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Abstract

We give an exponential lower bound on number of proof-lines in the
proof system K of modal logic, i.e., we give an example of K-tautologies
ψ1, ψ2, . . . s.t. every K-proof of ψi must have a number of proof-lines
exponential in terms of the size of ψi. The result extends, for the same
sequence of K-tautologies, to the systems K4, Gödel-L”́ob’s logic, S and
S4. We also determine some speed-up relations between different systems
of modal logic on formulas of modal-depth one.

Keywords: proof complexity, modal logic, lower bound, monotone interpolation.

1 Introduction

The object of proof complexity is to determine how efficient various proof sys-
tems are in proving their theorems. This leads to the basic problem of finding
lower bounds on sizes of proofs in the systems, which can be formulated as
follows:

For a proof system Q and a function g : ω → ω find (or decide whether it exists)
a sequence of Q-tautologies ψ1, ψ2, . . . such that for every i ∈ ω every Q-proof
of ψi must have size at least g(|ψi|).1

The answer to the problem, as well as its importance, will of course depend on
the particular system Q and function g. For example, in the case of predicate
calculus the problem has an affirmative solution for any recursive function g,
and the lower bounds are even more radical if Q contains some arithmetic. In
the case of weak proof systems, like propositional calculus, the problem is more
subtle and much more difficult. For such systems, the question is to find an
exponential (or at least superpolynomial) lower bound. Until now, such a lower

∗The proof was obtained in Prague, Mathematical Institute of the Czech Academy of
Science, under grant IAA1019401. The paper was completed in Munich, Ludwig-Maximilian
University, under Marie-Curie scholarship

1|ψi| means the size of ψi, i.e., the number of symbols in ψi. Likewise, the size of a proof
is the total number of symbols in the proof.
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bound has been proved only for artificial proof systems, namely resolution and
Frege systems of bounded depth. The difficulty of the problem has the same
reason which makes it particularly interesting: its connection to computational
complexity and the question whether NP = coNP (resp. PSPACE = coNP .)
By the theorem of Cook and Reckhow, if we show that every propositional
system has a superpolynomial lower bound then NP 6= coNP .

The proof system

In the main part of the paper we construct an exponential lower bound for
the system of modal logic K. The system is obtained by adding the symbol
for necessity, 2, to propositional logic. Propositional logic is assumed to be
formalised by the usual rules and axioms, having the general form of Frege
rules. More precisely, a Frege rule is the rule

ψ1(p), . . . ψk(p)
ξ(p)

,

where the formulas ψ1, . . . ψk, ξ are propositional formulas (i.e., not containing
2) s.t. every truth assignement of the propositional variables which satisfies all
of ψ1(p), . . . ψk(p) satisfies also ξ(p). An application of the rule is a substitution
of formulas for the variables p, the substituted formulas being arbitrary modal
formulas. The specific set of Frege rules chosen will not affect the proof of lower
bound. In addition, K has the rule of generalisation

ψ

2ψ
,

and the axiom of distributivity

2(ψ → ξ) → (2ψ → 2ξ).

The distributivity axiom has the key role in constructing the lower bound. In
fact, we will show that every proof of the given tautology requires an exponential
number of applications of the distributivity axiom inK. The other proof systems
to which the result applies are extensions of K by other modal axioms, which
will be specified in Section 6. The same lower bound is valid also in the case
of K4, Gödel-Löb’s logic, S and S4, by showing that the additional axioms do
not lead to shortening of proofs on tautologies of modal depth one (as far as the
number of distributivity axioms is concerned). The result does not apply to K5
and S5. In this case, it is shown that K5 and S5 have exponential speed-up over
K on tautologies of modal-depth one (see Section 6.6). A recent application of
the lower bound for K is a lower bound on the lengths of proofs in intuitionistic
propositional logic, which will be given elsewhere.

All the logics to which the result applies are PSPACE-complete, while we
are short of proving the same for K5 or S5 which are in NP . However, this is a
mere coincidence. The hard tautologies which will be presented are tautologies
of modal depth one. But the system K restricted only to formulas of modal
depth one is also NP -complete.
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The method of proof

The general strategy of the proof is the following: as we are not attempting
to find lower bounds for Frege systems, we shall count only the applications of
modal axioms in a proof. In fact, we will consider only the number of axioms
of distributivity in a proof. In order to be able to find a lower bound on the
number of applications of distributivity in a K-proof, we will work in the theory
K0

5 (introduced on page 4) which does not contain the distributivity axiom. We
show that if Γ is the set of distributivity axioms used in K-proof of ψ then∧

Γ → ψ

is a K0
5 -tautology. Hence, in order to show that n is a lower bound on the

number of applications of distributivity in a proof of ψ, it is sufficient to show
that for every set Γ of distributivity axioms s.t. |Γ| < n,

∧
Γ → ψ is not K0

5 -
tautology. The theory K0

5 has a very simple model theory, and this question is
then resolved model-theoretically. In models of K0

5 we interpret 2 over a set G,
which is a set of sets of truth assignments. Distributivity axioms impose G to be
closed on intersections and supersets, i.e., they require G to be a filter. In order
to find a model in which

∧
Γ → ψ is false, it is sufficient to find G which looks like

a filter enough to make the axioms in Γ true without making true ψ. It should
be observed that the model construction is intimately related to Karchmer’s
formulation of the Razborov proof of lower bound on monotone circuit size, see
[3].2 (However, the proof was obtained without knowing Karchmer’s approach.)

