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Abstract. Vacuum spacetimes admitting a non-twisting multiple Weyl aligned
null direction (WAND) are analyzed in arbitrary dimension using recently
developed higher-dimensional Newman-Penrose (NP) formalism. We determine
dependence of the metric and of the Weyl tensor on the affine parameter r
along null geodesics generated by the WAND for type III and N spacetimes and
for a special class of type II and D spacetimes, containing e.g. Schwarzschild-
Tangherlini black holes and black strings and branes.

For types III and N, all metric components are at most quadratic polynomials
in r while for types II and D the r-dependence of the metric as well as of the Weyl
tensor is determined by an integer m corresponding to the rank of the expansion
matrix S;;. It is shown that for non-vanishing expansion, all these spacetimes
contain a curvature singularity.

As an illustrative example, a shearing expanding type N five-dimensional
vacuum solution is also re-derived using higher-dimensional NP formalism. This
solution can be however identified with a direct product of a known four-
dimensional type N metric with an extra dimension.

1. Introduction

The null frame Newman-Penrose (NP) formalism [1, 2] is a very useful tool for
constructing exact solutions of the four-dimensional general relativity. Although the
number of equations is considerably larger than in the standard coordinate approach
(note, however, that many equations in the NP formalism are redundant, see e.g. [3]
and references therein), all differential equations in this formalism are of the first order.
Another advantage is that one can also use gauge transformations of the frame in order
to simplify the field equations. This is why the formalism is especially powerful when
studying algebraically special solutions according to Petrov classification, since in this
case some frame components of the Weyl tensor can be set to zero by choosing an
appropriate frame.

In recent years solutions to the higher-dimensional Einstein field equations have
attracted a lot of interest. Lot of effort went into generalizing basic concepts,
properties and results of the four-dimensional general relativity to higher dimensions
and there is growing awareness that higher-dimensional gravity contains qualitatively
new physics (see e.g. [4] and references therein).
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Generalization of the Petrov classification and of the NP formalism to higher
dimensions was developed in [5, 6], [7, 8], respectively. Using these methods, it
can be shown that in contrast with four dimensions, Goldberg-Sachs theorem is not
valid in higher dimensions since multiple Weyl aligned null direction (WAND) in
higher-dimensional vacuum algebraically special spacetimes can be shearing [7, 8].
For example, while in four dimensions expanding vacuum type N and III spacetimes
are never shearing, in higher dimensions they are always shearing [7]. This presence
of shear in higher dimensions can substantially complicate the process of solving the
field equations.

In the present paper we apply the higher-dimensional NP formalism to the
study of vacuum spacetimes admitting a non-twisting and (possibly) shearing multiple
WAND and thus belonging to Weyl types II, D, IIT or N [5, 6]. After introductory
remarks and necessary definitions, in Sec. 3 we study dependence of the metric of the
above mentioned classes of spacetimes on the affine parameter r along null geodesics
generated by the multiple WAND. It is also pointed out that in fact main results of this
section apply also to a special subclass I(a) of the type I. In appropriate coordinates,
the r-dependence of all components of the metric except of the component goy turns
out to be at most quadratic in r. The component ggg is again quadratic in r for types
IIT and N and more complicated for types II and D. These two cases are thus studied
separately.

In Sec. 4 the r-dependence of ggg and of the Weyl tensor for types III and N is
determined. It is also shown that when expansion 6 # 0 these spacetimes are singular.
In type N the second order curvature invariant I = C¢4rsC,,, ., CUOCC 0,
diverges in arbitrary dimension at a point which can be set to r = 0. Similarly, a first
order curvature invariant is used for type III expanding spacetimes.

In Sec. 5 we determine the r-dependence of ggg and of the Weyl tensor for types II
and D. Since the problem of solving corresponding differential equations in arbitrary
dimension seems to be too complex, we focus on a special case with all non-vanishing
eigenvalues of S;; being equal and ‘antisymmetric’ part of the Weyl tensor <I>;4j being
zero. These assumptions are satisfied for example for all non-twisting Kerr-Schild
spacetimes [9], in particular for Schwarzschild-Tangherlini black holes or corresponding
black strings/branes. It also seems to be reasonable to expect that the Weyl tensor
in the case with distinct eigenvalues of S;; and <I)Z-Aj = 0 will have the same behaviour
in the leading order asymptotically thanks to (3.1).

It turns out that the r-dependence of ggo for Weyl types IT and D is determined by
an integer m corresponding to the rank of the expansion matrix S;;. In the expanding
case, apart from a quadratic polynomial in r, goo also contains a term proportional
to r1=™ for m # 1 and Inr for m = 1. } Using similar arguments as in [9] it can
be shown that in the expanding case the Kretschmann curvature invariant RpeqR**°?
diverges for r = 0 and that it is regular there in the non-expanding case. We also
briefly discuss the shear-free case which occurs for m = 0 (Kundt spacetimes) and for
m = n — 2 (Robinson-Trautman spacetimes). In contrast with the four-dimensional
general relativity, in the m =n — 2 > 2 case, boost weight —1 and —2 components of
the Weyl tensor necessarily vanish and the spacetime is thus of type D in agreement
with [10].

In sec. 6, in order to provide an illustrative example of the use of the higher-
1 Note that since we do not employ all field equations of the NP formalism, it may in fact turn out

that solutions corresponding to the case m = 1 do not exist. In four dimensions the case m =1 is
forbidden by the Goldberg-Sachs theorem.
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dimensional NP formalism, we focus on solving the full set of the field equations
for type N. To considerably simplify resulting equations, we make several additional
assumptions on the metric and we arrive to an exact vacuum solution. However,
after a coordinate transformation it can be found that the resulting solution could be
obtained as a direct product of a four-dimensional type N Robinson-Trautman metric
with an extra dimension.

The higher-dimensional vacuum Ricci [8] and Bianchi [7] equations, extensively
used throughout this paper, are given in a parallelly propagated frame with a multiple
WAND in Appendix A and Appendix B, respectively.

2. Preliminaries

2.1. Algebraic classification of the Weyl tensor and Newman-Penrose formalism in
higher dimensions

For convenience, let us briefly summarize basic aspects of algebraic classification of
the Weyl tensor and the Newman-Penrose formalism in higher dimensions needed in
the following sections. More information can be found in original references [5, 6]
(classification) and [7, 8] (NP-formalism). Algebraic classification of the Weyl tensor
in higher dimensions was also reviewed in [11].

We introduce a null frame with two null vectors m) = m) = £, m©) = myy =
n, and n — 2 orthonormal spacelike vectors m(? = m;) subject to

(90, = nn, = £4m) = n*m{) =0, Ling =1, mDim) = §,;. (2.1)

The metric reads

Gab = 2€(anb) + 5ijmgi)ml()j). (2.2)
Indices a, b, . .. take values from 0 to n—1, while 4, j, ... from 2 to n—1. Note also that
since indices 4, j, ... are raised/lowered by d;; there is no need to distinguish between

subscripts and superscripts of this type.
Lorentz transformations are generated by null rotations

i=¢, n=n+zmi— %223, m® =m) — 20, (2.3)
with 22 = 2z;2%, spins

i=¢, A=n, m® = X\ m), (2.4)
with X ij being orthogonal matrices and boosts

2=\, i =\"'n, m® =m®, (2.5)

If a quantity ¢ transforms under a boost (2.5) as ¢ = A\’q we say that ¢ has a
boost weight b.

The Ricci rotation coefficients Lgy, Ngp and ]\24 b are defined by [7]

Loy = Lcdmff)méd) , Ngsbp = chm‘(lc)méd) , maz)b :]\146(1 mff)m,()d) (2.6)

)

and their transformation properties under (2.3)-(2.5) are given in [8]. These quantities
satisfy constraints

LOa = Ny, = 0; (27)

i i i J
NOa + Lla = Oa Moa +Lia = 07 Mia +Nia = 07 Mja + Mio= 0. (28)
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i
In four dimensions, L., Ngp and M, are equivalent to standard complex NP spin
coefficients , o, p, etc. (see [8] for the correspondence).

