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Abstract. We present an equivalence theorem, which includes all known characteriza-
tions of the class Bp, i.e., the weight class of Ariño and Muckenhoupt, and also some new
equivalent characterizations. We also give equivalent characterizations for the classes B∗p ,
B∗∞ and RBp, and prove and apply a “gluing lemma” of independent interest.

1. Introduction

In their paper [2] M. Ariño and B. Muckenhoupt characterized the class of weights Bp,
1 < p <∞, such that the Hardy operator is bounded on Lp(w) for non-negative and non-
increasing functions. Such results are of interest because they can be used to characterize
the mapping properties of the maximal operator M between weighted Lorentz Λp(w) -
spaces. According to the Ariño - Muckenhoupt result the weight w belongs to the class
Bp, if and only if

(AM) BAM(p) := sup
0<t<∞

tp

W (t)

∫ ∞

t

s−pw(s) ds <∞.

(For the case 0 < p ≤ 1, the class Bp was defined in [3]). Here and in the sequel W (t) :=∫ t

0
w(s) ds, and we assume that W (x) <∞ for every x ∈ (0,∞).
In [12], [4], [13] and [5] the authors gave other characterizations of this condition: w

belongs to the class Bp, 1 < p <∞, if and only if any of the following expressions is finite:

(Sa1) BSa1(p) = sup
0<t<∞

(∫ ∞

t

s−pw(s) ds

) 1
p
(∫ t

0

sp′W (s)−p′w(s) ds

) 1
p′

;

(Sa2) BSa2(p) = sup
0<t<∞

W (t)
1
p

t

(∫ t

0

(
W (s)

s

)1−p′

ds

) 1
p′

;

(CS) BCS(p) = sup
0<t<∞

W (t)
1
p

t

(∫ t

0

(
W (s)

s

)−p′

w(s) ds

) 1
p′

;
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(So1) BSo1(p) = sup
0<t<∞

W (t)

tp

∫ t

0

sp−1

W (s)
ds;

(So2) BSo2 = sup
0<t<∞

tp

W (t)

∫ ∞

t

W (s)

sp+1
ds;

(So3) BSo3(p) = sup
0<t<∞

W (t)
1
p

t

∫ t

0

ds

W (s)
1
p

;

(So4) BSo4(p) = sup
0<t<∞

t

W (t)
1
p

∫ ∞

t

W (s)
1
p

s2
ds;

(CM) BCM(p) = sup
0<t<∞

(∫ ∞

t

s−p−1W (s) ds

) 1
p
(∫ t

0

sp′−1W (s)1−p′ ds

) 1
p′

.

In Section 2, we formulate a theorem from [6], on which our results are based, and prove a
“gluing lemma” (Lemma 2.2) of independent interest. In Section 3 we prove an equivalence
theorem, which includes all results mentioned above. In fact, our Theorem 3.1 shows that
there are six scales of weight characterizations of the class Bp. The proof is elementary and
mostly based on our result from paper [6]. In Section 4 we give some new characterizations
of the classes B∗

p , B∗
∞ and RBp, generalize a result of Y. Sagher [11] (Proposition 4.4) and

apply Lemma 2.2 to give a new proof of a result of Andersen [1] (Proposition 4.6).

2. Preliminaries. The “gluing lemma”

In [6] the equivalence of four scales of integral conditions was proved. These conditions
characterize the Hardy inequality and contain the usual Muckenhoupt condition as a special
case. The proof was carried out by first proving the following equivalence theorem of
independent interest that also will be applied in this paper (see Theorem 2.1 in [6]):

Theorem 2.1. For −∞ ≤ a < b ≤ ∞, α, β and s positive numbers and f , g measurable
functions positive a.e. in (a, b), denote

(2.1) F (x) :=

∫ b

x

f(t)dt, G(x) :=

∫ x

a

g(t)dt
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and

(2.2)

B1(x; α, β) := Fα(x)Gβ(x);

B2(x; α, β, s) :=
(∫ b

x
f(t)G

β−s
α (t)dt

)α

Gs(x);

B3(x; α, β, s) :=
(∫ x

a
g(t)F

α−s
β (t)dt

)β

F s(x);

B4(x; α, β, s) :=
(∫ x

a
f(t)G

β+s
α (t)dt

)α

G−s(x);

B5(x; α, β, s) :=
(∫ b

x
g(t)F

α+s
β (t)dt

)β

F−s(x).