Monotone interpolation

The bound itself is not reached directly, but rather by showing that K has a
form of monotone interpolation. The idea of monotone interpolation is to apply
the seminal results in circuit complexity of Razborov [5], and Alon-Boppana
[1] and others, to proof-complexity. Alon and Boppana have shown that every
monotone circuit C (i.e., a circuit which contains only ∧-gates, ∨-gates and no
¬-gates) which separates the set of k+1-colorable graphs, Colork+1, and graphs
with clique of size k, Cliquek, (i.e., it is a circuit which outputs 1, if the graph
is k + 1-colorable, 0, if the graph has k-clique, and anything if neither applies)
must be of exponential size. The implication

(?) ”if a graph has a clique of size k + 1 then it is not k-colorable”
can be formulated as a propositional tautology. Hence in order to find an
exponential lower bound for a propositional proof system P , it is sufficient to
show that from a P -proof of (?) of size n one can extract a monotone circuit
of size polynomial in n separating Colork+1 and Cliquek. This approach has
been first applied by Kraj́ıček [4] to obtain a lower bound for resolution. In
the case of K, we rephrase (?) by inserting 2 here and there to obtain a modal
tautology (see Theorem 14 for the exact formulation), and we show that every

2This connection is made more explicit in Remark on page 7.
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K-proof of the modified (?) with n distributivity axioms gives a monotone circuit
separating Colork+1 and Cliquek of size approximately n2. This is achieved by
representing the model-theoretic content of distributivity axioms used in a proof
by a so called flowgraph, and by observing that flowgraphs can be simulated by
monotone circuits.

As remarked above, the proof of monotone interpolation for K employs the
same general approach as the proof of monotone lower bound for circuits. The
proof could hence be carried out directly, by repeating the proof of Alon and
Boppana, without an explicit reference to it.

I worked on the problem of lower bounds for modal logic with Pavel Pudlák and
Joost Joosten, to whom I am thankful for introducing me to the problematics
as well as for invaluable help.

2 Theory K0
5

Theory K0
5

The theory K0
5 will have, in addition to the propositional rules, the rules of

generalisation and transparency

(G)
ψ

2ψ
, (T )

ψ ≡ ξ

2ψ ≡ 2ξ

and the axiom scheme

(V ) 2((ψ1 ∧2ξ) ∨ (ψ2 ∧ ¬2ξ)) ≡ (2ψ1 ∧2ξ) ∨ (2ψ2 ∧ ¬2ξ)

The axiom scheme expresses the K5 property that modalised formulas have
truth-values independent on a possible world - thence the notation K0

5 .3 The
axiom allows us to transform any formula to a formula of modal depth one, i.e.,
with no nested modalities:

Proposition 1 For any formula ψ there exists a formula ψ′ of modal-depth one
s.t.

K0
5 ` ψ ≡ ψ′.

Proof. Assume, for simplicity, that ψ = 2ξ and that there is a propositional
formula η s.t. every 2 occurring in ξ occurs as 2η. ξ is, by means of proposi-
tional rules only, equivalent to

(λ1 ∧2η) ∨ (λ2 ∧ ¬2η)

for some propositional formulas λ1, λ2. By transparency

K0
5 ` 2ξ ≡ 2((λ1 ∧2η) ∨ (λ2 ∧ ¬2η)).

3Note that we cannot use the usual K5 formulation because we do not have distributivity.
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Hence, by (V ),
K0

5 ` 2ξ ≡ (2λ1 ∧2η) ∨ (2λ2 ∧ ¬2η),

where (2λ1 ∧ 2η) ∨ (2λ2 ∧ ¬2η) has modal-depth one. The general proof is
carried out easily by induction. QED

Models for K0
5

Let U denote the set of all possible truth assignments of propositional variables
(i.e., U is infinite). Let G ⊆ P (U) be fixed. For v ∈ U and a modal formula ψ
we define that

v  ψ

by induction as follows:

1. For a variable p, v  p, if p is assigned 1 in v.

2. We let v  ψ1 ∧ ψ2 iff v  ψ1 and v  ψ2. We let v  ¬ψ iff not v  ψ,
and similarly for other connectives.

3. Finally, assume that the relation u  ψ has been defined for any u ∈ U .
Let

[ψ] := {u ∈ U ;u  ψ} .

Then let v  2ψ iff [ψ] ∈ G.

Let v ∈ U , G ⊆ P (U). The pair 〈v,G〉 is a model for K0
5 , if U ∈ G.

(The requirement U ∈ G corresponds to the rule of generalisation.) We write
that 〈v,G〉 |= ψ, if v  ψ. Note that if every variable in ψ occurs only in
modal context (for such a formula we say it is purely modal), the fact whether
〈v,G〉 |= ψ is independent on v and we may also write simply G |= ψ.

Theorem 2 K0
5 is sound and complete with respect to K0

5 models, i.e., for
every formula ψ, K0

5 ` ψ iff for every K0
5 model M , M |= ψ.

Proof. The soundness part is easy. For the completeness part it is sufficient
to prove that for every consistent formula ψ (i.e., K0

5 6` ψ) there exists a model
M s.t. M |= ψ.

STEP 1. By Proposition 1 we can assume that ψ has modal-depth one.
STEP 2. Let r1, . . . rn be the list of variables which occur in ψ in non-

modal context. For an assignment σ of the variables r1, . . . rn, let ψσ denote
the formula obtained by replacing every non-modal occurrence of ri by σ(ri),
i = 1, . . . n. Since ordinary propositional rules are in K0

5 , there exists some
assignment σ s.t. ψσ is consistent. Clearly, if we have G s.t. G |= ψσ then
〈σ,G〉 |= ψ. Therefore we can assume that ψ is a purely modal formula.
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STEP 3. Assume that ψ is a purely modal formula of modal depth one. By
means of propositional logic only, we can transform it to an equivalent DNF
formula, i.e. a formula which is a disjunction of formulas of the form

2ψ1 ∧2ψn ∧ ¬2ξ1 ∧ . . .¬2ξm.