Covariant derivatives along the frame vectors are defined by

D = (°V,, A =nV,, §; =mev,. (2.9)
By introducing notation
Tiparsy = 5(Thavljea) + Tied)fat)), (2.10)

we can decompose the Weyl tensor and sort its components by boost weight [6]
2

Caved = 4Coio; n{am n m(j)}

1

+8Co104 n{agbncm(j)} + 4Coijk n{am(bi)mmm(ﬁ

@,,G), k), (

+400101 n{agbncgd} + 40011] n{aﬁbm( )m(d)} }0
+8Ci1; MM E md} + Cijkl m{amb mY md)}

-1

+8C101: L1l md} +4C1ik £ gm (Z)m(g)m(dk%

-2

+4clilj£{a )6 mj)},

where boost weight of various components is indicated by integers (-2,...,2). Note

that frame components of the Weyl tensor are subject to constraints [7] following
from symmetries of the Weyl tensor

Cofiolj] = 0,

Coijr) = Coijr + Corij + Cojki = 0,

Cijkt = Cyijrry,  Cijrt + Cujr + Cirag = 0, Corij = 2Co[i|115

Crigik) = Criji + Cigij + Crjrs = 0,

Cipipgy) =0 (2.11)
and from its tracelessness

Coioi = Cri1i = 0,

Co10i = Cojij,  Croti = Cujijs

2Coi1; = Corij — Cirjr,  Coro1 = *%Cijiy (2.12)

We obtain following numbers of independent Weyl tensor frame components of various
boost weights [7]

2,—-2 1,-1 0

5 <n(n2—3)) +2((n—1)(n—2)(n—3)> N (n—2)%(n—1)(n - 3) L (n=2)(n-3)

3 12 2 ’
which is in agreement with number of independent components of the Weyl tensor
being (n + 2)(n + 1)n(n — 3)/12.

We define boost order of a tensor T' to be boost weight of its leading term. It
turns out that boost order of a tensor depends only on vector £, being independent
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on the choice of n and m® [6]. Therefore, given a tensor T, preferred null directions
may exist for which boost order of T is less then for a generic choice of £. Algebraic
classification of tensors in higher dimensions [6] is based on existence (and multiplicity)
of these preferred null directions in a given spacetime. In case of the Weyl tensor,
we call them Weyl aligned null directions (WANDs) and spacetime is said to be of
principal type G (general) if there are no WANDSs, and of principal type I, II, IIT and
N if there are WANDS of multiplicity 1, 2, 3, 4, respectively. Therefore in type I, 11,
IIT and N spacetimes all Weyl tensor components with boost weight higher or equal
to 2, 1, 0, -1, respectively can be transformed away by an appropriate choice of the
frame vector £. In some cases one can also set trailing frame components to zero,
and this is the basis of the secondary classification. For instance in type D (principal
type II, secondary type i), only boost weight zero components are non-vanishing in an
appropriately choosen frame. In four dimensions principal and secondary classification
reduce to the well known Petrov classification.

In agreement with [7] we introduce notation appropriate for type III and N
spacetimes

U; = Ciori, Yk = 2C1kij, V45 = 1Cuay, (2.13)
where from (2.11), (2.12) ¥;, ¥;;, and ¥;; satisfy
Uy =2W55, Wi =W, Wyp+ Vrij+ Vi =0, Wy =Ty, Uy =0.(2.14)
Thus e.g. in type N spacetimes, the Weyl tensor is given by

Cabea = 8Wi; Lgym'y £,m') (2.15)
and is determined by w components of the symmetric traceless (n — 2) x (n — 2)

matrix W;;.

For describing boost weight zero components of the Weyl tensor we will introduce
real matrix ®;; as in [12]

(I)ij = Coﬂj. (216)

Then from (2.11), (2.12)
Corij = 2Copi 5 = 2955, Cogpny) = 5 = —3Ciin, Coron = —5Ci5i = ®,  (2.17)
with @fj, @{}7 and ® = ®;; being the symmetric and antisymmetric parts of ®;; and
its trace, respectively. Boost weight zero components of the Weyl tensor are thus
determined by ®;; and Cj;.

2.2. Spacetimes admitting non-twisting WANDs

We consider an n-dimensional vacuum spacetime admitting a non-twisting null
congruence generated by a multiple WAND £. Thus £ is normal and tangent to null
hypersurfaces u =const (g*°u,q u,, = 0, a,b=0... n—1) and the WAND /¢ = g%y,
is necessarily geodetic and affinely parameterized, £%;, £° = 0.

Similarly as in [1, 10], we choose a coordinate 2° = u, a coordinate x' = r, where r
is an affine parameter along null geodesics generated by £, and ‘transverse’ coordinates
z® (o = 2...n — 1) labeling the null geodesics on hypersurfaces u =const and being
constant along each geodesic. For the contravariant components of the metric tensor it



Vacuum spacetimes with a non-twisting multiple WAND 6

follows that ¢g°! =1, g% = 0 = ¢g°*. Then the frame £, n, and m(¥) = m;) satisfying
(2.1) can be given as

¢ =[0,1,0,...,0], ¢, =][1,0,...,0], (2.18)

n® =I[1,U,X°], ne =[V,1,Y,], (2.19)

miy = [0,wi, 7], mg) = [, 0,15, (2:20)
Egs. (2.1) implies

0 =U+V+X°Y,, (2.21)

0 =w +&'Y,, (2.22)

0 =0 +n,X* (2.23)

&1 = &, (2.24)
By multiplying (2.24) by 17}3 we get 6557% = 772, = (77’555")7%y which gives

85 = &M, (2.25)

Since £ is geodetic and affinely parameterized, L,y = 0 = Lqg. Let us choose a

frame that is parallelly propagated, i.e. N;g = 0 :]\Z/_[jo. For geodetic £, L;; can be
decomposed [7] (cf also [8]) into shear o;; (trace-free symmetric part), expansion 6
(trace) and twist A;; (antisymmetric part) as

Lij =0 + 951] + Az] (226)
We will also often denote symmetric part of L;; as expansion matrix S;;. Obviously
Sij =0 + Héij.
When acting on a function f, the operators (2.9) and their commutators [13] can
be expressed as

D=0, A=0,+Ud + X, 6 =widy+E0n (2.27)
and
(AD = DA)f = LuDf + Liidif, (2.28)
(6:D = D6,)f = LuDf + Lyid, f, (2.29)
(0 A=N6)f = NaDf + (Lix — L) & f 4 (Nji— J\Z4j1)5jf7 (2.30)
j i
(0i05 — 0504)f = (Nij — Nji)Df + (Lij — Lji) A f + (Myi — Myj)Orf. (2.31)

Apart from Bianchi equations [7] and Ricci equations [8] we need relations between
metric components and the Ricci rotation coefficients. Such relations may be obtained
by applying the commutators (2.28)—(2.31) on coordinates u, r, x*. For f = u, (2.30)
and (2.31) imply

0= Ly — L, (2.32)
0= L;; — Lj;. (2.33)
For f =r, (2.28)—(2.31) lead to
—DU = L1 + Ljw;, (2.34)
—Dw; = L1; + Ljwj, (2.35)
0;U — Aw; = N;1 + (Nji* ]\;[jl)wj, (2.36)
J i
diwj — 0jw; = Nij — Nji + (Mpi — Mij)wk, (2.37)
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and for f = z%, (2.28)—(2.31) give

—DX®* = L&, (2.38)
=D& = L&, (2.39)
6 X = A = (Nji— Mj1)Ef, (2.40)
J i

0:€f — 0;&" = (Mri — Mij)&k- (2.41)

2.3. Indices
For convenience let us summarize types of the indices used throughout this paper.
Apart from indices a,b,...=0,...,n—1,and i,4,... = 2,...,n— 1 introduced in Sec.
2.1, we also introduce indices «, 8 = 2,...,n — 1 numbering spacelike coordinates and

corresponding components in Sec. 2.2.

