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Abstract. Let X = (X, d, µ) be a doubling metric measure space. For 0 < α < 1, 1 ≤
p, q < ∞, we define semi-norms

‖f‖Bα
p,q(X) =

∫ ∞
0

∫
X

∫
B(x,t)

|f(x)− f(y)|p dµ(y) dµ(x)


q
p

dt

tαq+1


1
q

.

When q = ∞ the usual change from integral to supremum is made in the definition. The
Besov space Bα

p,q(X) is the set of those functions f in Lp

loc(X) for which the semi-norm
‖f‖Bα

p,q(X) is finite. We will show that if a doubling metric measure space (X, d, µ) supports a
(1, p)-Poincaré inequality, then the Besov space Bα

p,q(X) coincides with the real interpolation
space (Lp(X), KS1,p(X))α,q, where KS1,p(X) is the Sobolev space defined by Korevaar
and Schoen [KS]. This results in (sharp) imbedding theorems. We further show that our
definition of a Besov space is equivalent with the definition given by Bourdon and Pajot
[BP], and establish a trace theorem.

1. Introduction

The Besov spaces Bα
p,q(Rn) consisting of functions of smoothness order α occur naturally

in many fields of analysis. Their applications often require a knowledge of interpolation
properties, i.e. a description of the spaces which arise when the real method of interpolation
is applied to a pair of spaces. Of the many different possible definitions for the Besov spaces,
a central one is given in terms of a modulus of smoothness. We will adopt this approach in
the metric setting.

Given f ∈ Lp(Rn), 1 ≤ p < ∞, the Lp- modulus of smoothness ω(f, t)p, t > 0, of f is
defined as

ω(f, t)p = sup
|h|≤t

‖∆h(f, ·)‖Lp(Rn),

where |h| is the Euclidean length of the vector h and ∆h(f, x) = f(x+h)−f(x). As a general
metric space possesses no group structure, a modification to this definition is needed. Let
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us first consider the modified modulus given by

w(f, t)p =

 ∫
B(0,t)

‖∆h(f, ·)‖p
Lp(Rn) dh


1
p

,

Using subadditivity of ‖∆h(f, ·)‖Lp(Rn), with respect to f, it is easy to show that ω(f, t)p and
w(f, t)p are equivalent, i.e. C1ω(f, t)p ≤ w(f, t)p ≤ C2ω(f, t)p, with constants C1, C2 > 0
which depend only on p and n. Applying the Fubini theorem and a change of variables
we obtain a form of our modified modulus of smoothness that does not rely on the group
structure of Rn :

w(f, t)p =

∫
Rn

∫
B(0,t)

|f(x + h)− f(x)|p dh dx


1/p

=

∫
Rn

∫
B(x,t)

|f(y)− f(x)|p dy dx


1/p

.

Now let X = (X, d, µ) be a doubling metric measure space. Motivated by the above
Euclidean case we set

Ep(f, t) :=

∫
X

∫
B(x,t)

|f(x)− f(y)|p dµ(y) dµ(x)


1/p

and define the Besov space Bα
p,q(X), 0 ≤ α < ∞, 0 < q ≤ ∞, 1 ≤ p < ∞, as the set of those

functions in Lp
loc(X) for which the semi-norm ‖f‖Bα

p,q(X) is finite. Here

(1) ‖f‖Bα
p,q(X) =

{(∫∞
0

(t−αEp(f, t))q dt
t

) 1
q , 1 ≤ q < ∞,

supt>0 t−αEp(f, t), q = ∞.

Our definition is rather concrete and gives the usual Besov space in the Euclidean setting.
Moreover, it has very recently been shown by Müller and Yang [MY] that our definition
here coincides with the definition based on test functions and used earlier by Han [H],
Han and Yang [HY] and Yang [Y], provided that X, besides being doubling, also satisfies
a reverse doubling condition. We show in Section 5 that, under a p-Poincaré inequality
assumption, the Besov space Bα

p,q(X), 0 < α < 1, is realized as the real interpolation space

(Lp(X), KS1,p(X))α,q between the corresponding Lp(X) and Sobolev spaces. This is proved
by showing that Ep(u, t) is equivalent to the K-functional between Lp(X) and KS1,p(X).
Consequently, interpolation allows one to obtain embedding theorems. For brevity, we only
give a simple example of such a theorem in Section 5; many further results can be obtained
in a similar manner. Our Poincaré inequality assumption covers many interesting settings
[HaK], [KZ], and in fact implies the reverse doubling assumption in [MY]. It is by now
well understood that, under a certain Poincaré inequality assumption, various seemingly
different definitions for a Sobolev space turn out to be equivalent; see Section 3. One of the
consequences of the results in this paper, in comparison with [MY], is that many definitions
for a Besov space that seem at first to be different also turn out to be equivalent under the
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assumption of Poincaré inequality. The Poincaré inequality is not inherited by subsets of
X, but the trace of the Sobolev spaces (of functions on X) to a regular subset results in the
Besov spaces on the subset, see Section 6.

If α ≥ 1 and q < ∞ in the above definition of Bα
p,q(X), then functions u in this space must

have the property that lim inft→0 Ep(u, t)/t = 0. In Section 5 we show that, consequently,
under the Poincaré inequality assumption, Bα

p,q(X) only contains constant functions. This
extends also to the case q = ∞ exactly when α > 1.

Let us close this introduction by pointing out that a strongly related definition for a Besov
space was considered in [BP] (also see [HaM], [P]). To be precise, they relied on the norm

(2) ‖f‖Bα
p (X) =

(∫
X

∫
X

|f(x)− f(y)|p

d(x, y)αpµ(B(x, d(x, y)))
dµ(x)dµ(y)

) 1
p

for α = Q/p on an Ahlfors Q-regular space. We will prove in Section 5 that, on a doubling
metric space X, the norm (2) also generates Bα

p,p(X).