The numbers B1 := sup
a<x<b

B1(x; α, β) and Bi(s) = sup
a<x<b

Bi(x; α, β, s) (i = 2, 3, 4, 5) are

mutually equivalent. The constants in the equivalence relations can depend on α, β and s.

For this paper we also need the following ”gluing lemma”:

Lemma 2.2. Let γ, α and β be positive numbers and let f and g be positive measurable
functions on (0,∞). The following two estimates

A1 := sup
0<t<∞

(∫ t

0

g(s) ds

)β (∫ ∞

t

s−γβf(s) ds

)α

<∞(2.3)

and

A2 := sup
0<t<∞

(∫ ∞

t

s−γαg(s) ds

)β (∫ t

0

f(s) ds

)α

<∞(2.4)

hold if and only if the (glued-up) condition

(2.5)

A3 := sup
0<t<∞

(∫ t

0

g(s) ds + tγα

∫ ∞

t

s−γαg(s) ds

)β

×

×
(

t−γβ

∫ t

0

f(s) ds +

∫ ∞

t

s−γβf(s) ds

)α

<∞

holds.

Proof. The implication (2.5)⇒ (2.3)&(2.4) is clear. Let us now prove the reverse implica-
tion. Suppose that (2.3) and (2.4) hold. It is enough to show that

I1 = sup
0<t<∞

t−γβα

(∫ t

0

g(s) ds

)β (∫ t

0

f(s) ds

)α

<∞,(2.6)

and

I2 = sup
0<t<∞

tγβα

(∫ ∞

t

s−γαg(s) ds

)β (∫ ∞

t

s−γβf(s) ds

)α

<∞.(2.7)
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Let us fix t ∈ (0,∞) and define the point y(t) ∈ (0, t) so that

(2.8)

∫ y(t)

0

f(s) ds =

∫ t

y(t)

f(s) ds.

Using (2.8) we obtain that

I1 ≤ 2max(β,1)−1

[
t−γβα

(∫ t

y(t)

g(s) ds

)β (∫ t

0

f(s) ds

)α

+ t−γβα

(∫ y(t)

0

g(s) ds

)β (∫ t

0

f(s) ds

)α
]

≤ 2max(β,1)+α−1

[(∫ t

y(t)

s−γαg(s) ds

)β
(∫ y(t)

0

f(s) ds

)α

+ t−γβα

(∫ y(t)

0

g(s) ds

)β (∫ t

y(t)

f(s) ds

)α
]

≤ 2max(β,1)+α−1

[(∫ ∞

y(t)

s−γαg(s) ds

)β
(∫ y(t)

0

f(s) ds

)α

+

(∫ y(t)

0

g(s) ds

)β (∫ t

y(t)

s−γβf(s) ds

)α
]

≤ 2max(β,1)+α−1

[(∫ ∞

y(t)

s−γαg(s) ds

)β
(∫ y(t)

0

f(s) ds

)α

+

(∫ y(t)

0

g(s) ds

)β (∫ ∞

y(t)

s−γβf(s) ds

)α
]

≤ 2max(β,1)+α−1(A1 + A2)

<∞.

Similarly we can show that

I2 ≤ 2max(β,1)+α−1(A1 + A2) <∞.

Using the estimate

A3 ≤ 2max(β,1)+max(α,1)−2 (A1 + A2 + I1 + I2)

we obtain that A3 <∞. The proof is complete. �

Remark 2.3. In the proof of Lemma 2.2 in fact we have shown that

A3 ≈ A1 + A2.
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For α, β < 1 and β ≤ 1−α, Lemma 2.2 was proved by Andersen in [1] using the Hardy
inequality and the Stieltjes transformation. Our proof is direct and allows us to consider
all parameters.

3. The Equivalence Theorem

Our main result in this section reads:

Theorem 3.1. Let p, ε, α and β be positive numbers, and denote

B1(p, ε, t) :=

(
tp

W (t)

)ε ∫ ∞

t

(
sp

W (s)

)1−ε

s−pw(s) ds;

B2(p, ε, t) :=

(
tp

W (t)

)ε ∫ ∞

t

(
sp

W (s)

)1−ε

s−p−1W (s) ds;

B3(p, ε, t) :=

(
tp

W (t)

)−ε ∫ t

0

(
sp

W (s)

)1+ε

s−pw(s) ds;

B4(p, ε, t) :=

(
tp

W (t)

)−ε ∫ t

0

(
sp

W (s)

)1+ε

s−p−1W (s) ds;

B5(p, α, β, t) :=

(∫ ∞

t

(
sp

W (s)

)1−α

s−pw(s) ds

)β (∫ t

0

(
sp

W (s)

)1+β

s−pw(s) ds

)α

;

B6(p, α, β, t) :=

(∫ ∞

t

(
sp

W (s)

)1−α

s−p−1W (s) ds

)β (∫ t

0

(
sp

W (s)

)1+β

s−p−1W (s) ds

)α

.