Since ψ is consistent then at least one of the disjuncts is consistent. For such
a disjunct η of the depicted form, we let G := {[ψi]; i = 1, . . . n} ∪ {U}. Let
us show that G |= η. From the definition of G, G |= 2ψi, i = 1, . . . n. Assume
that G 6|= ¬2ξj for some j = 1, . . .m. Then [ξj ] ∈ G. But then either [ξj ] = U
or there is i = 1, . . . n s.t. [ξj ] = [ψi]. In the former case ξi is a propositional
tautology and in the latter K0

5 ` ξj ≡ ψi. In both cases K0
5 ` 2ψi → 2ξj ,

which contradicts the assumption that η is consistent. QED

3 An approach to lower bounds

The theory K is the theory which, in addition to the propositional rules, has a)
the rule of generalisation, and b) the axiom of distributivity

2(ψ → ξ) → (2ψ → 2ξ).

Proposition 3 Let ψ be K-tautology.

(1) Let Γ be the set of distributivity axioms occurring in a proof of ψ. Then∧
Γ → ψ

is a K0
5 -tautology.

(2) Assume that for every set Γ of distributivity axioms s.t. |Γ| < k, the
formula ∧

Γ → ψ

is not a K0
5 -tautology. Then every K proof of ψ contains at least k axioms

of distributivity.

Proof. (1) Assume the opposite. Then, by completeness of K0
5 , we have a

model M = 〈v,G〉 s.t. M |=
∧

Γ but M 6|= ψ. Let S be the proof of ψ. It is
sufficient to prove by induction that

for every u ∈ U and a formula η in S, u  η.
Consider the possible alternatives. a) For an axiom of propositional logic the
statement holds, and an application of a propositional rule retains the property.
b) An element of Γ is true in M by the assumption. Since distributivity axioms
are purely modal formulas then they are true in every u ∈ U as well. c) Assume
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that generalisation is applied to ψ. By the assumption, for every u ∈ U , u  ψ.
Hence [ψ] = U and therefore G |= 2ψ. d) Similarly for the transparency rule.

(2) trivially follows. QED

Note that if ψ ≡ ξ is a K0
5 tautology then in general we need two distributivity

axioms to prove 2ψ ≡ 2ξ in K. But those distributivity axioms, as following
straight from the transparency rule, will be omitted in Proposition 3.

In terms of G, distributivity axiom corresponds to the condition

(?) −X ∪ Y ∈ G, X ∈ G → Y ∈ G.

A set
Λ ⊆ P (U)2

will be called a set of distributivity conditions. We shall say that G is distributive
on Λ iff every 〈X,Y 〉 ∈ Λ satisfies the condition (?).

If Γ is a set of distributivity axioms of modal depth one, the set of corre-
sponding conditions Λ is defined as follows: for every distributivity axiom of
the form

2(ψ → ξ) → (2ψ → 2ξ)

we put
〈[ψ], [ξ]〉

in Λ.
Clearly, if G is distributive on Λ, then every distributivity axiom in Γ is true

in 〈v,G〉, v arbitrary. For if G |= 2(ψ → ξ) and G |= 2ψ then [ψ → ξ] =
−[ψ] ∪ [ξ] ∈ G and [ψ] ∈ G. Then, by (?), [ξ] ∈ G and hence G |= 2ξ.

Remark. Note that the condition (?) can be replaced by an equivalent pair
of conditions of the form

(??) X,Y ∈ G → X ∩ Y ∈ G, X ∈ G, X ⊆ Y → Y ∈ G.

Hence distributivity axioms can be seen as requiring G to be a filter. In our
lower-bound we shall construct G which is a filter enough to satisfy the distrib-
utivity axioms used in a (hypothetical) proof of a tautology ψ without making
ψ true.

If we demand G to be distributive on the whole P (U)2 then G is a filter.
Restricting U to a set Up of assignments of a finite set of variables p then Up

is finite and G restricted to Up is a trivial filter, i.e., generated by a single set
M ⊆ Up. In that case the K0

5 model 〈v,G〉 coincides with the K5 model 〈v,M〉.

The following is a simple but nevertheless a very important lemma:

Lemma 4 For a formula η, let η′ denote the formula obtained by deleting all
boxes in η. Furthermore, let η? be the formula obtained by deleting every 2 in
η which is in a range of another box. Then:
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(1) If ψ is K-tautology then ψ′ is a propositional tautology.

(2) If ψ is K-tautology then ψ? is K-tautology. Moreover, if ψ has K-proof S
with n distributivity axioms then ψ? has K-proof S′ s.t. i) S′ contains at
most n distributivity axioms and ii) all formulas in S′ have modal-depth
one.

Proof. (1) is clear.
(2) Let S = η1 . . . ηn, ηn = ψ, be K-proof of ψ and let Γ be the set of dis-

tributivity axioms occurring in S. We see that if η is an axiom of distributivity
then η? is also such. Hence Γ? := {γ?; γ ∈ Γ} is also a set of distributivity ax-
ioms. Let S? = η?

1 . . . η
?
n. We must show by induction that every η?

i , i = 1, . . . n,
is provable in K by a proof with formulas of modal depth one using just the
distributivity axioms in Γ?. Clearly, the only non-trivial step is when ηj is ob-
tained from ηi, i < j by generalisation. Assume then that ηj = 2ηi has been
obtained as

ηi

2ηi
.

We have (ηj)? = (2(ηi)?) = 2η′
i. Since ηi is K-tautology then by part (1) η′

i is
a propositional tautology. Therefore we can prove 2η′

i first by proving η′
i, using

just propositional rules, and then applying generalisation

η′
i

2η′
i

.

Hence no distributivity is needed to prove 2η′
i = (ηj)?. QED

Proposition 5 Let ψ be a K-tautology of modal depth one. Assume that it
has K-proof S with n distributivity axioms. Then ψ has a K-proof S′ s.t. i)
S′ contains n distributivity axioms ii) all the distributivity axioms in S′ have
modal depth one.

Proof. Immediately follows from the previous lemma. QED

The following is then an easy consequence of Proposition 3:

Theorem 6 Let ψ be a K-tautology of modal depth one. Assume that for every
set of distributivity conditions Λ s.t |Λ| < k there exists G distributive on Λ and
a corresponding model s.t. 〈v,G〉 6|= ψ. Then every K proof of ψ contains at
least k axioms of distributivity.

