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Abstract. The deformation complex of an algebra over a colored PROP P is defined in terms of
a minimal (or, more generally, cofibrant) model of P. It is shown that it carries the structure of an
L∞-algebra which induces a graded Lie bracket on cohomology.

As an example, the L∞-algebra structure on the deformation complex of an associative algebra
morphism g is constructed. Another example is the deformation complex of a Lie algebra morphism.
The last example is the diagram describing two mutually inverse morphisms of vector spaces. Its
L∞-deformation complex has nontrivial l0-term.

Explicit formulas for the L∞-operations in the above examples are given. A typical deformation
complex of a diagram of algebras is a fully-fledged L∞-algebra with nontrivial higher operations.
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1. Introduction

In this paper, we construct the deformation complex (C ∗
P
(T ;T ), δP) of an algebra T over a

colored PROP P and observe that it has the structure of an L∞-algebra. The cochain complex

(C∗
P
(T ;T ), δP) is so named because its L∞-structure governs the deformations of T in the form of

the Quantum Master Equation (4.3.1) (Section 4.3).
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author was supported by the grant GA ČR 201/08/0397 and by the Academy of Sciences of the Czech Republic,
Institutional Research Plan No. AV0Z10190503.

1

Preprint, Institute of Mathematics, AS CR, Prague. 2009-2-4 IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic
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The existence of an L∞-structure on the deformation complex of an algebra over an operad was

proved in 2002 by van der Laan [55]. Van der Laan’s construction was later generalized, in [43], to

algebras over properads. The present paper will, however, be based on the approach of the 2004

preprint [40].

Considering colored PROPs is necessary if one is to study L∞-deformations of, say, morphisms

or more general diagrams of algebras over a PROP, module-algebras, modules over an associative

algebra, and Yetter-Drinfel’d and Hopf modules over a bialgebra. For example, there is a 2-colored

PROP AsB→W whose algebras are of the form f : U → V , in which U and V are associative

algebras and f is a morphism of associative algebras (Example 2.10). Likewise, there is a 2-colored

PROP ModAlg whose algebras are of the form (H,A), in which H is a bialgebra and A is an

H-module-algebra (Example 2.12). Other examples of colored PROP algebras are given at the end

of Section 9.

Here is a sketch of the construction of the deformation complex (C ∗
P
(T ;T ), δP), with details given

in Section 3. First we take a minimal model (Definition 3.4) α : (F(E), ∂) → P of the colored PROP

P, which should be thought of as a resolution of P. Given a P-algebra ρ : P → EndT , we define

C∗
P
(T ;T ) = Der(F(E), E),

in which E = EndT is considered an F(E)-module via the morphism β = ρα, and Der(F(E), E)

denotes the vector space of derivations F(E) → E . The latter has a natural differential δ that sends

θ ∈ Der(F(E), E) to θ∂.

The L∞-operations on C∗
P
(T ;T ) are constructed using graph substitutions (Section 4.4). The

usefulness of this very explicit construction of the L∞-operations on C∗
P
(T ;T ) is first illustrated with

the example of associative algebra morphisms. For a morphism g : U → V of associative algebras,

considered as an algebra over the 2-colored PROP AsB→W, we are able to write down explicitly

all the L∞-operations lk on the deformation complex of g (Theorem 5.5 for k = 1, Theorem 6.2

for k = 2, and Theorem 6.4 for k ≥ 3). As expected, the underlying cochain complex of the

deformation complex of g is isomorphic to the Gerstenhaber-Schack1 cochain complex [14, 15, 16]

of g (Theorem 5.5). Therefore, the latter also has an explicit L∞-structure. See Section 5.1 for

more discussion about this deformation complex.

A second example is given by the study of the case of Lie algebra morphisms. As in the associative

case, there exists a 2-colored PROP LieB→W whose 2-colored algebras are morphism of Lie algebras.

We obtain then an explicit expression for the L∞-operations (Theorem 7.5 for k = 1, Theorem

8.2 for k = 2, and Theorem 8.4 for k ≥ 3). In particular the first operation l1 gives a complex

isomorphic to the S-cohomology complex [9]. Hence this answers the question left open in [9] of

the existence of such an L∞-structure.

1Be careful with the possible confusion with the complex associated to bialgebras. Both of these complexes share

the same name
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Another example of the L∞-deformation complex is given in Section 9. There is a 2-colored

operad Iso (Example 9.1) whose algebras are of the form F : U � V : G, in which U and V are

chain complexes and F and G are mutually inverse chain maps. Using a slight modification of the

results and constructions of earlier sections, we will write down explicitly the L∞-operations on the

deformation complex of a typical Iso-algebra T (Example 9.3).

