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1 Introduction

Several physical phenomena, like advection, diffusion, reaction, deposition, and emission,
play an important role in the modeling of the air-pollution processes, see e.g. [13]. These
processes can be modeled by coupled systems of various nonstationary partial differential
equations. Numerical methods used to solve such coupled systems are naturally required to
discretize all parts of the system properly – in accordance with the underlying physics.

In this work we concentrate on parabolic problems, which form a crucial part of the air-
pollution systems, and we study the validity of the associated maximum principle on the
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discrete level. The discrete maximum principle for parabolic problems was first studied in
[8] and then in many other publications, see e.g. [1, 2, 3, 6, 5, 4, 7, 10]. However, the case of
the prismatic finite elements presented in Section 4 has not been analyzed, yet.

We consider a d∗-dimensional linear parabolic problem in the classical setting: Find
function u ∈ C1,2((0, τ) × Ω) ∩ C([0, τ) × Ω) such that

̺
∂u

∂t
− ∆u+ cu = f in (0, τ) × Ω, (1)

u = g on [0, τ) × ∂Ω, and u|t=0 = u0 in Ω, (2)

where Ω is a bounded domain in R
d∗

with a boundary ∂Ω, τ > 0, ̺ = ̺(t, x) ≥ ̺0 > 0, and
c = c(t, x) ≥ 0 with t ∈ (0, τ) and x ∈ Ω. In order to guarantee the existence and uniqueness
of the classical solution u = u(t, x), t ∈ (0, τ), x ∈ Ω, we assume that the boundary ∂Ω,
the functions ̺ : (0, τ) × Ω → R, c : (0, τ) × Ω → R, u0 : Ω → R, f : (0, τ) × Ω → R and
g : [0, τ) × ∂Ω → R are sufficiently smooth and that the initial data u0 and the boundary
data g are compatible for t = 0 and x ∈ ∂Ω.

The above problem serves as the mathematical model of various physical, chemical, and
ecological phenomena. An important example is the reaction-diffusion process, where u(t, x)
stands for the concentration (of a pollutant for example), u0 represents the initial concen-
tration, c is the reaction coefficient, f defines the sources, and g is the concentration on the
boundary. It is known from the second law of thermodynamics that, in the absence of any
source or sink, the concentration takes its maximum value either at the initial state or on
the boundary of the body. This property for the classical solution of the above problem with
f = 0 is preserved, see e.g. [12, p. 79].

Now, we formulate the maximum principle for a general case, when f is not zero. Let Qt

stand for the cylinder (0, t]×Ω, t ∈ [0, τ ], and let Γt = St ∪Ω0 denote the union of its lateral
surface St = [0, t]× ∂Ω and its bottom part Ω0 = {0}×Ω. We present a simple modification
of Theorem 2.1 from [11].

Theorem 1.1 Let u(t, x) be the solution of problem (1)–(2). Then the estimate

sup
λ>−c∞

min

{
0;min

Γt1

ψ exp(λ(t1 − t));min
Qt1

f exp(λ(t1 − t))

c+ ̺λ

}

≤ u(t1, x) ≤ inf
λ>−c∞

max

{
0;max

Γt1

ψ exp(λ(t1 − t));max
Qt1

f exp(λ(t1 − t))

c+ ̺λ

}

holds for any t1 ∈ [0, τ ], where the function ψ coincides with u0 on Ω0, and with g on Sτ and
c∞ = ‖c/̺‖

∞,Qt1

= sup
Qt1

|c/̺|.

Let us further introduce the following functions (t1 ∈ [0, τ ])

ũ(t1, x) = max{0;max
Γt1

ψ} + t1 max{0;max
Qt1

f

̺
} − u(t1, x),

and

ū(t1, x) = u(t1, x) − min{0;min
Γt1

ψ} − t1 min{0;min
Qt1

f

̺
},
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where u and ψ are defined above. Due to the initial boundary-value problems which the
functions ũ and ū satisfy to, and Theorem 1.1, we immediately observe that

ũ(t1, x) ≥ 0 and ū(t1, x) ≥ 0,

which implies

min{0;min
Γt1

ψ} + t1 min{0;min
Qt1

f

̺
} ≤ u(t1, x) ≤ max{0;max

Γt1

ψ} + t1 max{0;max
Qt1

f

̺
}. (3)

Formula (3) presents the (continuous) maximum principle we shall deal with in the paper.
However, there exist several other variants of the maximum principle – see [6] for their
overview and for their relationship with the other qualitative properties.

To solve the problem (1)–(2) numerically, we use certain discretizations, both in spatial
and in time coordinates. It is obvious that the validity of the discrete analogue of the max-
imum principle, the so-called discrete maximum principle (DMP), is a natural requirement
for getting an adequate numerical solution.

2 Discretization

2.1 Variational formulation

The semidiscrete analogue of problem (1)–(2) is based on the variational formulation de-
scribed shortly below. Let V0 = H1

0 (Ω), multiplying (1) for a given t by a function v ∈ V0,
integrating over Ω and using the Green formula, we get

∫

Ω

̺
∂u

∂t
v dx+ L(u, v) =

∫

Ω

fv dx,

where

L(u, v) =

∫

Ω

grad u · grad v dx+

∫

Ω

cuv dx.