In four dimensions, expansion matrix S;; is of rank 2 in the expanding case due to
Goldberg-Sachs theorem. However, in higher dimensions m < n — 2, where m is rank
of S;;. In next sections we will often need to distinguish between indices corresponding
to non-vanishing (o0,p,q,s = 2,...,m+1) and vanishing (v,w,y,z =m+2,...,n—1)
eigenvalues of ;.

In following calculations it also turns out to be practical to modify Einstein’s
summation convention for indices o, p, g, s: in an expression there is summation over
repeated indices if there are two indices without brackets among them (thus e.g. in
ngonzoX’Bo (r+ a(p))2 there is summation over p while in ®,,5(,) we do not sum over

p)-

3. Radial integration for non-twisting vacuum Weyl type 11, D, ITI, N
spacetimes

In the present paper we study r-dependence of the metric functions, the Ricci rotation
coefficients and the Weyl tensor, which, however, is in general different for various
algebraic types. In order to avoid repetition, in this section we focus on those metric
functions and Ricci rotation coefficients that have the same r-dependence for all
algebraic types studied. Note that in contrast with sec. 5, here we do not assume that
all non-vanishing eigenvalues of the expansion matrix S;; are equal.

Without loss of generality we choose the frame (2.18)—(2.20) in such a way that
Si; is diagonal, S;; =diag{s(2),..., S@m+1),0,...,0}, where m denotes number of
non-zero eigenvalues of S;;. As is shown in [14], this assumption is compatible with
the frame being parallelly transported. As mentioned in sec. 2.3, indices o, p, q, s
corresponding to non-vanishing eigenvalues of S;; run from 2 to m + 1 and indices v,
w, ¥y, z corresponding to vanishing eigenvalues of S;; run from m +2...n — 1.

In our case, from Ricci egs. (A.7) for non-vanishing eigenvalues of S;j, s¢,) # 0,
it follows

1

Tt ag,

S(p) =

where a?p) is an arbitrary function of u and x®, independent on r. Similarly,

throughout the paper, the superscript ©°

consideration does not depend on r.

will suggest that the function under
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Ricci egs. (A.2)=(A.5), DL1; = —L1;5(;, lead to
9,

Llp = g
r—+ aip)

. L, =19, (3.2)

There is still freedom to perform a null rotation with fixed £ (2.3). To preserve
parallel propagation of the frame, z; is subject to

Dz = 0. (3.3)
Choosing z, = —1f,, we can set Ly, to zero by (see [8])
lep = Llp + Zijl' = 0. (34)

In what follows we omit the hat symbol. Note that parameters z,, can be used to
further simplify the metric, e.g. one can set w0 to zero as in sec. 5.2.1 and sec. 6.

From Ricci egs. (A.14), reduced to D ]\]/[ki: - ]\j/[kl 5(3i), (2.39) and (2.35), we
obtain
J

. 0 . .
J mkp J 7 0
= P w = Mgy 3.5
Mip 1"—|—a‘()p) Mk k (3.5)
&° 0
o = > =2, 3.6
gp r _"_ a?p)7 w w ( )
W0
wp = po , Wy = —Z(l)wr + wg, (3.7)
T A,

respectively and from (2.38)
X =19 20 4 X0 (3.8)

To compute the covariant components of the metric one has to solve (2.21)-(2.24)
for n*,, Yo, QP, V. From (2.21)—(2.24) using also (2.25) and (3.6)—(3.8), it follows

=0k (r+ag), 0y =ny’, (3.9)
Yo = —nhwi = 13,030 — (0w + 0 wy), (3.10)
O = — b X" = =’ X(r + agy), (3.11)
QY= —pvXx* =1 r—n0x0 (3.12)
V o= U+, (2 +nv0x0)0 r+ Xao(ng%g + 720w, (3.13)

As will be discussed below, the r-dependence of the function U has to be studied
separately for types II, D and III, N.
The covariant components of the metric tensor (cf (2.2)) thus read

g11 =0, go1=1, gia=0, (3:14)
goo =2V + Q' =2V + X0 X (r + agy))?
(U = 80X, — X ), (19

9oa = Ya + ani
0 w w w0, w
= =B X0(r + ag))? + 200, m°r — (nBwp + 00wl + e Ong 0 X0
=v2r? 4 4lr+49, (3.16)

0 a
Gap = ams = R0 (r 4+ a@y)? +12°nE° = Vasr? + Yas” +Vess (3.17)
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therefore the vacuum metric with a non-twisting multiple WAND has the form
ds’= goodu2+2dudr+2(vir2 +ykr+ 'yg)dudx“—i—(viﬁrz + 7(1!/37" + ’ygﬁ)dxadxﬁ,(S.lS)

where functions 'ygﬁ and v, N = 0,1,2, introduced in (3.16), (3.17) do not depend
onr.

Differentiating eq. (2.34) with respect to r and using (2.35), (3.13) and the Ricci
equation (A.1) for Liy, we arrive to

Coi01 = V. (3.19)

Consequently, for type III and N spacetimes (where Cp1p1 has to vanish) V is linear
in r, while for type II and D spacetimes the r-dependence of V' (and hence of U)
can be more complicated. Types II, D and III, N will be thus discussed separately
in the following sections. Note that for deriving the metric (3.18) only assumptions
Coioj = Coi0i = 0 on the Weyl tensor are necessary and it was not necessary to
assume Coy;; = 0. Therefore the metric (3.18) applies also to the special class of type
I spacetimes with Cp1p; = 0 denoted by I(a) in [5]. As for the Ricci tensor, in fact up
to now we have assumed only Rypy = Rg; = 0.

Note that it was shown that for type III and N expanding vacuum spacetimes
m = 2 in arbitrary dimension and that sy = s(3) [7]. If all non-vanishing eigenvalues
of S;; are equal, i.e. from (3.1) s(,) = 1/(r + a®(u,2*)) for all p, one can perform
a coordinate transformation [10] that leaves unchanged null hypersurfaces u =const
and preserves the affine character of the parameter r

7 =74 a’(u,xz%). (3.20)
Then from Ricci eqs. (A.11) (for i =k =gq, j = p)
W= 0. (3.21)

In the following, for simplicity we omit the tilde symbol over r and over absolute

K3
terms, such as wl, X 19, U, m;1°, nY.

4. Type III, N

In this section, vacuum type III and N spacetimes are considered and r-dependence of

the remaining metric component ggo, the Ricci rotation coefficients L1;, N;;, and ]\14 i1
and the Weyl tensor is determined. These spacetimes are either non-expanding (Kundt
class) with m = 0 or expanding with m = 2 [7], where, in appropriate coordinates
5(2) = 5(3) = 1/r, as mentioned above.

From Ricci egs. (A.1) and (2.34) it follows

Ly = — l(l)wl?wr + l?la (41)
U = l(l)wl(l)wr2 - (l(l)l + l(l)wng)r + UO' (42)

For future reference let us note that one can still perform a null rotation with
fixed € (2.3) with z, = 0 for p = 2,3, z, arbitrary and subject to (3.3)

Lip =0, L1y = Liw, (4.3)
L’DP = 03 "A")w = 7l(1)w7' + wg} - Rw = 71(1)11)7" + @2)7 44)
A j

My =Myi +221;Lj)i, (4.5)
& =6, (4.6)
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IA/ 11= L1+ ZZ(LM + Lll) + zz;Lij = l l?wr + l(l)l =+ 2Zwl(l)w = _l?wl?wr + i?l (4-7)
lA] = l(l)wl(l)wr - [l(lJl + llw(w + ZU})] r+ UO + wagu - %szw

- l(l)wl(l)w (lo + llw w)r + UO (48)
By choosing appropriate z,,, w = 4,---n — 1, one can simplify w,,, U or l;1 (see sec.
5.2.1 and 6).