Then the weight w belongs to the class Bp if and only if any of the numbers Bi(p, ε) :=
sup0<t<∞ Bi(p, ε, t) (i = 1, 2, 3, 4) and Bi(p, α, β) := sup0<t<∞ Bi(p, α, β, t) (i = 5, 6) is
finite.

Remark 3.2. Let us point out that Theorem 3.1 contains all results mentioned in the
introduction since

BAM(p) = B1(p, 1);

BSa1(p) = B5(p, 1, p
′ − 1)

1
p′ ;

BSa2(p) = B4(p, p
′ − 1)

1
p′ ;

BCS(p) = B3(p, p
′ − 1)

1
p′ ;

BSo1(p) = B4(p, 1);

BSo2(p) = B2(p, 1);

BSo3(p) = B4(p,
1

p
);

BSo4(p) = B2(p,
1

p
);
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BCM(p) = B6(p, 1, p
′ − 1)

1
p′ .

Proof of Theorem 3.1. It is easy to see that

B2(p, ε, t) =
1

p
B1(p, ε, t) +

1

pε
;(3.1)

B4(p, ε, t) =
1

p
B3(p, ε, t) +

1

pε
;(3.2)

B5(p, α, β, t) = B1(p, α, t)βB3(p, β, t)α;(3.3)

B6(p, α, β, t) = B2(p, α, t)βB4(p, β, t)α.(3.4)

Using (3.1), (3.2) and (3.3) we obtain from (3.4) that

(3.5) B6(p, α, β, t) ≈ B5(p, α, β, t) + B1(p, α, t)β + B3(p, β, t)α + 1.

Therefore, we have the following equivalences:

B1(p, ε) <∞⇔ B2(p, ε) <∞;

B3(p, ε) <∞⇔ B4(p, ε) <∞.

If Bi(p, ε) < ∞ for some ε, i = 2, 4 it is not difficult to see that the function tp

W (t)
is

equivalent to increasing function. Now assume, that Bi(p, ε) < ∞ with i = 1, 3. Then
we have also that Bi(p, ε) < ∞, i = 2, 4, and, hence, the function tp

W (t)
is equivalent to

increasing function. Using Theorem 2.1 we obtain that BAM ≈ Bi(p, ε), i = 1, 3, and
BSo1 ≈ Bi(p, ε), i = 2, 4. Since B1(p, 1) = BAM , we have proved the following equivalence:

Bi(p, ε) <∞, for some ε ⇔ BAM <∞, i = 1, 2, 3, 4.

According to (3.3) and (3.4) we have the following implication:

BAM <∞⇒ Bi(p, α, β) <∞, i = 5, 6.

Moreover, by (3.5) we have that

B6(p, α, β) <∞⇒ BAM <∞.

To finish the proof we need to prove the implication

B5(p, α, β) <∞⇒ BAM <∞.

It is sufficient to prove that

B5(p, α, β) <∞⇒ B6(p, α, β) <∞.

Let B5(p, α, β) <∞. Then(∫ t

0

W (s)α−1w(s) ds

)β (∫ ∞

t

W (s)−1−βw(s) ds

)α

≤ α−ββ−α <∞,
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and, by applying Lemma 2.2 with the functions g(s) = W (s)α−1w(s) and f(s) =
W (s)−1−βw(s), we obtain that

sup
0<t<∞

(∫ t

0

W (s)α−1w(s) ds + tpα

∫ ∞

t

(
sp

W (s)

)1−α

s−pw(s) ds

)β

×

×

(
t−pβ

∫ t

0

(
sp

W (s)

)1+β

s−pw(s) ds +

∫ ∞

t

W (s)−1−βw(s) ds

)α

<∞.

But this is precisely the estimate B6(p, α, β) <∞. The proof is complete.

4. Further results

The technique we have developed in this paper can be used in many other cases. Here
we just give some examples.

Characterization of the class B∗
p.

