < llwall2lmll2- (67)
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Finally, wy — w; = r?(vy — v1) + (r3 — r})v; and using (55), it implies

vt Jo [W?ldz + [ \7”3’;5 (r3ve)?|dz < D||v?[l2 (68)

Putting together previous estimates it implies the uniqueness of the prob-
lem.

4 Asymptotic behaviour
We partially use the technique developped in [10].

Lemma 6 There exists a positive function ® € L*(R,) such that

% <l 02+ G)de < O(b). (69)

Proof: Multiplying the second equation (3) by v, adding to the third equa-
tion (3), multiplying the result by the energy % v? + 0 and integrating on (2,

we get
L V246 2d —_/( e ) l 210 d
3d ; 2 T Qq V0 ), 2v z.

Integrating by parts

1d L _2 Mz 2. 12
5q ( v+6) dx+/ 07 dx +/Q77 [(r7v),] dx

3
—/qvvz dw+2/,u—( V) dx—/a@zr% da:::ZFj.
Q Q

j=1
Let us majorize the right-hand side.
By using Cauchy-Schwarz

4
|F1\<C'/i(9idx+6'/vzdx
QN Q

C’/ — 02 dx—l—C’/ r [(r*v),])?dz + C max 2,
ol @
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and finally

4
|m<c/ﬂiﬁm+c/ﬂwmﬁm
o N ol

|Fy] < C/ r [(7“21)):,;]2dx+0/ pn® dz < C/ 1 [(r?v),]2dz+C max(r?v)?.
o] Q ol @

Then

R <C / E (70), )2 da
i

Finally

|Fy] < c/wﬁ\m c/——Wm+C/HW%M%x
of

Applying Lemma 2 to these bounds ends the proof [J

Theorem 5 The solution of the problem (3)(4)(5) has the following proper-

ties

1.

3.

There exist a constant K, depending only of the physical data of the
problem and the initial data such that for any t > 0

[o(-, )]l o) < Koe™™, (70)
where \, = 21}3‘2‘%@
Moreover when t — 0o
[o(-, )l[c) — 0, (71)
When t — oo
H9C t) = bllc@ — 0, (72)

where O = 17 [, (% 24 00) dz.

When t — oo
[7:(, Ol £20) — 0, (73)
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Proof:
1. From Lemma 1, 4 and 5

jt/ 2 dr + 2M7;9> /Q[(r%)z]%lw < 0.

As |ro| < [, |(r*v)g|dz, we get

SO

K,
7 vdw+ /vdx

which gives (70).
After Lemma 3, we know that

d [ p
=y [(rv),)? dz € LY(R,),

which implies that ||v(-, )| g1 — 0 and then (71).
2. Revisiting the proof of Lemma 6, we get

1d 2 K 2 2
oW < 2+0-0 ) dx—l—/ o dx—i—/ﬂn ?[(r*v),)2d

v3 i
— [ quu, dx + 2/ p— (r*v), dx — / o0,r%v dx =: F..
/Q Q T Q Z ’

j=1
First we observe, after (70) and (71), we see that

F(t) := /Q M 1(20),2de < C /Q [v? +v2] dz — 0,

rin

as t — o0.
By using Cauchy-Schwarz

1 4
|F1\<—e/i9§dx+06/v£dx.
3 Jan Q

|Fy] < —l—C’/v dr < —i—C’mng
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But as v* < [, 2[vv,| de < C (fQ v2 dx)l/Q, we have

|Fy| < F(t) +C/ v? dx.
Q

Finally
| F| \—e/—«92dx+CF()