Proof. Assume the contrary. Then we have a K-proof S of ψ with less than k
axioms of distributivity. By the previous proposition, we can assume that all the
formulas in ψ, and hence also the distributivity axioms, have modal-depth one.
Let Λ be the set of conditions corresponding to Γ, the distributivity axioms in S.
By the assumption, we can find 〈v,G〉 s.t. G is distributive on Λ and 〈v,G〉 6|= ψ.
But hence 〈v,G〉 |=

∧
Γ and 〈v,G〉 6|=

∧
Γ → ψ which contradicts Proposition 3.

QED
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4 Monotone interpolation for K

For a propositional formula α(p, r), α(2p, r) will denote the formula obtained
from α by replacing all variables p ∈ p by 2p. A modality-free formula α will
be called monotone, if the only logical connectives occurring in α are ∧ and
∨. If we have a monotone formula α containing exactly the variables p and a
modality-free formula β s.t. α→ β is a tautology then also

(?) α(2p) → 2β

is a modal tautology. The obvious strategy for proving (?) is to start with the
atoms of α and then expand the boxes in α upwards by changing 2ψ1 ∧ 2ψ2

resp. 2ψ1∨2ψ2 to 2(ψ1∧ψ2) resp. 2(ψ1∨ψ2). Hence we have obtained 2α and
we proceed by one application of distributivity on 2(α → β). In this way, we
needed at least as many distributivity axioms as there are connectives in α (when
the circuit size of α is considered.) This process could be made - with respect
to the distributivity axioms - more efficient if we first transformed α(2p) to a
formula of a smaller monotone circuit size by means of pure propositional logic
and applied the described procedure to the simplified formula. For example,
we can transform α(2p) either to a CNF or a DNF form which may have very
different sizes. We will now prove that such a strategy is the most efficient in
proving the implication, that any proof of (?) contains at least as many axioms
of distributivity as is the size of the smallest monotone interpolant of α and β.

We shall say that a circuit C(p) interpolates α(p) and β(p, r) iff for any
assignment σ of p

1. if α(p) is true then C(p) = 1 and

2. if C(p) = 1 then for every assignment of r β(p, r) is true.

The size of a circuit is the number of its gates.

It is easy to show that if there is a monotone interpolant of α and β of size
n, then α(2p) → 2β has a proof with o(n) distributivity axioms. We are now
going to prove the following:

Theorem 7 Let α be a monotone formula containing exactly the variables p
and let β be a modality-free formula. Assume that

α(2p) → 2β

has an K proof with n distributivity axioms. Then there is a monotone circuit
of size ≤ o(n2) which interpolates α and β.

Note: we do not restrict the variables occurring in β in any way.

We first introduce some concepts:
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Flowgraphs

A flowgraph M is a directed labeled graph with the following properties:

1. The labels of vertices are unique and some vertices are labeled by variables
p1, . . . pn and the constant 1.

2. for every edge 〈a, b〉 in M there exists a vertex a′ s.t. 〈a′, b〉 is also an edge
in M and both the edges are labeled ∧{a, a′}. Such a pair will be called
a ∧-gate and we shall write that b = a ∧ a′.

A flowgraph will be called acyclic, if the underlying graph is acyclic.
The size of M will be the number of gates in M .

For an assignment σ of variables p, a possible solution of a flowgraph M is an
assignment v of the vertices of M by 0, 1 s.t.

1. v(1) = 1, and if σ(pi) = 1 then v(pi) = 1, i = 1, . . . n,

2. for every ∧-gate 〈a, b〉 〈a′, b〉, if v(a) = 1 and v(a′) = 1 then v(b) = 1.

The solution of M for σ is the assignment V M
σ of M s.t. for every vertex a,

V M
σ (a) = 0, if there exists a possible solution v s.t. v(a) = 0, and V M

σ (a) = 1
otherwise. I.e. V M

σ is the minimum possible solution of M for σ. (Where no
confusion is possible, the superscript M will be omitted.)

Hence a vertex b (which is not a variable or 1) is assigned 1 in Vσ iff there
exists at least one ∧-gate b = a ∧ a′ such that Vσ(a) = 1 and Vσ(a′) = 1. Thus
there is an immediate connection between acyclic flowgraphs and monotone
circuits: a circuit b =

∨
i=1,...n ai ∧ a′

i corresponds to the flowgraph in which
there are n ∧-gates b = ai ∧ a′

i. I.e., a circuit ∧-gate corresponds to a flowgraph
∧-gate, and an ∨-gate has its counterpart in the multiplicity of ∧-gates with a
single output.

The following proposition shows that even cyclic flowgraphs can be simulated
by monotone circuits.

Proposition 8 Let M be a flowgraph of size n. Let a be a vertex in M . Then
there exists a monotone circuit Ca of size o(n2) s.t. for every assignement σ of
p

Ca(σ(p)) = 1 ≡ Vσ(a) = 1.

Proof. STEP 1. For flowgraphs M and N and a vertex a, which is vertex
both in M and N , we say that N simulates M on a if for every assignement σ
of p, V M

σ (a) = V N
σ (a). First, it must be shown that for every flowgraph M of

size n and a vertex a of M there exists an acyclic flowgraph M ′ of size o(n2)
s.t. M ′ simulates M on a.

The construction proceeds as follows: let M have k vertices a1, . . . ak and n
gates (so k ≤ 2n, as we can assume that there are no isolated vertices in M .)
For every vertex aj j = 1, . . . k, we introduce k copies a1

j , . . . a
k
j . The flowgraph

M ′ will have k2 vertices ai
j , i, j = 1, . . . k and the gates will be defined as follows:

10



1. For every j = 1, . . . k label a1
j by p ∈ p resp. 1 provided aj was labelled

by p resp. 1 in M .

2. For every j = 1, . . . k and for every i, 1 ≤ i < k we put in M ′ a double
edge from ai

j to ai+1
j s.t. it forms ∧-gate ai+1

j = ai
j ∧ ai

j .