Under the assumptions providing the existence of the classical solution, it satisfies the fol-
lowing variational formulation:

∫

Ω

̺
∂u

∂t
v dx+ L(u, v) =

∫

Ω

fv dx ∀v ∈ V0, t ∈ (0, τ), (4)

with
u(0, x) = u0(x), x ∈ Ω, (5)

and
u(t, x) = g(t, x), x ∈ ∂Ω, t ∈ (0, τ). (6)

We remark that we may assume more general data in the context of the variational
formulation. Namely ̺, c ∈ C([0, τ ], L∞(Ω)) and f ∈ C([0, τ ], L2(Ω)).
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2.2 Semidiscretization in space

Let Ω be a solution domain covered by a finite element mesh Th, where h stands for the
discretization parameter. Let P1, . . . , PN denote the interior vertices of elements from Th,
and PN+1, . . . , PN̄ the boundary ones. We also define N∂ = N̄ −N .

Let the finite element basis functions φ1, . . . , φN̄ satisfy the delta property φi(Pj) = δij ,
i, j = 1, . . . , N̄ , with δij being the Kronecker symbol. Further, let

φi ≥ 0, i = 1, . . . , N̄ , and

N̄∑

i=1

φi ≡ 1 in Ω. (7)

Obviously the standard finite element basis functions like the piecewise linear functions
on simplices, the piecewise multilinear functions on Cartesian product elements, and the
piecewise multilinear functions on prismatic elements satisfy these requirements. In this
paper we will focus on the basis functions for the three dimensional right triangular prismatic
elements. Detailed construction will be given in Section 4.

We denote V h = span {φi, i = 1, 2, . . . , N̄} the space of all possible linear combinations of
the basis functions and define its subspace V h

0 = {v ∈ V h | v|∂Ω = 0}. Then the semidiscrete
problem for (4)–(6) (or, equivalently, for (1)–(2)) reads:

Find a function uh = uh(t, x) ∈ C1([0, τ ], V h) such that

∫

Ω

̺
∂uh

∂t
vh dx+ L(uh, vh) =

∫

Ω

fvh dx ∀vh ∈ V h
0 , t ∈ (0, τ), (8)

and

uh(0, x) = uh
0 (x), x ∈ Ω, (9)

uh(t, x) − gh(t, x) ∈ V h
0 , t ∈ (0, τ). (10)

In the above, uh
0 (x) and gh(t, x) (for any fixed t) are suitable approximations of u0(x) and

g(t, x), respectively. In what follows, we assume that they are linear interpolants in V h, i.e.

uh
0 (x) =

N̄∑

j=1

u0(Pj)φj(x),

and, similarly,

gh(t, x) =

N∂∑

j=1

gh
j (t)φN+j(x), where gh

j (t) = g(t, PN+j), j = 1, . . . , N∂ .

We notice that due to the consistency of the initial and the boundary conditions (g(0, x) =
u0(x), x ∈ ∂Ω), we have gh

j (0) = u0(PN+j), j = 1, . . . , N∂ .
We search for the semidiscrete solution in the form

uh(t, x) =

N∑

j=1

uh
j (t)φj(x) + gh(t, x),
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and notice that it is sufficient that uh satisfies (8) for vh = φi, i = 1, . . . , N, only.
Introducing the notation

vh(t) = [uh
1 (t), . . . , uh

N (t), gh
1 (t), . . . , gh

N∂
(t)]⊤,

we, thus, arrive at the Cauchy problem for the system of ordinary differential equations

M
dvh

dt
+ Kvh = f , vh(0) = [u0(P1), . . . , u0(PN ), gh

1 (0), . . . , gh
N∂

(0)]⊤ (11)

for the solution of the semidiscrete problem, where

M = M(t) = [Mij(t)]N×N̄ , Mij(t) =

∫

Ω

̺(t, x)φj(x)φi(x) dx,

K = K(t) = [Kij(t)]N×N̄ , Kij(t) = L(φj , φi),

f = f(t) = [fi(t)]N×1, fi(t) =

∫

Ω

fφi dx,

i = 1, 2, . . . , N , j = 1, 2, . . . , N̄ . The above defined matrices M and K are called mass and
stiffness matrices, respectively.

We notice that, due to our choice of the projections into V h in (9) and (10), we obtain

max{0,max{(vh(0))i, i = 1, 2, . . . , N̄}} ≤ max{0,max{u0(x), x ∈ Ω}}

and
min{0,min{(vh(0))i, i = 1, 2, . . . , N̄}} ≥ min{0,min{u0(x), x ∈ Ω}},

respectively. Obviously, gh
i (t) can be estimated by g(t, x) in the same manner. Hence, we

have
max{0, max

t∈[0,τ ]
i=1,...,N∂

gh
i (t)} ≤ max{0, max

t∈[0,τ ]
x∈∂Ω

g(t, x)}

and
min{0, min

t∈[0,τ ]
i=1,...,N∂

gh
i (t)} ≥ min{0, min

t∈[0,τ ]
x∈∂Ω

g(t, x)}.

2.3 Fully discretized problem

In order to get a fully discrete numerical scheme, we choose a time-step ∆t and define the
partition tn = n∆t, n = 0, 1, . . . , nτ , of the time interval [0, τ ], where tnτ

= nτ∆t = τ . Let us
remark that we consider constant the time step ∆t for the simplicity only. All the subsequent
analysis can be easily generalized to the variable time step.