2. The K method of real interpolation

We recall only the essential definitions; for details we refer the reader to [BL], [N], and
[BS].

A pair (X0, X1) of Banach spaces X0 and X1 is called a compatible couple if there is some
Hausdorff topological vector space in which each of X0 and X1 is continuously embedded.
For each compatible couple (X0, X1), the sum X0 +X1 and intersection X0 ∩X1 are Banach
spaces under the norms

‖f‖X0+X1 = inf{‖f0‖X0 + ‖f1‖X1 : f = f0 + f1}(3)

and

‖f‖X0∩X1 = max{‖f‖X0 , ‖f‖X1},(4)

respectively.
Let (X0, X1) be a compatible couple of Banach spaces. The K-functional is defined for

each f ∈ X0 + X1 and t > 0 by

K(f, t, X0, X1) := inf{‖f0‖X0 + t‖f1‖X1 : f0 ∈ X0, f1 ∈ X1 with f = f0 + f1}.

Notice that K is an increasing function of t. Let (X0, X1) be a compatible couple and suppose
0 < ϑ < 1, 1 ≤ q < ∞ or 0 ≤ ϑ ≤ 1, q = ∞. Then the interpolation space (X0, X1)ϑ,q

consists of all f in X0 + X1 for which

(5) ‖f‖ϑ,q =

{(∫∞
0

(t−ϑK(f, t, X0, X1))
q dt

t

) 1
q , 0 < ϑ < 1, 1 ≤ q < ∞,

supt>0 t−ϑK(f, t, X0, X1), 0 ≤ ϑ ≤ 1, q = ∞,

is finite.
It follows from the definition of the K-functional that each linear operator which is

bounded on X0 and X1 is also bounded on (X0, X1)ϑ,q for 0 < ϑ < 1 (see [BS], Chapter
5, Theorem 1.12).

The definition of (X0, X1)ϑ,q in (5) could well be extended to the case ϑ > 1. However, for
the concrete K-functional considered in Section 4, the resulting space would only contain
constant functions (see the discussion in Section 5).
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While the theory of interpolation spaces, as given in [BS], assume X0 and X1 to be Banach
spaces, this is in general not necessary. Indeed, it suffices for X0 and X1 be seminormed
spaces, see [N]. The paper [N] extends the interpolation theory to a pair (X0, X1) of semi-
normed spaces that are continuously embedded in a Hausdorff topological vector space. The
embedding of X0 and X1 in such a topological space is merely to ensure that the spaces
X0 + X1 and X0 ∩ X1 make sense. In this note, we will consider X0 and X1 to be semi-
normed spaces of measurable functions on a metric measure space X; in such a situation, the
two spaces X0 + X1 and X0 ∩X1 always make sense. Specifically, we will consider X0 to be
the collection of all measurable functions f : X → [−∞,∞] such that

∫
X
|f |p dµ is finite, and

X1 to be the collection of all measurable functions f : X → [−∞,∞] such that the seminorm
‖f‖KS1,p(X), defined in Section 3 below, is finite. This seminorm is not in general a norm on
X1, as non-zero constant functions on X have zero seminorm, but non-zero Lp(X)-norm if
µ(X) is finite. To take care of this fact, we consider X0 and X1 to be collections of functions
rather than collections of equivalence classes of functions (for example, X0 6= Lp(X)). For
this choice of X0 and X1, the two spaces X0 + X1 and X0 ∩X1 make sense, and as in [BS]
we can consider the K-functional and the corresponding interpolation spaces. We leave it to
the reader to verify that the proof of Proposition 4.2 in [BS] can be modified to show that if
0 < θ < 1 and 1 ≤ q1 ≤ q2 ≤ ∞, then (X0, X1)θ,q1 embeds into (X0, X1)θ,q2 (this is because
as a function of t, K(f, t, X0, X1) is an increasing function); that the Holmstedt result (The-
orem 2.1 of [BS]) holds; and hence the reiteration theorem (Theorem 2.4 of [BS]) holds in our
setting. It is also elemetrary to check that if T : X0 + X1 → Y0 + Y1 is linear transformation
with T : X0 → Y0 and T : X1 → Y1 bounded, then T : (X0, X1)θ,q → (Y0, Y1)θ,q is also
bounded.

3. Sobolev spaces on metric measure spaces

We say that X = (X, d, µ) is a doubling metric measure space if (X, d) is a metric space
and µ a doubling measure on X, i.e. a positive Borel measure for which there exists a
constant Cd such that

0 < µ(B(x, 2r)) ≤ Cdµ(B(x, r))

for all x ∈ X, r > 0; B(x, r) denotes the set of all points y ∈ X such that d(x, y) < r. If
B = B(x, r), we denote by τB, τ > 0 its concentric dilate B(x, τr). An iteration of the
above inequality shows that there are constants C and s depending only on Cd such that

(6) µ(B(y, R)) ≤ C

(
R

r

)s

µ(B(x, r)),

whenever x ∈ B(y, R) and 0 < r ≤ R ≤ 2 diam(X).
As usual, if A ⊂ X is µ-measurable, then Lp(A) is the space of µ-measurable functions f

such that the norm ‖f‖Lp(A) =
(∫

A
|f |pdµ

) 1
p for 1 ≤ p < ∞, or ‖f‖L∞(A) = ess supA |f | is

finite. L1
loc(X) will denote functions that are p-integrable on all balls.