3. For every i = 1, . . . k − 1 and j1, j2 = 1, . . . k, we connect ai
j1

and ai
j2

by
∧-gate to ai+1

j , provided there is ∧-gate from aj1 , aj2 to aj in M .

Finally, we identify vertices the vertex a = aj of M with its copy ak
j in M ′. It

is easy to see that M ′ simulates M on a. The size of M ′ is n.k ∼ o(n2).
STEP 2. Second, it is sufficient to prove that for an acyclic flowgraph M

of size n and a vertex a of M there is a monotone circuit Ca of the desired
properties of size 2n. The above construction automatically gives a flowgraph
s.t. every node labelled by a p or 1 is a leaf and we shall assume also this property
in M . To a leaf which is labeled by a variable p or 1 assign the circuit p resp.
1 and to a leaf of a different kind an empty circuit. Assume that for a vertex
b we have assigned circuits to source nodes of all gates with an output node b.
First, delete all gates s.t. at least one of their source nodes has been assigned
empty circuit. If there is no gate left, assign b an empty circuit. Otherwise, let
〈c1, d1〉, . . . 〈cn, dn〉 be the input nodes of ∧-gates with output b. Then assign to
b the circuit (c1 ∧ d1) ∨ . . . ∨ (cn ∧ dn).

QED

Flowgraphs for distributivity axioms.

For a set Γ of distributivity axioms of modal-depth one let Λ ⊆ P (U)2 be the
corresponding set of distributivity conditions (see page 7). A flowgraph for Λ
(or Γ) is a flowgraph whose vertices are labeled by subsets of U and defined as
follows:

1. put all [p1], . . . [pn], U to M ,

2. put the vertices a, a′, b in M and form a gate b = a ∧ a′ iff there exists
〈X,Y 〉 ∈ Λ, a = X, a′ = −X ∪ Y and b = Y .

In the definition, we identify variables p1, . . . pn with their extensions [p1], . . . [pn]
and the constant 1 with U .

The following two lemmas give the key properties of flowgraphs for distributivity
axioms.

Lemma 9 Let Λ be a set of conditions and M a flowgraph for Λ. Let ψ be a
modality-free formula. Assume that a vertex in M is labeled by [ψ]. Let σ be an
assignement of p and assume that Vσ([ψ]) = 1. Then

K `
∧

σ(pi)=1

2pi → 2ψ

11



Proof. Straight from the definition. QED

Lemma 10 Let Λ be a set of conditions and M a flowgraph for Λ. Let ψ be a
modality-free formula. Assume that a vertex in M is labeled by [ψ]. Let σ be an
assignement of p and assume that Vσ([ψ]) = 0. Then there exists G distributive
on Λ s.t. G |= 2pi, for every pi s.t. σ(pi) = 1, and G 6|= 2ψ.

Proof. It is sufficient to define G := {X ⊆ U ;Vσ(X) = 1} ∪ {U}. QED

Note that by virtue of Lemma 9, in Lemma 10 we have that also G |= ¬2pi, if
σ(pi) = 0.

Proof of Theorem 7.

Let Γ be the set of distributivity axioms used in the proof of

α(2p) → 2β.

Let |Γ| = n. By Proposition 5 we can assume that formulas in Γ are of modal
depth one. Let Λ be the corresponding set of conditions. Then |Λ| ≤ n. Let
M be the flowgraph for Λ. Again, the size of the flowgraph is ≤ n. We can
assume that there is a vertex in M labeled [β], otherwise no distributivity has
been applied to β in the proof, β is a propositional tautology and the statement
is trivial. By the Proposition 8 we can find a monotone circuit C of size ≤ o(n2)
s.t. for any assignement σ

C(σ(p)) = 1 ≡ Vσ([β]) = 1.

Let us show that C interpolates α and β. Let σ be an assignement s.t.
α(σ(p)) is true. Assume that C(σ(p)) = 0. Then also Vσ([β]) = 0 and so by
Lemma 10 we can find a model G s.t. G |= Γ, G 6|= 2β and for every pi, if
σ(pi) = 1 then G |= 2(pi). But if σ satisfies α then G |= α(2p). Hence

G 6|=
∧

Γ → (α(2p) → 2β),

which is impossible since
∧

Γ → (α(2p) → 2β) is K0
5 -tautology.

Assume that σ is an assignement s.t C(σ(p)) = 1. Then Vσ([β]) = 1 and by
Lemma 9 ∧

σ(pi)=1

2pi → 2β

is a K-tautology. But hence also ∧
σ(pi)=1

pi → β

is a propositional tautology. Therefore β(σ(p), r) is a propositional tautology
and satisfied by any assignement of r.

Hence C interpolates α and β. QED

12



A generalisation of Theorem 7

For the purpose of a later reference we state here a generalisation of Theorem
7. The proposition will not be used elsewhere in this paper.

Proposition 11 Let α, β1 and β2 be propositional formulas. Assume that α is
a monotone formula and that it contains exactly the variables p, and that β1

resp. β2 contain variables p, s1 resp p, s2. Assume that

α(2p) → 2β1 ∨2β2

has a K-proof with n distributivity axioms. Then there exist monotone circuits
C1(p) and C2(p) of size o(n2) s.t. for any assignement σ of p

(1) if α is true then C1(p) = 1 or C2(p) = 1,

(2) if C1(p) = 1 then β1 is true (for any assignement of the variables s1), and
if C2(p) = 1 then β2 is true (for any assignement of the variables s2).

Proof. The proof is a straightforward generalisation of the proof of Theorem
7. Part (1) follows from Lemma 9 and part (2) from Lemma 10. QED

A different modification of Theorem 7 could be obtained by weakening the
monotonicity assumption of α. The monotonicity requirement demands that
neither ¬2p nor 2¬p occur in α. However, no substantial modification of the
proof would be required if the later assumption was dropped. In that case of
course, the circuit obtained would no longer be monotone.