We denote the approximations to vh(tn) and f(tn) by vn and fn, n = 0, 1, . . . , nτ ,
respectively. Similarly we denote Mn = M(tn) and Kn = K(tn) as well as the entries
Mn

ij = Mij(tn), Kn
ij = Kij(tn). This notation is used further on also for other quantities.

To discretize (11), we apply the θ-method (θ ∈ [0, 1] is a given parameter) and obtain the
system of linear algebraic equations

M(n,θ) v
n+1 − vn

∆t
+ θKn+1vn+1 + (1 − θ)Knvn = f (n,θ), (12)

5



where M(n,θ) = θMn+1 + (1 − θ)Mn and f (n,θ) = θfn+1 + (1 − θ)fn, n = 0, 1, . . . , nτ − 1.
System (12) can be rewritten as

(
M(n,θ) + θ∆tKn+1

)
vn+1 =

(
M(n,θ) − (1 − θ)∆tKn

)
vn + ∆t f (n,θ), n = 0, 1, . . . , nτ − 1,

(13)
where v0 = vh(0).

To shorten the notation we put A = M(n,θ) + θ∆tKn+1 and B = M(n,θ) − (1− θ)∆tKn.
In what follows, we shall use the following partitions of the matrices and vectors:

A = [A0|A∂ ], B = [B0|B∂ ], vn =

[
un

gn

]
, (14)

where A0 and B0 are square matrices from R
N×N ; A∂ ,B∂ ∈ R

N×N∂ , un = [un
1 , . . . , u

n
N ]⊤ ∈

R
N and gn = [gn

1 , . . . , g
n
N∂

]⊤ ∈ R
N∂ . Similarly, this partition is used for matrices Mn and

Kn. Then, the iteration (13) can be also written as

Avn+1 = Bvn + ∆t f (n,θ), (15)

or

[A0|A∂ ]

[
un+1

gn+1

]
= [B0|B∂ ]

[
un

gn

]
+ ∆t f (n,θ) (16)

with n = 0, 1, . . . , nτ − 1.

3 The Discrete Maximum Principle

Let us define the following values

gn
min = min{0, gn

1 , . . . , g
n
N∂

}, gn
max = max{0, gn

1 , . . . , g
n
N∂

},
vn
min = min{0, gn

min, u
n
1 , . . . , u

n
N}, vn

max = max{0, gn
max, u

n
1 , . . . , u

n
N},

for n = 0, 1, . . . , nτ and

f
(n,n+1)
min = min

{
0, min

t∈[tn,tn+1]

x∈Ω

f(t, x)

̺(t, x)

}
, f (n,n+1)

max = max

{
0, max

t∈[tn,tn+1]

x∈Ω

f(t, x)

̺(t, x)

}
,

for n = 0, 1, . . . , nτ − 1.
The discrete analogue (DMP) for the continuous maximum principle (3) can be repre-

sented as follows:

min{0, v0
min,min{gk+1

min , k = 0, . . . , n}} + tn+1 min{0,min{f (k,k+1)
min , k = 0, . . . , n}} ≤

≤ un+1
i ≤

≤ max{0, v0
max,max{gk+1

max, k = 0, . . . , n}} + tn+1 max{0,max{f (k,k+1)
max , k = 0, . . . , n}},

(17)

where i = 1, 2, . . . , N, n = 0, 1, . . . , nτ − 1.
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The DMP (17) is equivalent to the following relation

min{0, vn
min, g

n+1
min } + ∆tf

(n,n+1)
min ≤ un+1

i ≤ max{0, vn
max, g

n+1
max} + ∆tf (n,n+1)

max ,

i = 1, . . . , N ; n = 0, . . . , nτ − 1. (18)

This DMP was presented in [8, p. 100], where it is proved in the case of c = 0 and simplicial
finite elements.

Let us introduce the notation

e = [1, . . . , 1]⊤ ∈ R
N̄ , e0 = [1, . . . , 1]⊤ ∈ R

N , e∂ = [1, . . . , 1]⊤ ∈ R
N∂ ,

f (n,n+1)
max = f (n,n+1)

max e ∈ R
N̄ , vn

max = vn
maxe ∈ R

N̄ ,

f
(n,n+1)
0 = f (n,n+1)

max e0 ∈ R
N , vn

0 = vn
maxe0 ∈ R

N ,

f
(n,n+1)
∂ = f (n,n+1)

max e∂ ∈ R
N∂ , vn

∂ = vn
maxe∂ ∈ R

N∂ .

For simplicity, we denote zero matrices and zero vectors by the same symbol 0, whose
size is always chosen according to the context. The ordering relations between vectors or
matrices are meant elementwise.