A Borel measurable function g : X → [0,∞) is an upper gradient (cf. [HeK], [KM]) of a
function f : X → R̄ if

(7) |f(γ(0))− f(γ(1))| ≤
∫

γ

g ds

for every rectifiable curve γ : [0, 1] → X.
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The Sobolev space N1,p(X), defined by Shanmugalingam in [S], consists of the functions
f ∈ Lp(X) having an g ∈ Lp(X). The space N1,p(X) is a Banach space with the norm

‖f‖N1,p(X) = ‖f‖Lp(X) + inf ‖g‖Lp(X),

where the infimum is taken over all upper gradients g ∈ Lp(X) of f . The seminorm

‖f‖DN1,p(X) = inf ‖g‖Lp(X)

where the infimum is over all upper gradients g of f , is of interest to us. The Dirichlet-Newton
space DN1,p(X) consist of all measurable functions f for which ‖f‖DN1,p(X) is finite.

A pair f ∈ Lq
loc(X) and measurable function g ≥ 0 satisfies a (q, p)-Poincaré inequality if

there are constants C > 0 and τ ≥ 1 such that

(8)

∫
B

|f(y)− fB|qdµ(y)

 1
q

≤ C rad(B)

∫
τB

gp

 1
p

for all balls B = B(x, r) ⊂ X. Here
∫

denotes the average value of the integral and
fB =

∫
B

fdµ. If (8) holds for all measurable functions and their upper gradients with
fixed constants C > 0 and τ ≥ 1, then X supports a (q, p)-Poincaré inequality. Such a space
is necessarily connected.

Denote by P 1,p(X) the set of functions f ∈ L1
loc(X) for which there exists a function

0 ≤ g ∈ Lp(X) such that ∫
B

|f(y)− fB|dµ(y) ≤ rad(B)

∫
τB

gp

 1
p

for all balls τB = B(x, τr) ⊂ X. The semi-norm on P 1,p(X) is given by ||f ||P 1,p(X) =
inf ||g||Lp(X), where the infimum is taken over all functions g that satisfy the above inequality.

We say that f ∈ M1,p(X) if there exists g ∈ Lp(X) such that for a.e. x,y the inequality

(9) |f(x)− f(y)| ≤ d(x, y)(g(x) + g(y))

holds. The semi-norm on M1,p(X) is defined by ‖f‖M1,p(X) = inf ‖g‖Lp(X) where the infimum
is taken over all g satisfying the above inequality. In Rn this definition yields the usual
Sobolev space and the semi-norm is equivalent to the usual semi-norm (see [Ha]).

The Sobolev space of Korevaar and Schoen consists of those functions for which the fol-
lowing semi-norm of f is finite:
(10)

‖f‖KS1,p(X) := lim sup
ε→0

∫
X

 ∫
B(x,ε)

|f(x)− f(y)|p

εp
dµ(y)

 dµ(x)


1/p

= lim sup
ε→0

Ep(f, ε)

ε
.

When X is a Riemannian manifold this definition yields the usual Sobolev space and the
quantity in (10) is equivalent to the usual semi-norm (see [KS]).

We have the following inclusions (cf.[KM]): M1,p(X) ⊂ P 1,p(X) ⊂ KS1,p(X) ⊂ N1,p(X).
It is an interesting question when it is possible to replace limsup by sup in the definition
(10). One can give simple examples of doubling (even Ahlfors regular) metric spaces on
which this is not possible. Indeed, X = [0, 1] ∪ [2, 3] equipped with the Lebesgue measure
and the usual distance is such an example.
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We define

‖f‖KS1,p(X) := sup
ε>0

∫
X

 ∫
B(x,ε)

|f(x)− f(y)|p

εp
dµ(y)

 dµ(x)


1/p

= sup
ε>0

Ep(f, ε)

ε
.

A function f is said to be in KS1,p(X) if ‖f‖KS1,p(X) < ∞. In general KS1,p(X) ⊂ KS1,p(X).

If X supports a (1, p)-Poincaré inequality, p > 1, for N1,p(X), then

M1,p(X) = P 1,p(X) = KS1,p(X) = KS1,p(X) = DN1,p(X)

and

M1,p(X) ∩ Lp(X) = P 1,p(X) ∩ Lp(X) = KS1,p(X) ∩ Lp(X) = KS1,p(X) ∩ Lp(X) = N1,p(X)

with equivalent semi-norms. This follows by combining results from [KM] and [KZ] and
noting that the Poincaré inequality implies the density of Lipschitz functions in N1,p(X).
There are no concrete geometric characterizations for a doubling space X to support a
Poincaré inequality. It is would be interesting to know if the weaker conclusion that there
be a constant C such that

(11) ‖f‖KS1,p(X) ≤ C‖f‖KS1,p(X)

would allow for a concrete characterization.

4. Calculation of the K-functional and the Besov space

The main result of this paper is the following description of the K-functional for the couple
(Lp(X), KS1,p(X)).

Theorem 4.1. Suppose that (11) holds. There exist constants c1, c2 > 0 such that for all
t > 0,

(12) c1Ep(f, t) ≤ K(f, t; Lp(X), KS1,p(X)) ≤ c2Ep(f, t).

Proof. First suppose f = g + h with g ∈ Lp(X) and h ∈ KS1,p(X). Since u → Ep(u, t) is
subadditive,

Ep(f, t) ≤ Ep(g, t) + Ep(h, t).

Ep(g, t)p ≤ 2p−1

∫
X

|g(x)|p dµ(x) + 2p−1

∫
X

∫
B(x,t)

|g(y)|p dµ(y) dµ(x)

≤ 2p−1

∫
X

|g(x)|p dµ(x) + 2p−1

∫
X

|g(y)|p
∫

B(y,t)

dµ(x)

µ(B(x, t))
dµ(y).