The weight w belongs to the class B∗
p (introduced for p ≥ 1 by Neugebauer in [9]) if and

only if

B∗
p := sup

0<t<∞

tp

W (t)

∫ t

0

s−pw(s) ds <∞.

The following result is analogous to Theorem 3.1 and shows that also the class B∗
p in

fact can be characterized by infinitely many conditions, namely by six scales of equivalent
conditions.

Theorem 4.1. Let p, ε, α and β be positive numbers, and denote

B∗
1(p, ε, t) :=

(
tp

W (t)

)−ε ∫ ∞

t

(
sp

W (s)

)1+ε

s−pw(s) ds;

B∗
2(p, ε, t) :=

(
tp

W (t)

)−ε ∫ ∞

t

(
sp

W (s)

)1+ε

s−p−1W (s) ds;

B∗
3(p, ε, t) :=

(
tp

W (t)

)ε ∫ t

0

(
sp

W (s)

)1−ε

s−pw(s) ds;

B∗
4(p, ε, t) :=

(
tp

W (t)

)ε ∫ t

0

(
sp

W (s)

)1−ε

s−p−1W (s) ds;

B∗
5(p, α, β, t) :=

(∫ ∞

t

(
sp

W (s)

)1+α

s−pw(s) ds

)β (∫ t

0

(
sp

W (s)

)1−β

s−pw(s) ds

)α

;

B∗
6(p, α, β, t) :=

(∫ ∞

t

(
sp

W (s)

)1+α

s−p−1W (s) ds

)β (∫ t

0

(
sp

W (s)

)1−β

s−p−1W (s) ds

)α

.
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Then the weight w belongs to the class B∗
p if and only if any of the numbers B∗

i (p, ε) :=
sup0<t<∞ B∗

i (p, ε, t) (i = 1, 2, 3, 4) and B∗
i (p, α, β) := sup0<t<∞ B∗

i (p, α, β, t) (i = 5, 6) is
finite.

Characterization of the class B∗
∞.

The weight w belongs to the class B∗
∞ (see again [9]) if and only if

B∗
∞ := sup

0<t<∞

1

W (t)

∫ t

0

s−1W (s) ds <∞.

The results of Theorem 4.1 are satisfied also for p = 0 and since B∗
∞ = B3(0, 1), we

obtain the following scales of characterizations of the class B∗
∞:

Theorem 4.2. Let ε, α, β and t be positive numbers, and denote

B∗
2(0, ε, t) := W ε(t)

∫ ∞

t

s−1W (s)−ε ds;

B∗
4(0, ε, t) := W (t)−ε

∫ t

0

s−1W (s)ε ds;

B∗
6(0, α, β, t) :=

(∫ ∞

t

s−1W (s)−α ds

)β (∫ t

0

s−1W (s)β ds

)α

.

Then the weight w belongs to the class B∗
∞ if and only if any of the numbers B∗

i (0, ε) :=
sup0<t<∞ B∗

i (0, ε, t) (i = 2, 4) and B∗
6(0, α, β) := sup0<t<∞ B∗

i (0, α, β, t) is finite.

Characterization of the class RBp.

The weight w belongs to the class RBp (the so called reverse Bp-class introduced by
Neugebauer in [8]) if and only if

RBp := sup
0<t<∞

W (t)

tp
∫∞

t
s−pw(s) ds

<∞.

By using the estimate

W (t) + tp
∫∞

t
s−pw(s) ds

tp
∫∞

t
s−pw(s) ds

≤ W (t)

tp
∫∞

t
s−pw(s) ds

+ 1

we obtain that if RBp < ∞, then the function tp
∫∞

t
s−pw(s) ds is non-decreasing, and

analogously as in Theorem 3.1 we get the following scales of new characterizations for the
classes RBp:

Theorem 4.3. Let p, ε, α, β and t be positive numbers, and denote

RB1(p, ε, t) :=

(
tp
∫ ∞

t

s−pw(s) ds

)−ε ∫ t

0

(
sp

∫ ∞

s

x−pw(x) dx

)−1+ε

w(s) ds;
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RB2(p, ε, t) :=

(
tp
∫ ∞

t

s−pw(s) ds

)−ε ∫ t

0

spε−1

(∫ ∞

s

x−pw(x) dx

)ε

ds;

RB3(p, ε, t) :=

(
tp
∫ ∞

t

s−pw(s) ds

)ε ∫ ∞

t

(
sp

∫ ∞

s

x−pw(x) dx

)−1−ε

w(s) ds;