Lemma 3.1 Let the basis functions satisfy (7). Then the following relations hold

(P1) K(t)e ≥ 0, t ∈ [0, τ ],

(P2) f (n,θ) ≤ Af
(n,n+1)
max , n = 0, 1, . . . , nτ − 1,

(P3) If A−1
0 ≥ 0 then − A−1

0 A∂ e∂ ≤ e0, n = 0, 1, . . . , nτ − 1.

Proof. (P1) For the ith coordinate of the vector Ke = K(t)e, t ∈ [0, τ ], we have

(Ke)i =

N̄∑

j=1

Kij =

N̄∑

j=1

L(φj , φi) = L




N̄∑

j=1

φj , φi


 = L(1, φi) =

=

∫

Ω

grad 1 · grad φi dx+

∫

Ω

c 1φi dx =

∫

Ω

c φi dx ≥ 0,

which proves the statement.
(P2) For the ith element of f (n,θ), we observe that

(f (n,θ))i =

∫

Ω

[
(1 − θ)

f(tn, x)

̺(tn, x)
̺(tn, x) + θ

f(tn+1, x)

̺(tn+1, x)
̺(tn+1, x)

]
φi(x) dx

≤ f (n,n+1)
max

[∫

Ω

(1 − θ)̺(tn, x)φi(x) dx+

∫

Ω

θ̺(tn+1, x)φi(x) dx

]

= f (n,n+1)
max

N̄∑

j=1

[
(1 − θ)Mn

ij + θMn+1
ij

]
=
(
M(n,θ)f (n,n+1)

max

)
i

≤
(
(M(n,θ) + θ∆tKn+1)f (n,n+1)

max

)
i
=
(
Af (n,n+1)

max

)
i
,
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where we used (P1) and the following fact

∫

Ω

̺(t, x)φi(x) dx =

∫

Ω

̺(t, x)




N̄∑

j=1

φj(x)


φi(x) dx =

N̄∑

j=1

Mij(t).

(P3) Matrix M(n,θ) is nonnegative, because ̺ > 0 and because the basis functions are
nonnegative. Thus, 0 ≤ M(n,θ)e ≤ (M(n,θ) + θ∆tKn+1)e = Ae = A0e0 + A∂e∂ , where we
utilized (P1). The statement (P3) is obtained by multiplying both sides by the non-negative
matrix A−1

0 .

Theorem 3.2 Let the basis functions satisfy (7). Then the Galerkin solution of the problem
(1)–(2), combined with the θ-method in the time discretization, satisfies (18) (and, therefore,
the DMP (17)) if and only if the conditions

(C1) A−1
0 ≥ 0,

(C2) A−1
0 A∂ ≤ 0,

(C3) A−1
0 B ≥ 0,

hold for n = 0, 1, . . . , nτ − 1.

Proof. First, we prove the sufficiency of the conditions verifying the inequality on the
right-hand side in (18). From (15) and (P2), we have

A0u
n+1 + A∂g

n+1 = Avn+1 = Bvn + ∆t f (n,θ) ≤ Bvn + ∆tAf (n,n+1)
max . (19)

From (P1), it follows that Bvn
max ≤ Avn

max. Multiplying both sides of (19) by A−1
0 ≥ 0 (see

(C1)), expressing un+1 and using (C3), we obtain

un+1 ≤ −A−1
0 A∂ gn+1 + A−1

0 Bvn + ∆tA−1
0 Af (n,n+1)

max

≤ −A−1
0 A∂ gn+1 + A−1

0 Bvn
max + ∆tA−1

0 Af (n,n+1)
max

≤ −A−1
0 A∂ gn+1 + A−1

0 Avn
max + ∆tA−1

0 Af (n,n+1)
max

= −A−1
0 A∂ gn+1 + A−1

0 [A0| A∂ ]vn
max + ∆tA−1

0 [A0| A∂ ] f (n,n+1)
max

= −A−1
0 A∂ gn+1 + vn

0 + A−1
0 A∂v

n
∂ + ∆tf

(n,n+1)
0 + ∆tA−1

0 A∂ f
(n,n+1)
∂ .

Regrouping the above inequality, we get

un+1 − vn
0 − ∆tf

(n,n+1)
0 ≤ −A−1

0 A∂(gn+1 − vn
∂ − ∆tf

(n,n+1)
∂ ).

Hence, for the ith coordinate of the both sides we obtain

un+1
i − vn

max − ∆t f (n,n+1)
max ≤

N∂∑

j=1

(
−A−1

0 A∂

)
ij

(gn+1
j − vn

max − ∆t f (n,n+1)
max )

≤




N∂∑

j=1

(
−A−1

0 A∂

)
ij


 · max{0,max

j
{gn+1

j − vn
max}}

≤ max{0,max
j

{gn+1
j − vn

max}} = max{0, gn+1
max − vn

max},
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where we applied the condition (C2) and the property (P3). Finally, expressing un+1
i we

obtain the required inequality.
The inequality on the left-hand side of (18) can be proved similarly. This completes the

proof of the sufficiency of the conditions.
Now, let the DMP (18) be valid, then it is valid for any choice of the vectors f (n,θ),

gn, gn+1, and un. Below in this proof the symbol ej stands for the jth unit vector with
all entries equal to zero except for the jth entry which is one. With the choice gn+1 = 0,
vn = 0, ̺ = 1, f (n,θ) = ej , we get the relation A−1

0 ≥ 0. Really, combining (16) and (18) we
observe 0 ≤ un+1 = ∆tA−1

0 ej , which means that each column of A−1
0 is non-negative, i.e.,

A−1
0 ≥ 0. Thus, the necessity of (C1) is proved. 1

Using again (16) and (18) with the choice gn+1 = ej , gn = 0, ̺ = 1, f (n,θ) = 0 and
un = 0, we obtain the necessity of (C2), and similarly, with gn+1 = 0, vn = ej , ̺ = 1,
f (n,θ) = 0, we get the necessity of the condition (C3).