Using the doubling property of the measure and the fact that B(y, t) ⊂ B(x, 2t) whenever
x ∈ B(y, t) we conclude that∫

B(y,t)

dµ(x)

µ(B(x, t))
≤ C

∫
B(y,t)

dµ(x)

µ(B(x, 2t))
≤ C

∫
B(y,t)

dµ(x)

µ(B(y, t))
= C.

Therefore we have Ep(g, t)p ≤ C
∫

X
|g(x)|p dµ(x). The estimate Ep(h, t) ≤ Ct‖h‖KS1,p is

simply a consequence of the definition and assumption (11).
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Consequently,

Ep(f, t) ≤ C(‖g‖Lp + t‖h‖KS1,p).

Taking an infimum over such decompositions gives the left hand side estimate in (12).
For the right hand inequality in (12), fix t > 0, and let {Bi = B(xi, t/6)}i be a cover of

X such that {B(xi, t/30)}i is pairwise disjoint and
∑

i χB(xi,t) ≤ C with C > 0 independent
of t (but depends on the doubling constant). There is a collection {ϕi} of functions X → R
such that

(1) each ϕi is Ct−1 Lipschitz.
(2) 0 ≤ ϕi ≤ 1 for all i.
(3) ϕi(x) = 0 for x ∈ X \ 2Bi for all i.
(4)

∑
i ϕi(x) = 1 for all x ∈ X.

A collection {ϕi} as above is called a partition of unity with respect to {Bi = B(xi, t/6)}i.
(for the existence, see e.g. [KST] or [CW]). Now let h be defined by

h(x) =
∑

i

fBi
ϕi(x).

Let g(x) = f(x)− h(x). By property 4 we have that

g(x) =
∑

i

(f(x)− fBi
)ϕi(x).

By the bounded overlap property
∑

i χB(xi,t) ≤ C, there exists a positive integer N ,
which depends only on the overlap constant C, so that we may partition the collection
{Bi = B(xi, t/6)}i into families B1, . . . ,BN , so that the balls in the family Bj = {Bi,j}i have
the property that {3Bi,j}i is a pairwise disjoint family.

‖g‖p
Lp(X) ≤C

N∑
j=1

∑
i

∫
X

|f(x)− fBi,j
|p(ϕi,j(x))p dµ(x)

≤C
N∑

j=1

∑
i

∫
2Bi,j

|f(x)− fBi,j
|p dµ(x).

Using the doubling property of the measure and the fact that

Bi,j ⊂ B(y, t/3) and B(y, t/3) ⊂ 3Bi,j for all y ∈ Bi,j,

we have that∫
2Bi,j

|f(x)− fBi,j
|p dµ(x) ≤ C

∫
2Bi,j

∫
B(y,t/3)

|f(x)− f(y)|p dµ(x)dµ(y).
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Then, we obtain

‖g‖p
Lp(X) ≤C

N∑
j=1

∑
i

∫
2Bi,j

∫
B(y,t/3)

|f(x)− f(y)|p dµ(x) dµ(y)(13)

≤C

∫
X

∫
B(y,t)

|f(x)− f(y)|p dµ(x) dµ(y)

≤CEp(f, t).

We now want to estimate h in the KS1,p norm. Let y ∈ B(x, t/3). Using the properties
of the functions ϕi, we have that

|h(x)− h(y)| =
∣∣∑

j

(fB(x,t/3) − fBj
)(ϕj(x)− ϕj(y))

∣∣.

Let J = {j : B(x, t/3) ∩ B(xj, t/3) 6= ∅}. Then card J ≤ C for some constant that depends
only on the doubling constant Cd, and B(xi, t/3) ⊂ B(x, t).

Since |fB(x,t/3) − fBj
| ≤ C

∫
B(x,t)

|f(y)− fB(x,t)| dµ(y), when j ∈ J, we obtain that

|h(x)− h(y)| ≤ C
d(x, y)

t

∫
B(x,t)

|f(y)− fB(x,t)| dµ(y) for all y ∈ B(x, t/3).

Hence integration gives for 0 < ε < t/6,

∫
B(x,ε)

|h(x)− h(y)|p dµ(y) ≤C
εp

tp

 ∫
B(x,t)

|f(y)− fB(x,t)| dµ(y)


p

≤C
εp

tp

∫
B(x,t)

|f(y)− fB(x,t)|p dµ(y).
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Therefore, by using the Hölder inequality we have the estimate

‖h‖KS1,p(X) ≤ Ct−1

∫
X

∫
B(x,t)

|f(y)− fB(x,t)|p dµ(y)dµ(x)


1/p

≤ Ct−1

∫
X

∫
B(x,t)

|f(y)− f(x)|p dµ(y)dµ(x)


1/p

+ Ct−1

(∫
X

|f(x)− fB(x,t)|p dµ(x)

)1/p

≤ Ct−1

∫
X

∫
B(x,t)

|f(y)− f(x)|p dµ(y)dµ(x)


1/p

+ Ct−1

∫
X

 ∫
B(x,t)

|f(y)− f(x)| dµ(y)


p

dµ(x)


1/p

≤ Ct−1

∫
X

∫
B(x,t)

|f(y)− f(x)|p dµ(y)dµ(x)


1/p

≤ Ct−1Ep(f, t).

This together with (13) proves the right hand estimate in (12). �

We continue with a version of Theorem 4.1 for the non-homogeneous Sobolev space
KS1,p(X) ∩ Lp(X) that is equipped with the norm given by (4). Notice that in this case
a lower bound c min(1, t)‖f‖p is immediate from the definition and does not require (11);
consequently the interpolation space from (5) would only contain the zero function when
ϑ ≥ 1. This is not the case when the homogeneous Sobolev space KS1,p(X) is used, as seen
for example for the one-dimensional metric space X = [0, 1] ∪ [2, 3].