5 The hard tautology

A propositional formula α in variables p, r will be called monotone in p, if the
formula when transformed to a DNF form does not contain a negation of any
variable in p.

For a propositional formula ψ(p, r),
∨

r ψ(p, r) will denote the disjunction of
all formulas of the form ψ(p, σ(r)), where σ is an assignement of the variables
r.

Lemma 12 Let ψ be K-tautology and let the variables r = r1, . . . rj not occur
in ψ in a modal context. Assume that ψ has a K-proof S with n distributivity
axioms. Then there exists a K-proof S? of ψ with n distributivity axioms s.t.
the variables r do not occur in S in a modal context.

Proof. Let S = ψ1, . . . ψk, where ψk = ψ. Let the set of distributivity axioms
in S be Γ, |Γ| = n. Let q = q1, . . . qj be a set of auxiliary variables. For a formula
η, let η? denote the formula obtained by replacing the modalised occurrences of
variables r by q in the respective order. Hence ψ? = ψ. Let Γ? := {γ?, γ ∈ Γ}.

13



It should be proved by induction with respect to i, i = 1, . . . k, that ψ?
i has

K-proof Si s.t. a) the variables r do not occur in Si in a modal context and
b) all distributivity axioms in the proof are elements of Γ?. Clearly, the only
non-trivial steps are when ψi was obtained from ψl, l < i, by generalisation rule.
Assume that ψi = 2ψl was obtained as

ψl

2ψl
.

Assume that ψ?
l has a proof Sl of the desired properties. Let us show that also

ψ?
i = (2ψl)? has such a proof. Let η := ψl(r/q). Then ψ?

i = 2η. Let T be
the proof obtained by replacing r by q in Si. Hence T is a proof of η with no
occurrence of r ∈ r and therefore with all distributivity axioms in Γ?. The proof
Si of ψ?

i = 2η can then be obtained by adding generalisation

η

2η

to T . QED

Theorem 13 Let α(p, r) be a monotone formula in p and let β(p, s) be a propo-
sitional formula.

(1) If α(p, r) → β(p, s) is a propositional tautology then α(2p, r) → 2β(p, s)
is a K-tautology.

(2) Assume that
α(2p, r) → 2β(p, s)

is provable in K with n distributivity axioms. Then there exists a monotone
circuit of size o(n2) which interpolates

∨
r α(p, r) and β(p, s).

Proof. (1) Clearly, it is sufficient to prove that for every assignement σ of
variables r, α(2p, σ(r)) → 2β is a K-tautology. Hence it is sufficient to prove
that if α is a monotone formula and

α→ β

is a propositional tautology then also

α(2p) → 2β

is a K-tautology. But that has been explained on page 9.
(2) Let γ(p) :=

∨
r α(p, r). Let us show that γ and β have an interpolant C

of size o(n2). By Theorem 7, it is sufficient to prove that

γ(2p) → 2β(p, s)

has a proof with at most n axioms of distributivity.

14



Let S be a proof of α(2p, r) → 2β(p, s) and Γ the set of distributivity
axioms occurring in it, |Γ| = n. By the previous Lemma we can assume that
the variables r do not occur in Γ. For an assignement σ of r, let Sσ denote the
proof obtained by replacing r by σ(r) in S. Then for any such σ, Sσ is a proof
of α(2p, σ(r)) → 2β(p, s) and all the distributivity axioms it contains are in Γ
(for elements of Γ do not contain r). All the proofs Sσ can be joint to a proof
of

γ(2p) → 2β(p, s).

The set of distributivity axioms in the proof is again Γ. QED

Let
Cliquek

n(p, r)

be the proposition asserting that r is clique of size k on the graph represented
by p. Let

Colork
n(p, s)

be the proposition asserting that s is a k-coloring of the graph represented by p.
To be exact, p = pi1i2 , i1, i2 = 1, . . . n, r = rij , s = sij , i = 1, . . . n, j = 1, . . . k.
Cliquek

n(p, r) is the formula∧
j

∨
i

rij ∧
∧
i

∧
j1 6=i2

(¬rij1 ∨ ¬rij2) ∧
∧

i1 6=i2,j1,j2

(ri1j1 ∧ ri2j2 → pi1i2)

and Colork
n(p, s) is the formula∧

i

∨
j

sij ∧
∧

i1,i2,j

(pi1i2 → (¬si1j ∨ ¬si2j)),

where the indeces i range over 1, . . . n and j over 1, . . . k.

Theorem 14 Let

Θk
n := Cliquek+1

n (2p, r) → 2(¬Colork
n(p, s)).

If k :=
√
n then very K-proof of the tautology Θk

n contains at least

2Ω(n
1
4 )

distributivity axioms.

Proof. Assume that Θk
n has a K-proof with m distributivity axioms. By

the previous lemma, there is a monotone interpolant C of
∨

r Clique
k
n(p, r) and

¬Colork
n(p, s) of size o(m2). By [1], every such circuit has size at least 2Ω(n

1
4 ).

Hence m ∼
√

2Ω(n
1
4 )) ∼ 2Ω(n

1
4 ). QED
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Remark. A hard tautology of quite a different form could be obtained from
the following proposition (which is an immediate corollary of Theorem 7):
Assume that α(p) is a modality-free formula which defines a monotone Boolean
function f (but α is not necessarily monotone itself). Then

(?) α(2p) → 2α(p)

is a K-tautology. If (?) has a proof in K with n axioms of distributivity then
there exists a monotone circuit of size o(n2) computing f .
This proposition would give us a lower-bound, had we had an example of a
monotone function f such that i) f is defined by a small Boolean formula ii)
every monotone circuit which defines f must be large. However, by introducing
new variables for gates of C, we can express also the proposition C(2p) →
2C(p), where C is a circuit. Such a modified tautology gives a lower bound
if we have monotone f such that i) f is defined by a small Boolean circuit ii)
every monotone circuit which defines f is large. Examples of such functions are
well-known.