Remark 3.3 It is easy to show that if the basis functions satisfy (7) then the conditions

(C1⋆) A−1
0 ≥ 0,

(C2⋆) A∂ ≤ 0,
(C3⋆) B ≥ 0,

(where n = 0, 1, . . . , nτ − 1) ensure (C1)–(C3).

Theorem 3.4 Let the basis functions satisfy (7). Then the Galerkin solution of the problem
(1)–(2), combined with the θ-method in the time discretization, satisfies the discrete maximum
principle (18) if the conditions

(C1′) Kn
ij ≤ 0, i 6= j, i = 1, . . . , N, j = 1, . . . , N̄ , n = 0, . . . , nτ ,

(C2′) M
(n,θ)
ij + θ∆t Kn+1

ij ≤ 0, i 6= j, i = 1, . . . , N, j = 1, . . . , N̄ , n = 0, . . . , nτ − 1,

(C3′) M
(n,θ)
ii − (1 − θ)∆t Kn

ii ≥ 0, i = 1, . . . , N, n = 0, . . . , nτ − 1,

hold. Here, M
(n,θ)
ij and Kn

ij stand for the entries of matrices M(n,θ) and Kn.

Proof. It is enough to show that (C1⋆)–(C3⋆) follow from the assumptions of the
theorem. Relations (C1′) and (C3′) yield (C3⋆), condition (C2⋆) follows from (C2′), and
(C1⋆) can be shown proving that under the assumptions of the theorem A0 is a so-called
M -matrix (which matrices have non-negative inverse). This follows from the facts that the
off-diagonal elements of A0 are non-positive (see (C2′)) and A0 is a positive definite matrix.

1We remark that the straightforward possibility how to obtain f (n,θ) = fn = ej is to choose f(t, x) =
δPj

(x), where δPj
is the Dirac function centered at the vertex Pj . This choice, however, does not satisfy the

smoothness requirements for f . To be rigorous, we have to consider a sequence fε which approximates the
Dirac function δPj

and pass to the limit.
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4 Prismatic Meshes

4.1 Preliminaries

Let us assume that the domain Ω is three-dimensional and that it can be partitioned (face-
to-face) to right triangular prisms. Let us denote such a partition Th and call it prismatic
mesh or prismatic partition. Each element of Th is a right triangular prism P = T × I,
where T is a triangle and I a line segment. A typical domain for which a prismatic partition
exists is a cylindrical domain Ω = G × I where G ⊂ R

2 is a polygon and I ⊂ R a line
segment. The prismatic partition Th of Ω can be then constructed as the Cartesian product
of a triangulation of G and a partition of I. However, we remark that the domain Ω can be
much more complicated. In general it can be a finite union of cylindrical domains.

The finite element space V h
0 ⊂ H1

0 (Ω) associated to Th is defined in the case of right
triangular prismatic elements as follows:

V h
0 =

{
ϕ ∈ H1

0 (Ω) : ϕ(x, y, z)|P =

3∑

i=1

2∑

j=1

σijλi(x, y)ℓj(z), where P ∈ Th,

P = T × I, σij ∈ R, λi ∈ P
1(T ), ℓj ∈ P

1(I)
}
,

where P
1(T ) and P

1(I) stand for the spaces of linear functions defined in the triangle T and
in the interval I, respectively. In agreement with the previous notation φ1, . . . , φN stand
for the standard finite element basis functions in V h

0 . These basis functions are uniquely
determined by the requirement φi(Pj) = δij , i = 1, 2, . . . , N , j = 1, 2, . . . , N +N∂ , where δij
is the Kronecker symbol and Pi, i = 1, . . . , N +N∂ , stand for the vertices of Th.

The corresponding discrete solution is then given by (13). Our goal is to provide condi-
tions on the prismatic partition Th which would guarantee the DMP (17). We obtain these
conditions by inspection of requirements (C1′)–(C3′).

4.2 Element mass and stiffness matrices on prisms

To analyze requirements (C1′)–(C3′) we have to investigate the matrices K(t) and M(n,θ).
The matrix K(t) consists of two parts, K(t) = S + C(t), where

C(t) = [Cij(t)]N×N̄ , Cij(t) =

∫

Ω

c(t, x)φj(x)φi(x) dx,

S = [Sij ]N×N̄ , Sij =

∫

Ω

grad φj · grad φi dx, i = 1, 2, . . . , N, j = 1, 2, . . . , N̄ .

We consider also the element matrices M(n,θ),(P), K(P)(t) = S(P)+C(P)(t) which are defined
as follows

M(n,θ),(P) = [M
(n,θ),(P)
ij ]N×N̄ , M

(n,θ),(P)
ij =

∫

P

̺(n,θ)(x)φj(x)φi(x) dx,

C(P)(t) = [C
(P)
ij (t)]N×N̄ , C

(P)
ij (t) =

∫

P

c(t, x)φj(x)φi(x) dx,

S(P) = [S
(P)
ij ]N×N̄ , S

(P)
ij =

∫

P

grad φj · grad φi dx (20)

10



with ̺(n,θ)(x) = (1 − θ)̺(tn, x) + θ̺(tn+1, x). Here P ∈ Th, P = T × I is a right triangular
prism. We will use the notation for its vertices, edges, and angles shown in Figure 1.