Theorem 4.2. Suppose that (11) holds. There exist constants c1, c2 > 0 such that for all
t > 0

(14)
c1(min(1, t)‖f‖p+Ep(f, t)) ≤ K(f, t; Lp(X), KS1,p(X)∩Lp(X)) ≤ c2(min(1, t)‖f‖p+Ep(f, t)),

Proof. By the definition of the K-functional as an infimum,

K(f, t; Lp, KS1,p) ≤ K(f, t; Lp, KS1,p ∩ Lp)

and

min(1, t)‖f‖p ≤ K(f, t; Lp, KS1,p ∩ Lp),
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and hence we obtain the left hand side estimate in (14) from (12). The right hand side
estimate in (14) follows from the proof of Theorem 4.1 by noticing that

K(f, t; Lp, KS1,p ∩ Lp) ≤ 2K(f, t; Lp, KS1,p) + t‖f‖Lp

and, observing from the definition of a K-functional that

K(f, t; Lp, KS1,p ∩ Lp) ≤ ‖f‖Lp .

�

Having determined the K-functional between Lp(X) and KS1,p(X) in terms of Ep(f, t),
it is now routine to identify the corresponding (α, q) interpolation spaces as Besov spaces.

Corollary 4.3. Assume that metric space is such that (11) holds. Let 1 ≤ p < ∞. If
0 < α < 1 and 1 ≤ q ≤ ∞, then

Bα
p,q(X) = (Lp(X), KS1,p(X))α,q

and

Bα
p,q(X) ∩ Lp(X) = (Lp(X), KS1,p(X) ∩ Lp(X))α,q

with equivalent norms. Furthermore,

B0
p,∞(X) = Lp(X) and B1

p,∞(X) ∩ Lp(X) = KS1,p(X) ∩ Lp(X).

By the reiteration theorem (see [BS], Chapter 5, Theorem 2.4), Corollary 4.3 immediately
yields an interpolation theorem:

Theorem 4.4. Suppose that (11) holds for a doubling metric space X. Let 1 ≤ p < ∞,
0 < α0, α1, θ < 1 and 1 ≤ q, q0, q1 ≤ ∞, or 0 < α0, θ < 1, α1 = 0, 1 ≤ q, q0 ≤ ∞, and
q1 = ∞. Then(

Bα0
p,q0

(X), Bα1
p,q1

(X)
)

θ,q
= Bα

p,q(X), α = (1− θ)α0 + θα1, α0 6= α1,(
KS1,p(X), Bα1

p,q1
(X)

)
θ,q

= Bα
p,q(X), α = (1− θ) + θα1,

with equivalent norms.

Under the assumption that X be Ahlfors regular, the interpolation result Theorem 4.4
has been established by Yang [Y]. An analogous version of the above interpolation theorem
has been established by Han, Müller and Yang [HMY, Theorem 8.1 and Theorem 8.3] for
Besov type spaces constructed using frames and approximations of the identity in general
metric measure spaces equipped with a doubling measure that in addition has a reverse
doubling property. Since under the reverse doubling condition of the measure the Besov
spaces constructed in [HMY] coincide with the Besov spaces considered in this paper ([MY]),
their result subsumes the above theorem if the measure on X satisfies a reverse doubling
condition. Given the construction of Besov spaces considered in [HMY], their proof of the
interpolation theorem requires a more intricate argument.

Remarks 4.5. If our metric measure space X supports a (1, p)-Poincaré inequality, then
(11) holds and all the Sobolev spaces discussed in Section 2 coincide, and we can use any of
them instead of KS1,p(X).
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5. Properties of the Besov space

We begin by showing that our interpolation theorem implies a generalization of the Sobolev
embedding theorem for Besov spaces.

The Lorentz spaces Lp,q(X), consist of measurable functions f of finite norm ‖f‖Lp,q(X) =

‖t
1
p
− 1

q f ∗(t)‖Lq(0,∞), where f ∗ is the non-increasing rearrangement of a measurable function
f on X, defined by

f ∗(t) = inf {λ > 0 : µ({x ∈ X : |f(x)| > λ}) ≤ t} , t ∈ [0,∞).

Theorem 5.1. Suppose that (X, µ) is Ahlfors s-regular in the large with s > 1 from (6):
that is, there exists r0 > 0 and x0 ∈ X such that whenever r > r0,

rs/C ≤ µ(B(x0, r)) ≤ Crs.

Suppose further that 1 ≤ q ≤ ∞, 0 < α < 1, 1 < p < s, and that X supports a (1, p)-Poincaré
inequality. Then there is a constant C such that

inf
c∈R

‖f − c‖Lp,q(X) ≤ C‖f‖Bα
p,q(X),

where p = sp
s−pα

.

We note here that if X is a graph, then X is not s-Ahlfors regular, but can be s-Ahlfors
regular in the large.

Proof. By the Sobolev embedding theorem (Theorem 5.1) from [HaK] we have that whenever
f ∈ KS1,p(X),  ∫

B(x0,R)

|f − fB(x0,R)|p∗dµ


1

p∗

≤ Cr

 ∫
B(x0,CR)

gpdµ


1
p

,

where p∗ = sp
s−p

whenever g is an upper gradient of a function f ∈ Lp(X). Using the Ahlfors

regularity of µ we conclude that for R > r0,(∫
B(x0,R)

|f − fB(x0,R)|p∗dµ

) 1
p∗

≤ C

(∫
B(x0,CR)

gpdµ

) 1
p

.

Let Bk = B(x0, k) for k ≥ 1. Then(∫
B1

|f − fBk
|p∗dµ

)1/p∗

≤
(∫

Bk

|f − fBk
|p∗dµ

)1/p∗

≤ C

(∫
X

gpdµ

)1/p

.