From Ricci egs. (A.10), (A.13)
0
n:
N'L'p = ,Lpa NZ’LU - n?u;a (49)
r
Mji= — m, 10, 7+ mys O, (4.10)

Let us conclude this section by writing down the metric for the Weyl types III,
N. From (3.13), using (4.2), we arrive at

V=, =m0 X — U + X0nw000 . (4.11)
Substituting the metric component
goo =2V + Q" = (B XOX 0 419 19, )r® + 2019, — 219, i X 0] — 2U°
+2X 00000 + nOnsO XX PO = 22 4ty 440 (4.12)

into (3.15), from (3.18) we find that vacuum type III or N metric with non-twisting
multiple WAND has the form

ds?=(v*r? +y r+40) du2dudr+2(y2r? —l—wir—l—vg)dudxo‘—i—('yiﬁﬁ —&—'ygﬁ)da:o‘dxﬂ ,(4.13)

where the functions v, v and 'yivﬁ, N =0,1,2, are introduced in (4.12), (3.16) and
(8.17), respectively.

In fact to derive the metric (4.13) only the following assumptions on the Ricci
tensor have been made: Roo = Ro; = 2Rp1 — R/(n—1) = 0.

Note that in the non-expanding case, i.e. for m = 0, 2 and 'yiﬁ vanish (see (3.16),
(3.17)) and the metric (4.13) is compatible with higher-dimensional Kundt metrics
given in [15, 16]. In the expanding case, i.e. m = 2, the metric (4.13) is compatible
with four-dimensional vacuum type IIT and N Robinson-Trautman solutions (see e.g.
[2]) and with direct products of these metrics with a flat space.

In the following sections we study r-dependence of the Weyl tensor separately for
types N and III.

4.1. The Weyl tensor for type N

In this section r-dependence of the remaining quantities entering the Ricci and
Bianchi equations is derived for vacuum type N spacetimes. In an appropriately
chosen frame there are only Weyl components of boost weight —2, ¥;; = %Clilj.
As was shown in [7], ¥;; can be diagonalized together with S;; and admits a form
U,;; =diag.{p, —p, 0, ---0}. Similarly as in [14], it can be shown that the condition
of both ¥;; and S;; being diagonal is compatible with the frame being parallelly
propagated.
Egs. (A.6) and (B.4) lead to

Nil - 7( uul(l)w)r + rn’?lv (414)
p="2. (4.15)
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As was shown in [13] the curvature invariant

Iy = Ca1b1a2b2;0102 C€1d1€2d2§f1fzc

e1bieaba;f1fa (416)

ardiazda;cica
reduces for non-twisting type N vacuum spacetimes to
In = 36(n — 2)%0%(W,;;0,;)% (4.17)

Iy clearly diverges at r = 0 in the expanding case and therefore a curvature singularity
is located there. The non-expanding (Kundt) case belongs to VSI spacetimes [13], i.e.
spacetimes with vanishing curvature invariants of all orders, and therefore curvature
invariants cannot be used for locating possible singularities.

4.2. The Weyl tensor for type IIT

Now let us examine r-dependence of the Weyl tensor for type III vacuum spacetimes.
In an appropriately chosen frame, there are only Weyl tensor components of boost
weight —1 and —2, i.e. ¥;, ¥, and ¥, , respectively (see (2.13), (2.14)).

Bianchi egs. (B.1), (B.9), and (B.4) read (note that in our case (B.6) is equivalent
to (B.9))

D\I/i = _Q\I’eLei = —Z\I/iS(i), (418)
D\Ifjki = \IfkeiLej — \I/jeiLek = _\Iiji(S(j) + S(k)), (4.19)
2D\IJU — (SJ\I/Z = Q\I/jeiLel — Qq]ieLej + W, Mij . (420)
Equations (4.18), (4.19) imply
\IJO

U, = 75 v, =00, (4.21)

Po Po |

_ 0 _ pwi o pri
Voo = Wi Cpui = =220, Wy = 0 (4.22)

From (4.21), (4.22) and (2.14) it follows
l:[}]m“w = l:[lva = 07 l:[lwrp = \I]wprv \ijvw = \Ilpwva \Ilpww =0= lIlwp;m (423)
Note that some of the Bianchi identities reduce to algebraical equations, studied

in detail in [7]. Here we use results of [7] to simplify the Weyl tensor (4.21), (4.22).
Namely, egs. (54) in [7] for (i = w, j = v, k = p) lead to

\I]pw'u =0 (424)
and for 7, j, k = v, w, z in the expanding case 6 # 0 eqgs. (58) in [7] give

Upwz=0 = ¥, =0. (4.25)

To summarize: non-vanishing boost weight —1 Weyl tensor components for 6 # 0
are (cf (C.20) in [7])

v v
Uy = 2Wo33 = £, U3 =239 = 2,
v v
Wyoo = —Wygz = =222, Wyoz = Wygp = —428,

while for the non-expanding case ¥,, = U9 and ¥,,,, = ¥

From egs. (4.20) in the non-expanding case 8 = 0 the boost weight —2 components
of the Weyl tensor are
(4.26)

vZW wuv?

Wy = 5 (€000, o + 200,10, + 00 7y, 0) + W)
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while in the expanding case with (4.25)
Uy =00, — 209 m,,° (4.27)
Uy =100 — 100 0h,,°

=Wy =00, — (200,90 + 2000 | + 00 11y, 0) + 51500 W0, (4.28)

lw*p w = p?
Wpg = *‘Ij?qultl)w + WE‘Z - #(‘I’g ﬁ”‘pqo + 530‘1’2,&)- (4.29)
Considering V;; = ¥;, we get

v, =9, W, =0 W =V, (4.30)

00 = 120,90 + 2000 4+ 000h,,0),  (4.31)

OO, 0 =00, 0, (4.32)

001, 0 = —wQ WY, (4.33)

WO 1y, + 0000 | =00 g, 0 + €000 . (4.34)

From (A.6) one can also determine the remaining Ricci rotation coefficients
0

Ny1 = (—n?wl(l)v + \Ifguémo)r + ngl, Ny = —ngvl?vr + ngl — % (4.35)
As was shown in [13], the curvature invariant
Irpp = C*01%2%5 0O agenie, CT 2% Oy dybyses (4.36)
can be expressed as (74,[13])S
Irrp = 648* [99* + 279%(Opp + Opr) + 28(Opp + Opr)?] (4.37)
= 4(n — 2)*0* [99* + 279 (Wopa2® + Tuns?) + 28(Tyoo® + Wyo3”)?] (4.38)

where 12 = W,;¥;. Note that all terms entering (4.38) are non-negative and thus
singularity in one of these terms implies that the curvature invariant I;;; is singular.
For non-vanishing expansion this is always the case for » = 0 and thus a curvature
singularity is located there. For type III Kundt spacetimes, the invariant I;;; (and in
fact all curvature invariants of all orders) identically vanishes [13].

5. Type D and I1

5.1. Type D

In an adapted frame, type D Weyl tensor has only boost weight zero components
determined by ®;; and Cjjx, see (2.16), (2.17).