RB4(p, ε, t) :=

(
tp
∫ ∞

t

s−pw(s) ds

)ε ∫ ∞

t

s−pε−1

(∫ ∞

s

x−pw(x) dx

)−ε

ds;

RB5(p, α, β, t) :=

(∫ t

0

(
sp

∫ ∞

s

x−pw(x) dx

)−1+α

w(s) ds

)β

×

×

(∫ ∞

t

(
sp

∫ ∞

s

x−pw(x) dx

)−1−β

w(s) ds

)α

;

RB6(p, α, β, t) :=

(∫ t

0

spα−1

(∫ ∞

s

x−pw(x) dx

)α

ds

)β

×

×

(∫ ∞

t

s−pβ−1

(∫ ∞

s

x−pw(x) dx

)−β

ds

)α

.

Then the weight w belongs to the class RBp if and only if any of the numbers RBi(p, ε) :=
sup0<t<∞ Bi(p, ε, t) (i = 1, 2, 3, 4) and RBi(p, α, β) := sup0<t<∞ Bi(p, α, β, t) (i = 5, 6) is
finite.

We also note that by using Theorem 2.1 we obtain the following generalization of a result
of Y. Sagher [11]:

Proposition 4.4. Let m(t) and h(t) be positive functions and ε be a positive number.
Then

(4.1)

∫ r

0

h(s) ds ≈ m(r)

if and only if ∫ r

0

m(s)−1+εh(s) ds ≈ m(r)ε(4.2)

or ∫ ∞

r

m(s)−1−εh(s) ds ≈ m(r)−ε(4.3)

In [11], the equivalence of (4.1) and (4.3) for h(s) = m(s)/s and ε = 1 was proved.

Remark 4.5. Lemma 2.2 has been used in a crucial way in the proof of Theorem 3.1.
Moreover it is obvious that this lemma can be used in a number of similar situations. We
finish this paper by illustrating this fact by a new proof of a result of Andersen [1].
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Let Sλ be the (generalized) Stieltjes transformation, i.e.

Sλ(f)(x) :=

∫ ∞

0

f(y) dy

(x + y)λ
.

Proposition 4.6. Let be λ ≥ 0, 1 ≤ p ≤ q ≤ ∞, and suppose that U(x) and V (x) are
non-negative extended real valued functions defined on (0,∞). Then there exists a constant
C independent of f such that

(4.4)

(∫ ∞

0

|Sλ(f)(x)|qU(x) dx

)1/q

≤ C

(∫ ∞

0

|f(x)|pV (x) dx

)1/p

if and only if

(4.5) K = sup
r>0

rλ

(∫ ∞

0

U(x)

(x + r)λq
dx

)1/q (∫ ∞

0

V (x)−1/(p−1)

(x + r)λp′
dx

)1/p′

<∞.

Moreover, the smallest constant C in (4.4) satisfies C ≈ K.

Proof. We have that

Sλ(f)(x) ≈ 1

xλ

∫ x

0

f(y) dy +

∫ ∞

x

f(y) dy

yλ

for all non-negative functions f . Therefore, inequality (4.4) holds if and only if the following
two inequalities hold:(∫ ∞

0

(
1

xλ

∫ x

0

f(y) dy

)q

U(x) dx

)1/q

≤ C

(∫ ∞

0

(f(x))pV (x) dx

)1/p

(4.6)

and (∫ ∞

0

(∫ ∞

x

f(y) dy

yλ

)q

U(x) dx

)1/q

≤ C

(∫ ∞

0

(f(x))pV (x) dx

)1/p

.(4.7)

According to well-known results about the Hardy inequality (see e.g. [7], [10]), inequalities
(4.6) and (4.7) are equivalent, respectively, to the following conditions:

sup
r>0

(∫ ∞

r

U(x)

xλq
dx

)1/q (∫ r

0

V (x)−1/(p−1) dx

)1/p′

<∞,

sup
r>0

(∫ r

0

U(x) dx

)1/q (∫ ∞

r

V (x)−1/(p−1)

xλp′
dx

)1/p′

<∞.

Finally using Lemma 2.2 with g = U , f = V −1/(p−1), β = 1
q
, α = 1

p′
and γ = λqp′ we obtain

that (4.6) and (4.7) are equivalent to (4.5) and therefore we obtain that (4.4) and (4.5) are
equivalent. The proof is complete. �
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