It follows that the sequence (f −fBk
) is bounded in Lp∗(B1). As f ∈ Lp∗(B1), it follows that

the sequence (fBk
) of real numbers is bounded, and hence has a convergent subsequence that

converges to a finite number c. Now(∫
Bk

|f − c|p∗dµ

)1/p∗

≤
(∫

Bk

|f − fBk
|p∗dµ

)1/p∗

+ |fBk
− c| ≤ C

(∫
X

gpdµ

)1/p

+ |fBk
− c|,

and letting k →∞ through the indices corresponding to our subsequence, we conlude that

‖f − c‖Lp∗(X) ≤ C‖f‖P 1,p(X).
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Because 1−α
p

+ α
p∗ = 1

p
, the usual interpolation theorem for Lebesgue spaces states that

Lp,q(X) = (Lp(X), Lp∗(X))α,q with equivalence of norms (see [BL], Theorem 5.2.1). Using
Corollary 4.3, whenever f ∈ Bα

p,q(X),

inf
c∈R

‖f − c‖Lp,q(X) ≤ C inf
c
‖f − c‖(Lp(X),Lp∗(X))α,q ≤ C inf

c
‖f − c‖(Lp(X),P 1,p(X))α,q

≈ C inf
c
‖f − c‖(Lp(X),KS1,p(X))α,q

≈ C‖f‖Bα
p,q(X).

�

For simplicity, we refrain from giving further consequences of our interpolation theorem.
Hoewever, we wish to discuss the restriction α < 1 in Theorem 5.1. We claim that, under the
(1, p)-Poincaré inequality assumption, Bα

p,q(X) only contains constant functions when both
α ≥ 1 and q < ∞ hold and also when both α > 1 and q = ∞ hold. To see this one reasons
as follows.

Under these conditions, the definition of Bα
p,q(X) implies that

lim inf
t→0

Ep(f, t)

t
= 0

when f ∈ Bα
p,q(X). Consider the approximating function h constructed in the second part of

the proof of Theorem 4.1, and denote it ht (as it indeed depends on t.) One easily sees that
ht → f in Lp

loc when t → 0. On the other hand, from the proof of Theorem 4.5 in [KM] one
observes that ht has an upper gradient gt so that

||gt||Lp ≤ Ct−1Ep(f, t),

where C is independent of t. Applying the (1, p)-Poincaré inequality to ht, taking the limit
inferior with respect to t and inserting the fact that X must be connected, we conclude that
f must be constant.

We conclude this section by showing that the Besov spaces considered by Bourdon and
Pajot [BP] identify with our spaces when we choose q = p.

Theorem 5.2. Let 1 ≤ p < ∞, α > 0. Then

‖f‖Bα
p,p(X) ≈ ‖f‖Bα

p (X).

Proof. We first observe that for each x ∈ X and k ∈ Z, doubling of our measure µ gives us
the estimate∫ 2k+1

2k

∫
B(x,t)

|f(x)− f(y)|pdµ(y)
dt

t1+αp

≤
∫ 2k+1

2k

1

2k(1+αp)

1

µ(B(x, 2k))

∫
B(x,2k+1)

|f(x)− f(y)|p dµ(y) dt

≤ 2k

2k(1+αp)

1

µ(B(x, 2k))

∫
B(x,2k+1)

|f(x)− f(y)|p dµ(y)

≤ 2αp

2(k+1)αp

C

µ(B(x, 2k+1))

∫
B(x,2k+1)

|f(x)− f(y)|p dµ(y)

= C 2−(k+1)αp

∫
B(x,2k+1)

|f(x)− f(y)|p dµ(y).
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Similarly, ∫ 2k+1

2k

∫
B(x,t)

|f(x)− f(y)|pdµ(y)
dt

t1+αp

≥ 2k

2(k+1)(1+αp)

1

µ(B(x, 2k+1))

∫
B(x,2k)

|f(x)− f(y)|pdµ(y)

≥ 2−kαp

C

∫
B(x,2k)

|f(x)− f(y)|pdµ(y).

Thus,

(15)

∫ ∞

0

∫
B(x,t)

|f(x)− f(y)|pdµ(y)
dt

t1+αp
≈
∑
k∈Z

2−kαp

∫
B(x,2k)

|f(x)− f(y)|p dµ(y).

By the Fubini theorem,

‖f‖p
Bα

p,p
=

∫ ∞

0

t−αpEp(f, t)p dt

t

=

∫ ∞

0

∫
X

∫
B(x,t)

|f(x)− f(y)|pdµ(y)dµ(x)
dt

t1+αp

=

∫
X

∫ ∞

0

∫
B(x,t)

|f(x)− f(y)|pdµ(y)
dt

t1+αp
dµ(x).

Therefore by (15),

‖f‖p
Bα

p,p
≈
∫

X

∑
k∈Z

2−kαp

∫
B(x,2k)

|f(x)− f(y)|pdµ(y)dµ(x)

≈
∫

X

∑
k∈Z

2−kαp 1

µ(B(x, 2k))

k∑
i=−∞

∫
B(x,2i)\B(x,2i−1)

|f(x)− f(y)|pdµ(y)dµ(x)

≈
∫

X

∑
i∈Z

∫
B(x,2i)\B(x,2i−1)

|f(x)− f(y)|pdµ(y)dµ(x)
∞∑

k=i

2−kαp 1

µ(B(x, 2k))

≈
∫

X

∑
i∈Z

2−iαp 1

µ(B(x, 2i))

∫
B(x,2i)\B(x,2i−1)

|f(x)− f(y)|pdµ(y)dµ(x)

≈
∫

X

∑
i∈Z

∫
B(x,2i)\B(x,2i−1)

|f(x)− f(y)|p

d(x, y)αpµ(B(x, d(x, y)))
dµ(y)dµ(x)

≈
∫

X

∫
X

|f(x)− f(y)|p

d(x, y)αpµ(B(x, d(x, y)))
dµ(y)dµ(x)

= ‖f‖p
Bα

p
.