For vacuum type D spacetimes with a parallelly propagated frame and with the
matrix S;; set to a diagonal form, Bianchi egs. (B.3), (B.5) and (B.12) can be rewritten
using (2.16), (2.17), cf also egs. (24), (25) in [12]

QDQ% = — 3‘1’%(5@) + S(j)) — ‘I)iSj(S(j) — S(i)), (5.1)
2D<I)isj = 3‘1’3(8(1) - 8@)) - ‘I)Z‘S;(S(j) + 5(1)) - 2@5(2*)51']‘, (52)
DCijkm = — Prjs(iy0im — Pmis(j)0jk + Pris(j)0jm

-+ @ij(i)(sik — Cijkm(s(m) + S(k))~ (53)

S Eq. (4.37) is expressed using notation of [13], while in (4.38) it is rewritten in terms of the quantities
introduced in the present paper. Note also there is a misprint in eq. (74) in [13]. It was obtained
in Maple using definition ¢ = ¥;¥;, while standard definition, used also in [13] and in the present
paper, is ¢? = ¥, ¥;. Therefore 1 in eq. (74) from [13] has to be replaced by 2.
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Egs. (5.1) imply @4, = ®49  For simplicity let us assume @f‘j = 0 and in what
follows we thus identify ®;; with <I>f; Note that for Kerr-Schild spacetimes A;; = 0
= @;‘} = 0 [9], however, this implication need not hold for general spacetimes. Then
egs. (5.1) yield
Dy = 0, (5.4)
Dpq(5(9) = 5)) =0, (5.5)
thus ®,, = 0 for s,y # s(p)-
From egs. (5.2), (5.5), for p # q and sy = 5y

2D®yy = 0 = Dy = (I)?UU; (56)
2Dy = — Ppg(S(p) + 5(q)) = —2PpgS(p)
0
= =7 +fgp) for p#a, s@) = s (5.7)

Trace of egs. (5.2) together with (5.6) leads to

Do = D(I)pp = _(I)Su - CD7.15(1) = _((I)pp + (I)?uw)Si - q)pps(p)a (58)
while diagonal terms of (5.2) read

D)) = — (Ppp + O + P(p)(p))5 () (5.9)

From now on we assume that s,y = 1/r for all p ||. Then eq. (5.8) reduces to
m 1 0 m®?
D(I):D(I)pp:_(‘l)pp+¢0wqu)7_‘I’pp; = Py = pmAl m—‘:ﬂf (5.10)
and thus
o0 oY
b =— L 5.11
,rerl + m + 1 ( )
Then egs. (5.9) imply
0 o0
D)) = - (rmﬂ toai Tt ‘1’<p><m> S(v)
W 9
= & = PRP) | “ww 5.12
@O = T T T mtd (5.12)

Comparing (5.12) with (5.10) yields

o), =0. (5.13)
Now we can combine (5.12) with (5.7) in

PO PO PO
_ _Pa ww
Ppg = =7+ g (meJrl T mt 1) ' (5.14)

A0

|| In fact under this assumption from egs. (5.1) <I>;;‘q = ®29/r3, however, in what follows we still

assume <I>f} =0.
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From egs. (5.3) for various combinations of indices we get

Cijwr = Ciupus
o)
Cz’jwq = :ﬁ q7 i, ] 7é q,
CO
(9w(q)
Colgyu(a) = —— 2

r

CO
v(g)w(q) 0
Coug =—,— 12

wvs
01(1])1)pq
Cw'upq = 2
0
C _ C’wopq
wopq 2
F,.(r) iy
_ 0ot m ww
Csopq = —2(0spdoq — dopdsq) (q) 2 + 2(m + 1)
Clopy 1 Y 5pq + D0 55y — BY Gsy — POL6
+ r2 +;( ps 0q+ qo”sp T FpoYsq T Fgs 01’)7
where
1

Fm(’f') =—Inr for m= 1, Fm(r) = W

for m # 1.

14

(5.15)

(5.16)
(5.17)
(5.18)
(5.19)

(5.20)

(5.21)

(5.22)

Note that some of the equations (5.15)—(5.21) are not compatible with symmetries of

the Weyl tensor unless corresponding components vanish, thus
Cupoe = Cozup = 0,
Cwopg = Cpquv = 0,
Cuwopg = Cpquo =0
and from eqgs. (2.11) and (5.24)
c0 o

vpwq vqup*

(5.23)
(5.24)
(5.25)

(5.26)

Let us point out that for expanding type D (and in general not for type II)

spacetimes, Bianchi eqs. (B.6), with ®° # 0, lead to

9, =0.

(5.27)

However, we will not use this relation further in this section in order to obtain

expressions valid also for type II.

Using the identity ®;; = f%C’ikjk (2.12) for the Weyl tensor we arrive to

Ot(z]p'wp =0,

C?uzvz = = (m + 2)(1)(1)01)’

Cgoqo =0 for m#1,

®° =0 for m=1,
0 _ 0

Copwg = —mPp,.

Note that when m = n — 2 (i.e. there are no ‘w-type’ indices), then

thus from (5.32) ®9 = 0.

CO

pwqw

Q.

=0 an
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To summarize: non-vanishing boost weight zero components of the Weyl tensor
for type D (and II, see sec. 5.2) vacuum spacetimes with non-twisting multiple WAND
under assumption <I>A =0 are ®,, and ®,, given in (5.6), (5.14), respectively,

Cowyz = Cuyz: (5.33)
Copwg 0

Cvaq = r + q)wvapqa (534)

and Clopq given in (5.21) with (5.22), subject to (5.13), (5.26), (5.28)(5.32).
From Ricci egs. (A.1) and (2.34) with (5.11)

L= (l(l)wl(l)w + mi_t,_l(pqomu) (535)
U = (Bl + sy @) 1 )+ 89 4 00 (5.36)
and from (3.13)
V = — g @uw” + (111 — 6" X0) = @O Fy(r) — U° + X005 wy,. (5.37)

Then the metric component gog (3.15) read
900 = (= Gy P + 10X Oy X0 4 19,19, + 20 (13, — 200, m° X *0)
o Q(DOF ( ) - 2U0 4 2Xa0'l7w0(.d0 4 n’waaO ’wOX,BO
= (ry — (m_H)(I)O )r + 4t +40 = 20°F,, (r), (5.38)

where 4V, N = 0,1, 2 are defined in (4.12). The metric for type D vacuum spacetimes
with a non-twisting multiple WAND then has the form (3.18) with (5.38), (3.16),
(3.17) with a?p) =0 and 9, = 0. Note that (5.38) is valid for type II spacetimes as
well (see sec. 5.2).

Let us now examine the Kretschmann scalar in vacuum

Rapea R = 4R%, 1 + RijriRijrr + 8Roj1iRoi1j — 4Ro1ij Rovi

= 49?4 CijpCijp + 805 ®F — 240507 (5.39)
As was pointed out in [9], under the assumption <I>Z-j = 0, it reduces to a sum of
squares. Thus if any term ®°, ®,,°, C9,,, or C3, . is non-zero, then there is a scalar

curvature singularity at r = O.
Note also that for asymptotically flat spacetimes the Kretschmann scalar vanishes
for r — oo and thus in this case

P =0=CY (5.40)

woyz®

5.2. Type II

Apart from boost weight zero components of the Weyl tensor, in type II spacetimes
boost weight —1 components, ¥;, ¥;;;, and boost weight —2 components, ¥;;, also
appear (see (2.13), (2.14)). However, these negative boost weight components do not
enter Bianchi equations (5.1)—(5.3) and thus assuming again s, = 1/r for all p and
@f‘j = 0 all results obtained in sec. 5.1 for type D spacetimes except of (5.27) are valid
for type II spacetimes as well.
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In order to determine r-dependence of negative boost weight components of the
Weyl tensor, we analyze Bianchi equations (B.1), (B.6), (B.9) and (B.4), which can
be rewritten as

D\I/l - (Slq) = —2\1118(1) - CI)Lil - (I)?];Lk]_, (541)
2D, = Q\I/ijks(k) + 2\1/[1‘5]']1«9(]@) + 2(I)£’[iLj]1 — Cruij L, (5.42)
l l
2DV i + 25[k<1>f]i =2Upi50) — 2% ki S (1) +2<I>5€” M5 —2®5 My, (5.43)
l
2D\1]” - A(I)Z — (Sj\I/l - —2\I/ij8(j) + 2\I/jliLll + \Ill sz +®N2]
S s o s ol
+ (I)liNlj + ijl Mi +(I)li Mij1 - (5.44)
Using previous results, from (5.41)