6 Applications to other modal systems.

In this section we prove that the tautology given in Theorem 14 is a hard
tautology also in the systems of modal logic K4, Gödel-Löb’s logic, S and S4.
For K5 (and hence S5) this is probably not the case and we show that there
is an exponentialm speed-up between K5 and K on tautologies of modal-depth
one.

1. The system K4

K4 is the system K plus the axiom

2ψ → 22ψ.

The application to K4 is immediate:

Theorem 15 Let ψ be a K-tautology of modal depth one. Assume that ψ has
a proof in K4 with n axioms of distributivity. Then ψ has a proof in K with at
most n axioms of distributivity.

Proof. It is easy to show that Lemma 4 is true also in the case of K4. The
point is that

(2ψ → 22ψ)? = 2ψ′ → 2ψ′

is a propositional tautology. We thus obtain K4-proof with at most n distribu-
tivity axioms and formulas of modal depth one, i.e., a K-proof. QED
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Corollary Let Θk
n be the tautology of Theorem 14, for the same choice of

k. Then every K4 proof of Θk
n contains an exponential number of distributivity

axioms.

The following lemma will be used in the proof of Theorem 19. We shall say
that an axiom of distributivity of the form 2(ψ → ξ) → (2ψ → 2ξ) is a proper
axiom of distrivutivity, if K0

5 6` ψ ≡ ξ. As remarked on page 3, the bound of
Theorem 14 applies when only the number of proper distributivity axioms is
considered.

Lemma 16 Let K4+ be the logic K4 plus the axiom

2ψ → 2(ψ ∧2ψ).

Let ψ be K-tautology of modal depth one. Assume that ψ has a proof in K4+

with n axioms of distributivity. Then ψ has a proof in K with at most n proper
axioms of distributivity.

Proof. The proof is parallel to the proof of Theorem 15. The only modification
is that

(2ψ → 2(ψ ∧2ψ))? = 2ψ′ → 2(ψ′ ∧ ψ′).

But ψ′ ≡ ψ′∧ψ′ is a propositional tautology and hence no proper distributivity
axiom is required. QED

Remark. The argument of the proof of Theorem 15 can be applied to the
system K4 plus the axiom

22ψ → 2ψ.

2. Gödel - Löb’s logic

GL is the system K4 plus the Löb axiom

2(2ψ → ψ) → 2ψ.

Theorem 17 Let ψ be K-tautology of modal depth one. Assume that ψ has a
proof in GL with n axioms of distributivity. Then ψ has a proof in K with at
most n proper axioms of distributivity.

Proof. The proof is similar to that of Lemma 4. Let η′ be defined as follows:
for every subformula of η of the form 2ξ which is not in a range of further
modality, replace 2ξ by 1.
Claim. Assume that GL ` ψ. Then ψ′ is a propositional tautology.

17



The claim is proved easily by induction: the K4 axiom and Löb axiom change
to 1 → 1, distributivity to 1 → (1 → 1) and generalisation to

η

1
.

Let η? be defined as follows: for every subformula of η of the form 2ξ which
is not in a range of further modality, replace 2ξ by 2ξ′. We can see that if η
is a distributivity axiom then η? is a distributivity axiom. Again, we can show
that if S = η1 . . . ηk is GL-proof of ψ and Γ is the set of distributivity axioms
in S, then every η?

i , i = 1, . . . k, is provable in K using just distributivity from
Γ? := {γ?; γ ∈ Γ}. The K4 axiom changes to 2ψ′ → 21, which is provable in
K without using any distributivity, and Löb axiom becomes

(1) 2(1 → ψ′) → 2ψ′.

But (1 → ψ) ≡ ψ, is a propositional tautology and so (1) is provable in K using
no proper distributivity. For the generalisation use the above claim. QED

Corollary Let Θk
n be the tautology of Theorem 14, for the same choice of k.

Then every proof of Θk
n in Gödel-Löb’s logic contains an exponential number of

distributivity axioms.

Remark. The argument of the proof applies also to the system K4 plus the
axiom

22ψ ∨2¬2ψ.

This is interesting because this system together with the axiom from the previ-
ous remark is equivalent to K5 for which the lower-bound does not work.

3. S, S4

S resp. S4 is the logic K resp. K4 plus the axiom

2ψ → ψ.

As will be shown in Theorem 22 there is an exponential speed-up between S
and K. However, in the case of monotone formulas such as the ones needed in
the lower bound there is indeed no speed-up between S and K (as far as the
number of distributivity axioms is concerned).

For a formula ψ of modal-depth one, ψs will be the usual translation of S
to K, i.e. ps := p, (ψ1 ∧ ψ2)s := ψ1

s ∧ ψ2
s and similarly for other connectives,

and mainly
(2ψ)s := 2ψ ∧ ψs.
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Lemma 18 Let ψ be S-tautology of modal-depth one. Then ψs is K-tautology.
Furthermore, if ψ has a S-proof resp. S4 proof with n distributivity axioms
then ψs has a K-proof with at most n distributivity axioms resp. n proper
distributivity axioms.

Proof. Straightforward. QED

Theorem 19 Let α(p1, . . . pn, r) be a monotone formula in p1, . . . pn. Let

Θ := α(2p1, . . . ,2pn, r) → 2β(p1, . . . pn, s).

Then if Θ has a S-proof resp. S4 proof with n distributivity axioms then Θ
has K-proof with at most n distributivity axioms resp. n proper distributivity
axioms.

Proof. We will prove the proposition for S, the part for S4 follows similarly
from the previous Lemma and Lemma 16.

Assume that Θ has S-proof with n distributivity axioms. Then Θ1 := Θs

has K-proof with at most n distributivity axioms,

Θ1 = α(2p1 ∧ p1, . . . ,2pn ∧ pn, r) → 2β(p1, . . . pn, s) ∧ β(p1, . . . pn, s).