�
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6. Besov spaces and a trace theorem

Recall from the discussion of Section 3 and (9) that for p > 1, if X supports a (1, p)-
Poincaré inequality, then a function f ∈ Lp(X) belongs to the Newton-Sobolev class N1,p(X)
if and only if there is a non-negative function g ∈ Lp(X) such that for a.e. x, y ∈ X, the
inequality |f(x) − f(y)| ≤ d(x, y)[g(x) + g(y)] holds. A version of this inequality holds for
Besov functions as well, as demonstrated by the following two lemmata. See [HaM] for a
version in the Euclidean setting.

Lemma 6.1. Let (X, d, µ) be a doubling metric measure space with diam(X) = R0, and
1 ≤ p < ∞. If f ∈ Bα

p,p(X), then there is a non-negative function g ∈ Lp(X) such that for
µ-a.e. x, y ∈ X,

|f(x)− f(y)| ≤ d(x, y)α [g(x) + g(y)].

Proof. Let x, y ∈ X, R = d(x, y), and for r > 0 and z ∈ X, let Br(z) := B(z, r). By the
doubling property of µ,

|f(x)− f(y)| ≤ |f(x)− fBR(x)|+ |f(y)− fBR(x)|

≤
∫

BR(x)

|f(x)− f(z)|µ(z) + C

∫
B2R(y)

|f(y)− f(z)|µ(z)

≤ C d(x, y)α

(∫
BR(x)

|f(x)− f(z)|µ(z)

Rα
+

∫
B2R(y)

|f(y)− f(z)|µ(z)

(2R)α

)
.

With g defined by

g(x) = sup

{∫
Br(x)

|f(x)− f(z)|µ(z)

rα
: 0 < r < 3R0

}
,

we see that for all x, y ∈ X,

|f(x)− f(y)| ≤ Cd(x, y)α [g(x) + g(y)].

It suffices now to show that g ∈ Lp(X). To see this, note that if x ∈ X and r > 0, by
choosing an integer k such that 2k−1 < r ≤ 2k,∫

Br(x)
|f(x)− f(y)|µ(y)

rα
≤ C

(2k)α

∫
B(x,2k)

|f(y)− f(x)| dµ(y)

≤ C

2−kpα

∫
B(x,2k)

|f(y)− f(x)|p dµ(y)


1/p

,

and so

g(x)p ≤ C
∑
k∈Z

2−kpα

∫
B(x,2k)

|f(y)− f(x)|p dµ(y).

Now by (15),∫
X

gp dµ ≤ C

∫
X

C
∑
k∈Z

2−kpα

∫
B(x,2k)

|f(y)− f(x)|p dµ(y) ≤ C ‖f‖p
Bα

p,p
< ∞.
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�

The next lemma provides a partial converse of the above result.

Lemma 6.2. Let 1 ≤ p < ∞ and diam(X) = R0 < ∞. Suppose that f ∈ L1
loc(X) and

g ∈ Lp(X) such that for µ-a.e. x, y ∈ X,

|f(x)− f(y)| ≤ d(x, y)β [g(x) + g(y)].

Then for all 0 < α < β, f belongs to the Besov space Bα
p,p(X).

Proof. By Theorem 5.2,

‖f‖p
Bα

p,p
≈
∫

X

∫
X

|f(x)− f(y)|p

d(x, y)αpµ(B(x, d(x, y)))
dµ(y) dµ(x).

By the assumption on f and by the doubling property of µ,∫
X

|f(x)− f(y)|p

d(x, y)αpµ(B(x, d(x, y)))
dµ(y) ≤ C

∫
X

d(x, y)βp [g(x)p + g(y)p]

d(x, y)αpµ(B(x, d(x, y)))
dµ(y)

≤ Cg(x)p

∫
X

d(x, y)p(β−α)

µ(B(x, d(x, y)))
dµ(y) + C

∫
X

d(x, y)p(β−α) g(y)p

µ(B(y, d(x, y)))
dµ(y).

Therefore, with

C0(x) :=

∫
X

d(x, y)p(β−α)

µ(B(x, d(x, y)))
dµ(y),

an employment of Fubini’s theorem now yields

‖f‖p
Bα

p,p
≤ C

∫
X

C0(x)g(x)p dµ(x).

Since g ∈ Lp(X), it suffices to prove that the function C0 is bounded on X. To see this, let
k0 ∈ Z with 2k0−1 < R0 ≤ 2k0 . Then for x ∈ X, by the doubling proeprty of µ again,

C0(x) =

∫
X

d(x, y)p(β−α)

µ(B(x, d(x, y)))
dµ(y) =

∑
k∈Z

∫
B(x,2k)\B(x,2k−1)

d(x, y)p(β−α)

µ(B(x, d(x, y)))
dµ(y)

≤
k0∑

k=−∞

2kp(β−α) µ(B(x, 2k) \B(x, 2k−1))

µ(B(x, 2k−1))