B = [ (€000 0 —12,0%,) — 00,8,] + 08

m—+1 vUIX lw ~vv
— (19,2%m + €200, ) ke + i, @0, (5.45)
o et mF,, (r

v, = 2(rnl+1)£p0q)?uwaa +%2\I/2 - fpoq’oaa T() (5.46)
and from (5.42)
Vg = Ypous (5.47)
Vopw = qj?}pw’ (5.48)
l:[lvzw = %(@g)zltl)v - cb?vvl(l)z + Cg}yvzl(l)y)r + \Ij?)Zwa (549)
Wywp = % 2wp7 (5.50)
\I’U)pq = - mfgoégma 517!1 + %((bgql(l)w + ngwpl(l)z - \Ilgj(qu) + %\Ijgupq

— 2190, 0 (m + 1) + 0000 | Fm) 4 a0 90, (5.51)
\I’oqp = m‘b?uw’a (6017530 - 6qugo) + lllgqp% + ﬁ(épq\l'g - 5170\112)

+0%, F;nrg) (5100530 — 0pg€S0). (5.52)

The Weyl components ¥; and ¥, ;) as given in (5.45)—(5.52) are subject to (2.14) and
therefore

L. =0, ¥),=0 WO =00 . W =U0 . (553)
0 =0 4wl .+l (5.54)
0 =) o, + 0 (5.55)
COpoldy = b2 €0000, , — E2 10, B0, (5.56)
200, =110, + Yo (m+1), (5.57)
L. =119,®° and 209,9° +£2°@Y,, =0 for m = 1(5.58)
L. =0 and 2ml), ®°+¢2°9% =0 for m>1, (5.59)
Voo = 10mp &8 Pua s (5.60)
L =0, (5.61)
) =0 and £°®%,=0 for m=1, (5.62)
UO(m—2)=0 and (m —2)5°9%,,=0 for m>1. (5.63)
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In order to determine r-dependence of U;; from eqs. (5.44), first we need to find

]\143‘1 and N;;. Note that for q);‘} = 0, the Ricci eqs. (A.13) reduce to those of the Weyl
type III with solution given in (4.10). From Ricci egs. (A.10),

0

Npw =0y Now = =00, r+n,, Nyp="22, (5.64)
ngq q)?mu F (r
Npg = = @0, + "2 4 6 [zt 4 @0 L] (5.65)

Now r-dependence of ¥;; can be determined from egs. (5.44)

P 0,0
Moy VU P

Uy =208 408 w0 T T My 060000, , Irils,
+mFn(r)¥D, + L0l + L vk (5.66)
Uy =200, + 7Vl 406 Inr+ 0D 4+ 205, 98 4 1yl
I A e S AR (5.67)
Uy =12V 0pg + 1V 0 + 076y, U5 + 00 4 gl 4wk 1y nrs, wo
O 7 e e (5.68)
where \Ilf}, \115, \I/fg do not depend on r. Since in this paper we are mainly

interested in the r-dependence of the metric and the Weyl tensor we do not give here
quite complicated explicit expressions for \If{‘j, \115, e \Iffj( .

5.2.1. The case with L1; =0 When (5.27) is satisfied (for type D and special cases of
other Weyl types considered here) then w,, can be transformed away by null rotation
with fixed £ (2.3) with z, = w{, (4.4) and thus (assuming all s, are same) w; = 0 for
all i. Since now ¢g'® = X0 we introduce 3 = #%(x, u) as in [10], leaving unchanged
null hypersurfaces u =const and preserving the affine character of the parameter r, to
set g'* =0, i.e. (omitting the tilde symbol)

X0 =0. (5.69)
Then from (3.10)—(3.13) and (5.37) we get
V=-U= s ®hur’ + 18 = " Fpu(r) - U°, QW =0, Y,=0. (5.70)
Egs. (3.14)—(3.17) now reduce to
g11 =0, gon=1, gia=0, goo=2V, goa=0, (5.71)
Jap = ety =m0 T2+ 05050 = 22r% + Yo, (5.72)

and thus the metric of vacuum spacetimes with a non-twisting multiple WAND (i.e.
types II, D, III or N) with L1; = 0 can be set into the form

ds? = 2Vdu?® + 2dudr + (72 r° +75)dz*da”, (5.73)

where functions ’yévﬁ, N = 0,2, introduced in (5.72) do not depend on r and V' is given
in (5.70).

5.2.2. Shearfree case Let us now briefly discuss the shear-free case which occurs for
m = 0 (Kundt spacetimes) and for m = n — 2 (Robinson-Trautman spacetimes [10]).

Kundt spacetimes in vacuum are necessarily of type II or more special [8] and
they thus form m = 0 subclass of spacetimes studied in the present paper. Note that
in contrast with the expanding case, the components of the metric (3.18), including
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goo, are at most quadratic polynomials in r. Similarly as in four dimensions boost
weight 0, -1 and -2 components of the Weyl tensor are independent on r, linear and
quadratic in r, respectively.

In the m = n — 2 case in four dimensions, eqs. (5.63) are identically satisfied
and consequently the corresponding class of Robinson-Trautman spacetimes is very
rich and includes e.g. radiative type N and III spacetimes as well as type D C-
metric describing uniformly accelerated black holes emitting gravitational radiation.
However, in higher dimensions egs. (5.63) imply \Ilg = 0 and using (2.25) ®°,, = 0.
From (5.32) ®), = 0 and then from (A.12) or (5.43) we get W), = 0. Therefore all
components of the Weyl tensor with boost weight —1 vanish. Similarly it can be shown
that boost weight —2 components of the Weyl tensor vanish as well. Thus in higher
dimensions vacuum shear-free spacetimes admitting non-twisting multiple WAND are
necessarily of type D in agreement with [10]. The Weyl tensor is now given by

o0 Fr,_o(r O
( 2)()+

D, = 5pqm, Cisopg = —2(05pOoq — Sopdsq) P’ - :j;m. (5.74)
Note that in four dimensions eq. (5.30) implies Cgopq = 0, while in higher dimensions

this term, corresponding essentially to the curvature of the spatial part of the metric
fyiﬁ [10], in general does not vanish. Therefore the r-dependence of the Weyl tensor
and thus also the asymptotic behaviour of gravitational field in higher dimensions is
more complex than in four dimensionsq. This is, however, beyond the scope of the
present paper and will be studied elsewhere.

6. Construction of an explicit expanding type N solution in five
dimensions with 19, =0

Apart from usual motivation coming from higher-dimensional general relativity, there
is an additional reason for studying type N vacuum spacetimes. For these spacetimes
all curvature invariants involving metric, the Riemann tensor and its first covariant
derivatives vanish. Such solutions thus belong to VSI; class of spacetimes [17], which
are solutions of various field theories to all orders with a specific effective action
containing only certain higher order correction terms (see [17]).

Let us explicitly mention the Einstein-Gauss-Bonnet equations

Rab - %Rgab =« (%‘CGBgab - 2RRab + 4RacRbc + 4RacbdRCd - 2RacdeRb0de) ) (61)

where Lap = R2—4R 4, R+ Rapcq R*P? and o is the Gauss-Bonnet coupling constant.
It can be seen directly that vacuum type N solutions to the Einstein equations solve
vacuum Einstein-Gauss-Bonnet equations (6.1) as well since for these spacetimes
RacdeRdee =0= RabcdRade-

In this section, we attempt to derive an expanding non-twisting type N vacuum
solution and we limit ourselves to a five-dimensional case with an additional
assumption 19, = 0. Since resulting metrics we have obtained so far can be obtained
by taking a direct product of four-dimensional type N vacuum metrics with an
extra dimension, the main purpose of this section is thus to illustrate use of the
higher-dimensional NP formalism for constructing exact vacuum solutions. Note that
corresponding Bianchi and Ricci equations are quite complex and thus at several
points of the calculation we make various assumptions in order to simplify them.