B

C

b

c

d

a

D E

F

γ

βα

A

Figure 1: Basic notation for the prismatic element.

The analysis of conditions (C1′)–(C3′) is further based on the investigation of element
matrices M(n,θ),(P), S(P) and C(P)(t). Recently we proved the DMP for an elliptic problem
discretized by prismatic elements, see [9], where we already computed the entries of the matrix
S(P) as well as the entries of the matrices M(n,θ),(P) and C(P)(t) in case ̺(n,θ)(x) = c(t, x) = 1
in [0, τ ] × Ω. In [9] we also present explicit expressions for the off-diagonal entries of these
matrices. In the parabolic case we will need, in addition, explicit expressions for the diagonal
entries.

Let A denote a vertex of a prism P = T × I. Without loss of generality we assume
that T lies in the xy-plane and that I = [0, d]. Let ϕA(x, y, z) = λA(x, y)ℓ0(z) be the shape
function corresponding to the vertex A of the prism P, where λA is the barycentric coordinate
corresponding to the vertex A of the base triangle T and ℓ0(z) = 1 − z/d, z ∈ I, is the 1D
shape function. We may easily compute, see [9], the following integrals

∫

P

|grad ϕA|2 dP =
d

6

(
cotβ + cot γ +

|T |
d2

)
,

∫

P

ϕ2
A dP =

d |T |
18

. (21)

These are the desired explicit expressions for the (nonzero) diagonal entries of the element
matrices S(P) and also for M(n,θ),(P) and C(P)(t) provided ̺(n,θ)(x) = c(t, x) = 1 in [0, τ ]×Ω.

To utilize the analysis of the elliptic case from [9] as much as possible, we introduce the
following theorem.

Theorem 4.1 Let K̃(P) = S(P) + M̃(P) with S(P) given by (20) and with

M̃(P) =
[
M̃

(P)
ij

]
N×N̄

, M̃
(P)
ij =

∫

P

c̃(x)φj(x)φi(x) dx,

be the element matrix for the prismatic element P = T ×I with the reaction coefficient c̃ ≥ 0.

Let d be the altitude of P and let α
(T )
min ≤ α

(T )
med ≤ α

(T )
max be the angles in the triangular base

11



T . If

‖c̃‖
∞,P

|T |
6

+
cotα

(T )
med + cotα

(T )
min

2
≤ |T |

d2
≤ 2 cotα(T )

max − ‖c̃‖
∞,P

|T |
3

(22)

then the off-diagonal entries of K̃(P) are nonpositive, i.e., K̃
(P)
ij ≤ 0 for i 6= j.

Proof. This is just a reformulation of Theorem 2 and relation (20) from [9].

4.3 Conditions on meshes and time-steps

Definition 4.2. Let P ∈ Th, P = T × I be a prism. For n = 0, 1, . . . , nτ − 1 we define

δ
n,(P)
L =

1

̺
(n,θ),(P)
min

[
3

|T |
(
cotα

(T )
med + cotα

(T )
min

)
+ ‖cn‖

∞,P +
3

d2

]
,

δ
n,(P)
U =

1

̺
(n,θ),(P)
max

min

{
− 3

|T |
(
cotα

(T )
med + cotα

(T )
min

)
− cn,n+1,(P)

max +
6

d2
,

6

|T | cotα(T )
max − cn,n+1,(P)

max − 3

d2

}
,

where ̺
(n,θ),(P)
max = supP ̺

(n,θ)(x), ̺
(n,θ),(P)
min = infP ̺

(n,θ)(x), c
n,n+1,(P)
max = max

{
‖cn‖

∞,P ,
∥∥cn+1

∥∥
∞,P

}
,

̺ ≥ ̺0 > 0 and c ≥ 0 are the coefficient from the equation (1), d stands for the altitude of the

prism P, |T | denotes the area of the triangle T , and α
(T )
min ≤ α

(T )
med ≤ α

(T )
max are the (ordered)

angles in T .

Theorem 4.3 Let Th be a prismatic partition of Ω. Then the Galerkin solution of the
problem (1)–(2), combined with the θ-method in the time discretization, satisfies the DMP
(17) provided the following condition holds for all prisms P ∈ Th and n = 0, 1, . . . , nτ − 1

(1 − θ)δ
n,(P)
L ≤ 1

∆t
≤ θδ

n,(P)
U . (23)

Proof. It suffices to verify conditions (C1′)–(C3′). First, let us notice that if θ = 0 then

(23) implies δ
n,(P)
L ≤ 0 but by Definition 4.2 we have δ

n,(P)
L > 0. Therefore if (23) holds true

then necessarily we have θ > 0.
Thus, we can reformulate inequalities (23) equivalently as follows

|T |
d2

≥
(
̺
(n,θ),(P)
max

θ∆t
+ cn,n+1,(P)

max

)
|T |
6

+
cotα

(T )
med + cotα

(T )
min

2
, (24)

|T |
d2

≤ 2 cotα(T )
max −

(
̺
(n,θ),(P)
max

θ∆t
+ cn,n+1,(P)

max

)
|T |
3
, (25)

|T |
d2

≤
(
̺
(n,θ),(P)
min

(1 − θ)∆t
− ‖cn‖

∞,P

)
|T |
3

− cotα
(T )
med − cotα

(T )
min, (26)
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where the right-hand side of (26) is understood as infinity if θ = 1.
Conditions (C1′) and (C2′) are equivalent to

Sij + Cn
ij ≤ 0 and Sij +

1

θ∆t
M

(n,θ)
ij + Cn+1

ij ≤ 0, i 6= j.