Collecting all of these bounds we find

Ld 1 2 H 2, 12
<
oW < 2400 ) dx+/ 07 dx +/Qr477 [(r7v),]) " de < G(t),

where G(t) — 0, as t — oc.
Now integrating with respect to y the equality 0(x,t) —0(y,t) = f; 0, dx,

we get
Kt 1/2
O(x,t) — 0 <M (/ —0, dx) ,
QN

MQﬁ krd
0—0.)° dr < /—Qxdx.
IS Rin®) Jo 7

The left-hand side of (74) rewrites

1d 1d [, 1d ,
1d 6 de+ =2 [ (0-6.) dr.
Y v dx—l—zdt Qv C ) x+2d ( )" dx

which implies

Multiplying the second equation (3) by v* and integrating by parts, we have

d
pr v dzx = —4/9(7’2213):,;0 dz,

which gives

Ci/vda:

then using (70) and (71), we have

d
dt/vdx
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as t — oo.
In the same stroke, multiplying the second equation (3) by vf and inte-
grating by parts, we have

d
— [ v*0 dx = / (—2vv,q + 0v*(r*v), — 2(r*vf),0) da.
dt Jo 0

i/zﬂedx <16/"°—T49 dr + H(t)

Collecting all of the previous estimates, we get finally

Then

1d 9 R3k(0) / 9
—— - + — < (1),
5 Q(9 Os)” dx e 9(9 0s)” dx (t) (75)

where U € L'(R,) and ¥(t) — 0 as ¢ — oo. Integrating this differential
inequality, we get

RAk(0) t Rik)
/(9—900)2@ <e t/ (6° —900)2dx+/ e Tp(s) ds.
Q Q 0

As the last integral converges to zero when ¢ — oo due to the dominated
convergence theorem, we get that ||6(-,t) — 0| z2) — 0.
After Lemma 3, we know that
d [ rK?

t— — z de e YR
_>dtQT] T € (+)7

which implies that ||0(-,1) — O ||u1 (@) — 0 and then (72).
3. Clearly (73) follows directly from (71) O

Remark 1 An asymptotic result for the specific volume n would easily follow
from a uniform-in-time bound for the gradient ||n;| 2. Unfortunately the
result of Proposition 3 is not sufficient for this purpose. This fact seems to
be a consequence of the pressureless model with variable viscosity.

5 The constant coefficient case
In order to check Remark 1, we briefly study the case where p and x are

constant (after (7), notice that this case is not strictly included in the previous
study).
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1. One checks first that the energy estimates of Lemma 1 and the point-
wise bounds of Propositions 1 and 2 for v and 6 are valid. Lemma 2 also
holds provided that the multiplicator K is replaced by 6.

2. The proof of Lemma 3 is modified as follows.

One checks fist the analogous of (33)

% Q% [(r?v),]? dx + /Qr‘laidx < (/Q %[(r%)gf dw)2, (76)

which gives the first bound (25) and (26).
Inequality (38) is replaced by

1d [ rK2

s, [(%%%)Idm/ﬂf%w o
([ do fo[ () ] o
U5 (e

(

As [(r*v),]* < C [y0? dz [,r*o2 dx, using (76), we get the second bound
(25) for €3 small enough.

3. Uniform bounds for  and 6 (Lemma 4 5) and for (r?v), and 6, (
Corollary 1) are proved as previously and the bound for 1, may be improved
as follows.

As the second equation (3) rewrites p(logn)e = (), + 2% 2” , we have

r2

2

%% [ (logn). —ﬂ dw:/% [u(logn)x—:—g} dw.

So if X(t) := [ [n(logn). — %]2 dz, we find the differential inequality

d
dt

where F' € L'(R. ), which implies that Y (¢) < C, and using energy estimate
we have finally the uniform bound

7] L20) < C. (79)

This allows us to improve Theorem 5.

Y(t) < F(H)(1+Y(1)), (78)
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Theorem 6 The solution (v,0,n) of the problem (3)(4)(5), for u = Cte and
k = Cte satisfies (70) (71) (72) and (73). Moreover, when t — oo

1n(-,t) = Nsllo@) — 0, (80)
where o = 55 [o,n° d.

Proof: Only the last item has to be checked. After (78) and (79) we have
— logn).|” dz
| (G | oz

/ n2dr — 0 when t — oo. (81)
Q

dt < C,

implying

Now one observes that there exits a £(tf) € Q such that n(£(t),t) =
17 Jom°(x) dx = ne. Then one gets

n(est) — n(€(t), 1) = /g o d,

1/2
n(z,t) = nee| < C (/ U dw) :
Q
which gives (80) after (81) O

and so
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