€ Note that in boost weight zero Weyl components in the m < n — 2 case terms proportional to r°
and 7~ also appear.
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This, however, obviously comes with the price of possibly reducing the resulting class
of solutions.

For explicit calculations it turns out to be more convenient to relax the assumption
of diagonal W;; from sec. 4.1 and so now there are two independent components of
the Weyl tensor W33 = —Woy, W3y = Wo3 with the rest of the components vanishing.
Therefore we cannot use the form of the Weyl tensor obtained in (4.15) and instead
from the Bianchi eqgs. (B.4)

0 0
Wpy = —Wg3 = p?, Wy = gy = HT Uy =0=1"0,, (62

Assuming 19, = 0, NP equations simplify considerably and are given in Appendix

C. In fact the following quantities vanish

2 3 2 3
0 0 0 0
My3° =Mys" =Myy =My =0, (6.3)

2 3
0 0 0 0 0 0 0 0
Ngy = Ngy =M1 =My = Ngg = Nzg = Wy = wg = 0. (6.4)
Similarly as in sec. 5.2.1 we transform away w). However, here we do not

transform away the functions XY, Then from eqs. (C.9)

4 4
wg :m220 :m330 = 0, (65)
and from (C.30)—(C.32) and (C.36)
7122 = ”23 = 7124 = n21 =0. (6.6)

From (C.4) we get U° = n9, = nY; and then eqgs. (C.45)—(C.47) (now identical with
(C.15)—(C.17)) imply

U° =nYy =U°®w). (6.7)

Let us assume U = nj, =const.

Apart from 19, = 0 we make the following simplifying assumptions

s? = 0, (6.8)

€ = — €240, & #0, allother & = 0. (6.9)

Note that 7721340 always vanishes for diagonal ¥;;, see (C.51).

Under the assumptions (6.9) from (C.38), (C.39) (C.14), (C.23), (C.26), (C.27),
3

(C.28), (C.35), (C.42), (C.50), (C.51) we obtain that £3° = —£39, 19, n3;, ng;, Mo
i3, a1 0, X20, X3, 50, T1° do not depend on 23 = z. From (C.38)—(C.41) it also

follows that &4° 40( z), X409 = X40(y, 2) are functions of u, z only.

Egs. (C.37), (C.29) can be rewritten using (6.9)
3
605 = ma?, (6.10)
2

&2 =—mas’, (6.11)
36022 +€3%33) — (6°12)7 — (€2°,3)% = 2n,. (6.12)

Assuming £2° to have a form of a polynomial in 22 = x and 23 = y, after an appropriate
translation in x, y, we arrive at

=AoP(z,y), P(z,y)=(1+ex?+ey?), 7%1330 = —2Apex, 1%220 = 2Apey, (6.13)
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where we set Ag = 1/v/2 and e = ngy is assumed to be independent on u. From (C.40)
and (C.41) it follows

X20,— x30 ., x30,_ _x2 (6.14)
with the integrability condition X2° 55 +X?2° 33 =0 and from (C.40)
2e(x X0 + yX30)
- Pay)
Then (C.12), (C.13) determine n3;, nd;

20 30
na1 = — P2, y) X200 +v2e(X20 + 2X 20, —y X0, ) — 2V2ex 52 (6.16)

na = Y2P(0,y) X%y —V2e(X% + 2 X2, +yX 0, ) + 2v/2ey G (6.17)

1) = +X%0,. (6.15)

P(z,y)
From eq. (C.21) or (C.25) and from (C.22) or (C.24) we get
P’ = —1X% 00 Pz,y)?, (6.18)
M0 = 5X%,00y P(w,9)%, (6.19)

Egs. (3.10)-(3.13) lead to V = —U, ¥; = 0, Q' = —n() X0° = — X /¢{). The

contravariant frame vectors now read

e = [07 ]-7 07 Oa 0]7 (620)
Nt — [17 -~ (_ 2e(x)1<32(‘;4;@§;(30) n XZO,a:) oy e,X20,X30,X40} ’ (6.21)
ml(l2) = A()P(.f, y)%[07 07 1a 07 O]a (622)
miy = — AoP(z,9)+0,0,0,1,0], (6.23)
mfyy = £3°[0,0,0,0, 1J; (6.24)
and the covariant frame vectors are
4, =11,0,0,0,0], (6.25)
e(x 20 30
ne = [(FEEEEEE 4 X0, ) r—e,1,0,0,0] (6.26)
2 T
mg) = m[_X20’0717070]’ (627)
3
m{P = — [~ X%,0,0,1,0], (6.28)
m® = [~ X,0,0,0, b, (6.29)
4 4
where £1°, X490 are subject to (C.42), i.e.
—ed0,, X0l 40X, — 0. (6.30)

The metric thus reads

ds? = [2[0 r— 26+(L>2((X20)2+(X30)2) + (Xm)T du?+2dudr
= |4t 2

G

~2du [(Ego)g(xmdﬂxwdywr (5410)2)(4%2«] + (7) ? (da2+dy?)+ (g%)de% (6.31)

Introducing Z = [ 1/£1°dz and using (6.30) the metric (6.31) reduces to

2
ds® = [2z$1r — 2+ (7) (X*) + (X30)2)} du? + 2dudr
2

2 2
—2du (?) (X2dz + X¥dy) + (?) (da? + dy?) + d32, (6.32)
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where
d7 = 2ydz — Xrdu. (6.33)
4 4

So the metric (6.32) represents a direct product of a four-dimensional Robinson-
Trautman type N vacuum solution with an extra dimension.
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Appendix A. Ricci identities

The Ricci equations, i.e. contractions of the Ricci identities vg;pe — Vazeb = Rsabc?®
with the frame vectors (2.1), in higher dimensions, given in full generality in eqs.
(11a)—(11p) in [8], are rewritten here for vacuum spacetimes with a geodetic multiple
WAND (Weyl types II, D, III or N) in a parallelly propagated frame

DLy, = —L1;Li1 — Coro1 » (A1)
DLy; =—Ly;Lj;, (A.Q)
J
ALy —6;L11 = L11(L1s — Lin) — 2L Njjq) — L1 (Nji+ Mi1) + Choui (A.3)
k
Ot Ly = —LuLyij) — Lk Miij) —Ligj Naji + 5C01i; (A4)
DLil = _Liijla (A5)
—DNjy = NijLj1 — Cro1i (A.6)
DL;; = —LijLy; , (A7)
AN;; —0;N;in = —L11N;j — Nj(—2Lq; + Lj1)
k k
+ 2N Mij) —Nik(Nij+ Mj1) = Crirg (A.8)
k k
ALj; — ;L4 = L1 Lij — LinLjy 4 2Ly My)j) —Lie(Nij+ Mj1) — Coing,  (A9)
DN;; = —NixLi; — Cojti s (A.10)
! !
051 Lk = Lugji L + L Lijey + L Mgey +Laj) Mg » (A.11)
! 1
Ot Nik) = —Lijj Niwy + NirLiga) + Na Mgy +Nigg) Mgy —5C1350, (A.12)
i i
D Mj = — Mk Lin — Couij » (A.13)
D Mk =— Mj Ly, (A.14)
i i ; il
A Mjk =0k Mj1 = 2N Lk + 2L 71 Ny + Mj1 (Lig — Ly) + 2 Myp M g
i 1

— Mji (Nig+ My1) — Cigij (A.15)

Okl My = NipLji) + Lig Nji) + Ly Mja

7 P i P
+ Mpir) M 1) + M jp M ki) —% ijkl - (A.16)
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Appendix B. Bianchi equations

We present here Bianchi identities projected onto a parallelly propagated null frame
(2.1) for vacuum spacetimes with a geodetic multiple WAND. General form of these
identities can be found in Appendix B in [7].