The validity of both these inequalities follows from (24), (25), and Theorem 4.1 with c̃ =
c(tn, x) and c̃ = ̺(n,θ)(x)/(θ∆t) + c(tn+1, x), respectively. Here we use the inequality

‖c̃‖
∞,P ≤ ̺

(n,θ),(P)
max /(θ∆t) + c

n,n+1,(P)
max which holds in both cases.

To verify (C3′) we show the nonnegativity of all element contributions

M
(n,θ),(P)
ii − (1 − θ)∆t K

n,(P)
ii ≥ 0 ∀P ∈ Th. (27)

This inequality is trivially satisfied if θ = 1. For θ < 1 we rewrite (27) equivalently as

−S(P)
ii +

1

(1 − θ)∆t
M

(n,θ),(P)
ii − C

n,(P)
ii ≥ 0 ∀P ∈ Th. (28)

Now we show that (26) implies (28) and consequently (C3′).
Let Pi, 1 ≤ i ≤ N , be an arbitrary interior node in the prismatic partition Th. Let Pi be

a vertex of a prism P ∈ Th and let ϕA = φi|P . Then we can verify the validity of (28) as
follows

− S
(P)
ii +

1

(1 − θ)∆t
M

(n,θ),(P)
ii − C

n,(P)
ii

= −
∫

P

|grad ϕA|2 dP +

∫

P

(
1

(1 − θ)∆t
̺(n,θ)(x) − c(tn, x)

)
ϕ2

A dP

≥ −
∫

P

|grad ϕA|2 dP +

(
̺
(n,θ),(P)
min

(1 − θ)∆t
− ‖c(tn, x)‖∞,P

)∫

P

ϕ2
A dP

=
d

6

[
− cotβ − cot γ − |T |

d2
+

(
̺
(n,θ),(P)
min

(1 − θ)∆t
− ‖cn‖

∞,P

)
|T |
3

]
≥ 0,

where we used (21) with the angles β and γ being opposite to the vertex A ≡ Pi, see Figure 1.
The final inequality follows from (26) because cotangent is a decreasing function and we have

cotα
(T )
med + cotα

(T )
min ≥ cotβ + cot γ.

The crucial condition (23) for the validity of the DMP deserves certain discussion. The

first observation is that δ
n,(P)
L > 0. Hence, if δ

n,(P)
U > 0 then inequalities (23) can always be

satisfied by suitable choice of θ (close enough to 1).

Unfortunately, δ
n,(P)
U can be negative or zero in general. The requirement δ

n,(P)
U > 0 is

equivalent to

c
n,n+1,(P)
max

6
|T | + cotα

(T )
mid + cotα

(T )
min

2
<

|T |
d2

< 2 cotα(T )
max − c

n,n+1,(P)
max

3
|T |. (29)

This condition guarantees the DMP in the elliptic case, cf. (22) and [9, formula (20)]. Thus,
we can conclude that condition (29), which was obtained in the elliptic case, guarantees the
DMP also in the parabolic case, provided θ and ∆t are chosen to satisfy (23).
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The analysis of conditions (29) in the elliptic case yields the notion of the strictly well-
shaped prismatic partitions of cylindrical domains, see [9].

Definition 4.4. Let Th = T G
h × T I

d be a prismatic partition of a cylindrical domain
Ω = G×I ⊂ R

3, where T G
h is a triangulation of a polygon G ⊂ R

2 and T I
d is a partition of an

interval I ⊂ R. Further we denote by di, i = 1, 2, . . . ,M , the lengths of the M segments in
T I

d , by Tmax and Tmin the triangles in T G
h with the largest and smallest areas, respectively,

and by α
T

G

h
max and α

T
G

h

min the maximal and minimal angles in the triangulation T G
h , respectively.

We say that the prismatic partition Th is strictly well-shaped for the DMP if α
T

G

h
max < π/2 and

if
1

2
|Tmax| tanα

T
G

h
max < d2

i < |Tmin| tanα
T

G

h

min ∀i = 1, 2, . . . ,M,

In the case c = 0 in [0, τ ] × Ω, it can be easily shown that if the prismatic partition

is strictly well-shaped then δ
n,(P)
U is positive and, thus, the crucial condition (23) can be

satisfied by a suitable choice of θ and ∆t. In the case if c does not vanish then a fine enough

uniform refinement of any strictly well-shaped prismatic partition exists such that δ
n,(P)
U > 0,

see [9, Theorem 4].

As we already mentioned δ
n,(P)
L > 0 and therefore the case θ = 0 (the explicit Euler’s

method) is a priori excluded by (23). Interestingly, the following theorem shows that condi-
tion (23) limits the choice of θ even much more.

Theorem 4.5 If condition (23) is satisfied then max
n=0,...,nτ−1

P∈Th

5

5 +
̺
(n,θ),(P)
min

̺
(n,θ),(P)
max

≤ θ ≤ 1.