≤ C

k0∑
k=−∞

2kp(β−α),

and the last sum is finite since β − α > 0. �

The rest of this section is devoted to exploring traces of Newton-Sobolev functions in
regular compact subsets of a complete metric space X equipped with a Radon doubling
measure µ supporting a (1, p)-Poincaré inequality for some 1 < p < ∞. Recall from [KZ]
that there exists 1 ≤ q < p such that (1, q)-Poincaré inequality holds as well.
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Let K ⊂ X be a compact set. If f ∈ N1,p(X) and x, y ∈ K, then by the (1, q)-Poincaré
inequality, if x and y are both Lebesgue points of f and 0 ≤ λ < 1,

|f(x)− f(y)| ≤
∑
k∈Z

|fBk
− fBk−1

|

≤ C
∑
k∈Z

∫
Bk

|f − fBk
| dµ

≤ d(x, y) C
∑
k∈Z

2−|k|

∫
λBk

gq
f dµ

1/q

≤ d(x, y)1−λC
∑
k∈Z

2−|k|(1−λ)
(
2−|k|d(x, y)

)λ∫
τBk

gq
f dµ

1/q

≤ d(x, y)1−λC

(∑
k∈Z

2−(1−λ)|k|

)
[Mλ,qgf (x) + Mλ,qgf (y)],

where

Mλ,qg(x) = sup
0<r<2diam(K)

rλ

 ∫
B(x,r)

gq dµ


1/q

is a fractional maximal function of g. If f is a continuous function in N1,p(X), we now have
for all x, y ∈ K,

(16) |f(x)− f(y)| ≤ d(x, y)1−λ C [Mλ,qgf (x) + Mλ,qgf (y)].

In what follows, s > 0 is the number given by (6) for the measure µ.

Lemma 6.3. Suppose that K is Ahlfors γ-regular, and set ν = Hγ|K. If 0 ≤ s−γ ≤ λq < s,
then Mλ,q : Lq(X,µ) → wk − Lqγ/(s−λq)(K, ν) is bounded; that is, Mλ,q is of weak type
(q, qγ/(s− λq)).

Proof. For t > 0 let Et = {x ∈ K : Mλ,qg(x) > t}. For each x ∈ Et let 0 < rx < 2diam(K)
such that

1

tq

∫
B(x,rx)

gq dµ >
µ(B(x, rx))

rλq
x

.

By (6), with R = 5R0,

rs−λq
x <

C

tq

∫
B(x,rx)

gq dµ.

The family of balls B(x, rx), as x ranges over points in Et, covers Et; by the 5-covering
theorem we can find a pairwise disjoint countable subfamily {B(xi, ri)}i∈I such that Et ⊂
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i∈I B(xi, 5ri). Now, as γ/(s− λq) ≥ 1,

ν(Et) ≤
∑
i∈I

ν(B(xi, 5ri)) ≤ C
∑
i∈I

rγ
i

≤ C
∑
i∈I

t−qγ/(s−λq)

(∫
B(xi,ri)

gq dµ

)γ/(s−λq)

≤ Ct−qγ/(s−λq)

(∑
i∈I

∫
B(xi,ri)

gq dµ

)γ/(s−λq)

≤ t−qγ/(s−λq)

(∫
X

gq dµ

)γ/(s−λq)

,

where we used the pairwise disjointness property of the balls B(xi, ri) in the last line. �

Lemma 6.4. Under the assumption of Lemma 6.3, Mλ,q is of strong type (s/λ,∞); that is,
Mλ,q : Ls/λ(X, µ) → L∞(K, ν) is bounded.

Proof. Let x ∈ K and 0 < r < 2diam(K). Then by Hölder’s inequality and by the fact that
q < s/λ,

rλ

 ∫
B(x,r)

gq dµ


1/q

≤ rλ

 ∫
B(x,r)

gs/λ dµ


λ/s

=
rλ

µ(B(x, r))λ/s
‖g‖Ls/λ(X)

≤ C ‖g‖Ls/λ(X),

where we used (6) to obtain the last inequality. �

Now by Marcinkiewicz interpolation theorem (see for example Corollary 4.14 in page 226
of [BS]), if there exists 0 < θ < 1 such that

1

p
=

1− θ

q
+

θ

s/λ
and

1

p∗
=

1− θ

qγ/(s− λq)
,

then Mλ,q : Lp(X) → Lp∗(K, ν) boundedly. Solving the above for θ and then p∗, we see that
if q < p < s by taking q sufficiently close to p (which we can by the Hölder inequality), and
0 < λ < min{1, s(1 + q − p)/q} sufficiently small, we can make the choices of θ and p∗ as
follows:

(17) θ =
(p− q)s

s− λq
and p∗ =

qγ

q(s− λ)− s(p− 1)
,

if q(λ + γ) ≥ s, we obtain the desired boundedness of Mλ,q : Lp(X) → Lp∗(K, ν). Note that
by our assumptions on s and γ, we must have γ ≤ s.

Recall that as X supports a (1, p)-Poincaré inequality, Lipschitz functions, and hence
continuous functions, form a dense subclass of N1,p(X). Finally, by Lemma 6.2 and (16), we
have the following trace theorem.
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Theorem 6.5. Suppose X supports a (1, q)-Poincaré inequality for some 1 ≤ q < ∞ and
p > q. If s/(γ+1) < p < sq/[(s−γ)(γ+1)], max{0, (s−γ)/q} < λ < min{1, s(1+q−p)/q},
and p∗ is given by (17), then λ satisfies 0 ≤ s− γ ≤ λq < s, and so for any 0 < α < 1− λ,
there is a bounded trace operator

Tr : N1,p(X) → Bα
p∗,p∗(K)

such that whenever f is a continuous function from N1,p(X), Tr(f) = f |K.

With the choice in the above theorem, we also see that γ > s − p. Hence by the results
in [KiMa], every subset of K with positive ν-measure has positive p-capacity with respect to
the Newton-Sobolev space N1,p(X). Thus by the results of [KiL] (which state that p-capacity
almost every point is a Lebesgue point for such Sobolev functions), for all f ∈ N1,p(X),
Tr(f)(x) = f(x) for ν-a.e. x ∈ K.
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