Hence also

Θ2 := α(2p1 ∧ p1, . . . ,2pn ∧ pn, r) → 2β(p1, . . . pn, s)

has a K-proof with at most n distributivity axioms. Substituting throughout
the proof 2pi for pi, i = 1, . . . n, we obtain that also

Θ3 := α(22p1 ∧2p1, . . . ,22pn ∧2pn, r) → 2β(2p1, . . .2pn, s)

has a K proof with at most n distributivity axioms. By Lemma 4, the formula
Θ?

3 is K-tautology and has a K-proof with at most n distributivity axioms.
However,

Θ?
3 = α(2p1 ∧2p1, . . . ,2pn ∧2pn, r) → 2β(p1, . . . pn, s).

Hence Θ?
3 is equivalent to Θ using just propositional rules. Therefore Θ has

K-proof with at most n distributivity axioms. QED

Corollary Let Θk
n be the tautology of Theorem 14, for the same choice of

k. Then every S resp. S4 proof of Θk
n contains an exponential number of

distributivity axioms.
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3. K5 and some speed-up relations

The theory K5 is the theory K4 plus the axiom

¬2ψ → 2¬2ψ.

The result of Theorem 14 does not apply to K5 (and hence to S5). It can be
shown that the tautology of the Theorem a) requires only a polynomial number
of distributivity axioms in K5 and b) it has a polynomial-size proof assuming
that certain classical tautologies have poly-size Frege proofs. The same applies
to the hard tautology mentioned in Remark on page 16. Those observations
will be left without a proof here. We will rather prove that a variant of the
tautology of Theorem 14 has a polynomial-size proof in K5. Since this variant
has only exponetial proofs in K or K4, this implies that there is an exponential
speed-up between K5 and K resp. K4 on tautologies of modal-depth one.

Lemma 20 Let ψ be a K-tautology of modal depth one. Assume that the vari-
ables r do not occur in ψ in a modal context. Assume that ψ(2r) has a K-proof
with n distributivity axioms. Then ψ has a K-proof with at most n distributivity
axioms.

Proof. Let ξ(r/1) be an abbreviation for ξ(r1/1, . . . rk/1) for r = r1, . . . rk.
For a formula η of modal depth one, let η? denote the formula obtained by
replacing every 2ξ by

2ξ(r/1) ∧ ξ(r).

Let S = η1, . . . ηm, ηm = ψ be the proof of ψ(2r). By Lemma 4 we can assume
that the proof of ψ contains only formulas of modal depth one. As in Lemma 4
we can easily show that η?

m = (ψ(2r))? is provable in K using n distributivity
axioms. However,

(2ri)? = 21 ∧ ri
and 21 is provable only using generalisation, and hence (2ri)? ≡ ri is provable
using no distributivity rule. Hence also the equivalence

(ψ(2r))? ≡ ψ(r)

is provable with no distributivity axioms. Altogether, ψ is provable with n
distributivity axioms. QED

Theorem 21 There exists a K-tautology Θ of modal depth one s.t. every K-
proof of Θ contains exponential number of proof-lines, but Θ has a polynomial-
size proof in K5.

Proof. Let Θ′ be the tautology

Cliquek+1
n (2p, r) → 2(¬Colork

n(p, s))
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of Theorem 14. Let Θ := Θ′(2r). By the previous Lemma, the tautology has
only proofs with exponential number of proof-lines in K. Let us show that it
has a polynomial-size proof in K5.

The proposition Clique is written in such a way that all the negations in
Clique are attached to variables r. Note that in K5 we can prove

(¬)2ri ∧ (¬)2rj → 2((¬)2ri ∧ (¬)2rj)
2η ∧ (¬)2rj → 2(η ∧ (¬)2rj)

where (¬) means that the negation may be absent. Similarly when exchanging
∧ for ∨. This implies that

(?) Cliquek+1
n (2p,2r) → 2Cliquek+1

n (p,2r)

can be proved by a linear-size proof in K5. However, the propositional implica-
tion

Cliquek+1
n (p, u) → (¬Colork

n(p, s))

can be proved by a polynomial size proof in Frege system, as shown in [2]. Hence
also

Cliquek+1
n (p,2r) → (¬Colork

n(p, s))

has a polynomial-size proof. Using one distributivity, also

2Cliquek+1
n (p,2r) → 2(¬Colork

n(p, s))

has a polynomial-size proof. This, together with (?) gives a polynomial-size
proof of Θ in K5. QED

The importance of the Theorem 21 lies in the fact that it gives speed-up
on formulas of modal-depth one. A speed-up on formulas of modal-depth one
can be obtained also between S on the one hand, and the systems K, K4 and
Gödel-Löb’s logic on the other. The same trick can probably be applied to show
speed-up relations between the other systems on general modal formulas.

Theorem 22 Let P be K, K4, or Gödel-Löb’s logic. Then S has an exponential
speed-up over P on formulas of modal-depth one. More exactly, there exists a
sequence of formulas provable both in P and S s.t. they have linear-size proofs
in S but every proof in P must be exponential.

Proof. We know that there exists a sequence of K-tautologies ψ1, ψ2, ψ3, . . .
which have only exponential-size proofs in P . Let λ be the formula

2p→ p,

for a variable p not occurring in ψi, i = 1, 2, . . .. Let us have the sequence

ψ1 ∨ λ, ψ2 ∨ λ, ψ3 ∨ λ, . . . .
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Clearly, the formulas have linear-size proofs in S. It is easy to show that the
sequence has only exponential-size proofs in P : for a formula η, let η? denote
the formula obtained by replacing every occurrence of the variable p in a modal
context by 1, and every occurrence of p in a non-modal context by 0 in η. It is
easy to see that if η of modal-depth one has a proof in P with n distributivity
axioms then η? has also a proof in P with n distributivity axioms. But

(ψi ∨ λ)? = ψi ∨ (21 → 0),

which is - using no distributivity - equivalent to ψi. QED
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