Proof. Let us fix a prism P ∈ Th and a time level n ∈ {0, 1, . . . , nτ − 1}. For θ 6= 0,
inequalities (23) are equivalent to (24)–(26). Since c ≥ 0, conditions (24)–(26) imply

|T |
d2

≥ ̺
(n,θ),(P)
max

θ∆t

|T |
6

+
cotα

(T )
med + cotα

(T )
min

2
, (30)

|T |
d2

≤ 2 cotα(T )
max − ̺

(n,θ),(P)
max

θ∆t

|T |
3
, (31)

|T |
d2

≤ ̺
(n,θ),(P)
min

(1 − θ)∆t

|T |
3

− cotα
(T )
med − cotα

(T )
min. (32)

Expressing
|T |
∆t

from inequalities (31) and (32), we obtain

|T |
d2

≤ − Q

Q+R
(cotα

(T )
med + cotα

(T )
min) +

R

Q+R
2 cotα(T )

max, (33)

where Q = (1 − θ)/̺
(n,θ),(P)
min and R = θ/̺

(n,θ),(P)
max . Similarly, a combination of (30) and (32)

yields

(2R−Q)
|T |
d2

≥ (Q+R)(cotα
(T )
med + cotα

(T )
min). (34)
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If 2R − Q ≤ 0 held true then inequality (34) would imply that cotα
(T )
med + cotα

(T )
min ≤ 0.

Since cotangent is decreasing we would have 2 cotα
(T )
max ≤ cotα

(T )
med + cotα

(T )
min ≤ 0 which is

in contradiction with (31). Hence, 2R−Q > 0 and (34) is equivalent to

|T |
d2

≥ Q+R

2R−Q
(cotα

(T )
med + cotα

(T )
min). (35)

Thus, (33) and (35) imply

(
Q+R

2R−Q
+

Q

Q+R

)
(cotα

(T )
med + cotα

(T )
min) ≤ R

Q+R
2 cotα(T )

max.

Since cotangent is a decreasing function, we utilize the inequality 2 cotα
(T )
max ≤ cotα

(T )
med +

cotα
(T )
min to infer

Q+R

2R−Q
+

Q

Q+R
≤ R

Q+R

which simplifies to 5Q ≤ R. The statement of the theorem now follows from the definition
of Q and R.

Notice that in the most favorable case ̺ = const. the smallest possible value of θ allowed
by Theorem 4.5 is 5/6.

Remark 4.6 Theorem 4.5 is sharp in the following sense. If θ = 5/6 then there exists a
prismatic partition and values of ̺ and c such that condition (23) is satisfied. Indeed, if θ =

5/6, ̺ = 1, c = 0, cotα
(T )
max = cotα

(T )
med = cotα

(T )
min = π/3, d2 =

3

4

√
3|T |, ∆t =

3

5

√
3|T | (the

base triangulation consists of equilateral triangles with the same area |T |) then inequalities
(23) hold as equalities. This is the only possibility how to satisfy condition (23) in the case
θ = 5/6.

5 Numerical experiments

In this section, we will consider model problem (1)–(2) in case c = 0, ̺ = 1. For constant
coefficients, the validity of DMP can be tested by studying one time-step of the discretization.
DMP will be valid, if and only if the conditions stated in Theorem 3.2 are satisfied. For small
systems these conditions can be tested by explicit construction of the inverse matrix A−1

0 .
As Theorem 4.3 is the main contribution of this paper, our interest is to numerically verify

this result. For this purpose, we consider a prismatic partition, with a base mesh consisting
out of triangles with angles 65, 60, and 55 degrees, see Figure 2(a). The solution domain Ω
has altitude 0.5 and its prismatic partition consists of five layers of prismatic elements, such
that the altitude of each layer is d = 0.1. This partition is strictly well-shaped according to
Definition 4.4 and it yields the DMP also for elliptic problems.

For such a partition, we have

δ
n,(P)
L = 812 and δ

n,(P)
U

.
= 73.759. (36)
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Figure 2: (a) The base mesh for the applied prismatic partition. (b) The upper and lower
bounds for ∆t as a function of θ. We verified computationally that the DMP is valid if and
only if a point (∆t, θ) lies between the solid lines. Theorem 4.3 produces the dashed lines.

These two values define the smallest possible value for the parameter θ,

θ ≥ δ
n,(P)
L

δ
n,(P)
L + δ

n,(P)
U

.
= 0.91673. (37)

In Figure 2(b), we plot the (upper and lower) bounds for ∆t as a function of θ. The
dashed lines indicate the theoretical bounds obtained in Theorem 4.3 while the solid lines
correspond to the computationally obtained bounds. Clearly, the theoretical bounds are
more restrictive than the computational ones and the computed smallest acceptable value of
θ is smaller than the value predicted by Theorem 4.3. An interesting phenomenon is, that
when θ → 1, the longest acceptable timestep grows to infinity. This is clear in the light of
formula (23). The lower bound for ∆t stays very similar for each θ.

6 Conclusions

We analyzed the DMP for the linear parabolic problem (1)–(2) discretized by the lowest-order
prismatic finite elements in space and by the θ-method in time. In Theorem 4.3 we obtained
easily verifyable sufficient condition for the validity of the DMP. These conditions also limit
the smallest possible value of the parameter θ, see Theorem 4.5. The performed numerical
tests illustrate the sharpness of the sufficient conditions.
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