DCio1i — 6;Co101 = —Co101Li1 — CorisLs1 — 2C1015Lsi — CoirsLst, (B.1)
— A Corij + 2015 Cro1) = 2C10115 L1y + 2C1010 Lijin + 2C s Lspg) + CusigLsi
+2C0101 Njji) + 2C011i1s Ns |57 + 2Co0s1(5 Nsji) + 2Co11i1s M1 +2C101s M) (B.2)
—DCo1ij = 2Co101 Lyij) + 2Co1151s Lsjj) + 2C0pi1s sy (B.3)
DClij — ACoj1i — 0;C1010 = 2C101iL15) + 20155 Lsj) + Cor01 Nij

—Co1isNsj + Cos1iNsj + Coj1s Mi1 +2C0s15 Mj1 +Chors Mij, (B.4)
DCyi1; = —Coir01Lij — CoinsLsj — CorisLsj, (B.5)
—DC1gij — 6xCo1ij = —Cotij L1 + 2Cok11i Ly + 2C1015 Ljjk

+2C1 565 Lsir) + 2C01151s M |jiks (B.6)
20151 Coin)j] = 2Coi[j) Lyxr — CorjeLin + 2Ch01(5 Lijk) + 2C1kis L))

—CisjLs1 + 2Coi1s Mrj) +2Cos1(k| My (B.7)
0=0, (B.8)

DChiji + 207 Copj11s = 2C101: Lny + 2C141k1s Ls|5) + 2Comwk11s Mijj) —2C0s1i Mjx), (B.9)
AChijk + 20k Crarlj) = 201 Ly + 4C1iak Ly — CrigrLin + Corje Nia
+2C011i Nkt + 2C1011k Nijg) + 2C101i Nigg) + 2C 1015 Ns|j) + 2C1 k16 N5

—CisjNs1 — 2C1i1s Mjr) +2C1 k1 M) +2C ks Mjj1 —Clsje M, (B.10)
—01i1Corljky = Cro1{iLljry — CroigiLlusy + Crsgiji Lsiky

+Co1ijs Mjry —Corgils Mk} (B.11)
—=DCjkm =2C01i5 Ligm) + 2Cok115 Lijm) + 2C0pm1iLjik) + 2C551k)s Lsjmy (B.12)

= A Cijkm + 2001 Crimli; = 2C 10 m Lk + 2C1500 Liim + 2C 1k im Li + 2C1ki5 Liim)
+2C1mij Lig1) — 2Co1i5 Nigm) + 2Co(i11m N sk + 2Co5116 N ijm + 2C;5(k|s Nsjm]

+2C1kfifs M j1m +2C1mijs M ik +2C15i5 M (em) +2Cijk1s M jm)1 F2C)skm M 51, (B.13)
3(51C1iimry = CringjLmky — CritgjLemy + Crigje L1my + Corgjm| Nijky — Cogji1i NV km)
+Coj11iNimiy + Cisgik| Nejmy — Crigjls Mimky +Crigjls Mikmy +Crsgik] Mijmy, (B.14)
0 = CorgjkLijmy — Coir{jLrmy + Coir(jLmry + Cisgin|Lsimy (B.15)
Ogk Cijlnmy = Crjgkm| Liiny = Critem| Ljlny = C1irlig Limny + C1irlig Linm)

S S S S
+Cijtkls Mimny —Cijgrls Mnm}y +Cisim| Mjiny —Cjsrm| Mifny - (B.16)
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Appendix C. The Ricci and Bianchi equations for five-dimensional type
N spacetimes with all L; =0

Ricci egs. (A.4)

ngz = ”83» (C.1)
nd, =0, (C.2)

Ricci egs. (A.9)

U® =ndy =nds, (C4)
nYs =0 =ndy, (C.5)
2
0 = n(2)4+ m410, (06)
3
0 = ng4+ m410. (C?)
Ricci egs. (A.11)
Wy =0=us, (C.8)
4 4
wy = Ty =mas”, (C.9)
s’ = 0 =gy, (C.10)
M41° = 0 =14, °. (C.11)
Ricci egs. (A.3)
f?ol?ha = - nglv (012)
€300, o = —nd,, (C.13)
010 =0. (C.14)
Ricci egs. (A.12) with nggy = ngq = 0 from (C.2), (C.3), with (6.8)
£5°n92,:0 = Nl 7‘711220’ (C.15)
€§0n32’a = 7’L23 7%22()’ (C.16)
4
AtlxongZaa = 77,24 m2207 (Cl?)
2 3
§n82.0 —€5 N30 = Ny M2’ — nfs Ma3?, (C.18)
gongzba _gzllxongba =0, (Clg)
§§0n24,a 7&?0”237& =0. (C.ZO)
Ricci eqs. (A.8), with ngy = ngq = 0,
[e3 « 3
N2 +X 0500 —€5n51,0 = — 20 m9y + 13y M22” —p°, (C.21)
€900, o =n mmas® + 100, (C.22)
$'n%1a =0, (C.23)
3
5%n31,a = gy Mma® + 117, (C.24)
4 2
M99 +X “N33,0 —€5N3 1,0 = — 2091035 + nfy mag® +ndy gy +p°, (C.25)
%031, =0 (C.26)
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Ricci eqgs. (A.16)

£3° m32 o =0,

£8° 133" =0,

2 4 2 2
fg m32 o —fz m33’e = 2”22 + (m220)2 + (771320)2 + (m330)27

4
a0 0o _ 0
2 m22 ya = T Ny,
g m = —nY
3 22 oo T 43
€90 m = —n!
4 22 o T 44+
Ricci egs. (A.15)
2 2 2 2 2 2
0 a0 0 a0 0 070 0 0 0
M3a 0y + X Mmga”,q —&3° M31 ", = — Mgz 1] +ng+ M3z mgy-,

2 2 2 2 2 2
0 0 0 0
m33 u X0 m33 o fg m31 a — — 33 l11 — Ny — M3z M31 -,

£3° m31 a =0,
2 2
0 @0 0 070 0
Mgy +X m42 oo = — Myg Iy +ny;.

Commutators (2.41)

3 2
5650,5 —€5°€5%,5 = Mg 650 — mgs &5,

2 S3 8
B0 a0 8000  _ a0 4 0
2 S4 8 £ 2 13 _52 m22 5

0 0
g 4(1’07,3 gﬁ ?Ovﬁ _€ m22 ’

commutators (2.40)

2

8%, —XP0650 5 +6,° X0, 5 = €500 + nfd"— 1 %65,
380 2

—£50,, — X650 5 +€00 X0 5 = 5019 + nQ350+ sy O€5°

f4 u _X50§4 53 +‘£ﬁ0X&O _54 n44a

commutators (2.37)

a0 0 _ 0
2 Wia = — Ny,
a0 0 _ 0
3 Wia = 7 Tz,
commutators (2.36)
0770 _ .0 0
§5°U e = ngowy,

«0770 _ .0 0
3 U e =nyswy,
4
0 a0, 0 0770 0. .0 070 0
~Wiu =XV wia FETU o = ngwy+ Mmool +ngy.
Bianchi egs. (B.10)
2 3
a0,0 0170 0 0 0 0
=3P o =83 11, =2p m33 + 2117 mos ™,

%%, =631, =2p° m32 + 211° m330,

@0, 0 0

0%, =211’ m34 ,
2
0770 0 0
§4 II yao = — P M3yg,
4 4
0 0_ .0 0
P Moz” =p M3z =0,

24
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10 1m155° =TI 1m5° = 0, (C.53)
PO mag® 4 T10 1mgs® = — pO gy ® 4 110 77440 = 0, (C.54)
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