Acknowledgment: We would like to thank Jim Stasheff and Bruno Vallette for reading the first

version of the manuscript and many useful remarks.

2. Preliminaries on colored PROPs

Fix a ground field k, assumed to be of characteristic 0. This assumption is useful in considering

models for operads or PROPs since it guarantees the existence of the ‘averagization’ of a non-

equivariant map into an equivariant one. The characteristic zero assumption also simplifies concepts

of Lie algebras and their generalizations.

In this section, we review some basic definitions about colored PROPs (and colored operads as

their particular instances), their algebras, colored Σ-bimodules, and free colored PROPs. Examples

of algebras over colored PROPs can be found at the end of this section.

2.1. Colored Σ-bimodule. Let C be a non-empty set whose elements are called colors. A Σ-

bimodule is a collection E = {E(m,n)}m,n≥0 of k-modules in which each E(m,n) is equipped with

a left Σm and a right Σn actions that commute with each other.

A C-colored Σ-bimodule is a Σ-bimodule E in which each E(m,n) admits a C-colored decompo-

sition into submodules,

E(m,n) =
⊕

ci,dj∈C

E

(
d1, . . . , dm

c1, . . . , cn

)
, (2.1.1)

that is compatible with the Σm-Σn-actions. Elements of E(m,n) are said to have biarity (m,n).

A morphism of C-colored Σ-bimodules is a linear bi-equivariant map that respects the C-colored

decompositions (2.1.1).

C-colored Σ-bimodules and their morphism are examples of C-colored objects; more examples

will follow. If C has k elements, we will sometimes call C-colored objects simply k-colored objects.

Definition 2.2. A C-colored PROP ([31, 32], [39, Section 8]) is a C-colored Σ-bimodule P =

{P(m,n)} (so each P(m,n) admits a C-colored decomposition (2.1.1)) that comes equipped with

two operations: a horizontal composition

⊗ : P

(
d11, . . . , d1m1

c11, . . . , c1n1

)
⊗· · ·⊗P

(
ds1, . . . , dsms

cs1, . . . , csns

)
→ P

(
d11, . . . , dsms

c11, . . . , csns

)
⊆ P(m1+· · ·+ms, n1+· · ·+ns)

and a vertical composition

◦ : P

(
d1, . . . , dm

c1, . . . , cn

)
⊗ P

(
b1, . . . , bn
a1, . . . , ak

)
→ P

(
d1, . . . , dm

a1, . . . , ak

)
⊆ P(m, k), (x, y) 7→ x ◦ y. (2.2.1)



4 Y. FRÉGIER, M. MARKL, D. YAU

These two compositions are required to satisfy some associativity-type axioms. There is also a

unit element 1c ∈ P
(
c
c

)
for each color c. Moreover, the vertical composition x ◦ y in (2.2.1) is 0,

unless

ci = bi for 1 ≤ i ≤ n.

Morphisms of C-colored PROPs are unit-preserving morphisms of the underlying Σ-bimodules that

commute with both the horizontal and the vertical compositions.

Colored operads are particular cases of colored PROPs such that P
(
d1,...,dm

a1,...,ak

)
= 0 for m ≥ 2. Note

that colored PROPs can also be defined as ordinary (1-colored) PROPs over the semisimple algebra

K = ⊕c∈Ckc, where each kc is a copy of the ground field k [36, Section 2].

Example 2.3. The C-colored endomorphism PROP EndC
T of a C-graded module T = ⊕c∈CTc is

the C-colored PROP with

EndC
T

(
d1, . . . , dm

c1, . . . , cn

)
= Homk(Tc1 ⊗ · · · ⊗ Tcn , Td1 ⊗ · · · ⊗ Tdm

).

The horizontal composition is given by tensor products of k-linear maps. The vertical composition

is given by composition of k-linear maps with matching colors.

Definition 2.4. For a C-colored PROP P, a P-algebra is a morphism of C-colored PROPs

α : P → EndC
T

for some C-graded module T = ⊕c∈CTc. In this case, we say that T is a P-algebra.

2.5. Pasting scheme for C-colored PROPs. For m,n ≥ 1, let UGrC(m,n) be the set whose

elements are pairs (G, ζ) such that:

(1) G ∈ UGr(m,n) is a directed (m,n)-graph [39, p.38].

(2) For each vertex v ∈ V ert(G), the sets out(v) (outgoing edges from v) and in(v) (incoming

edges to v) are labeled 1, . . . , q and 1, . . . , p, respectively, where #out(v) = q and #in(v) =

p.

(3) ζ : edge(G) → C is a function that assigns to each edge in G a color in C. For any edge

l ∈ edge(G), ζ(l) ∈ C is called the color of l.

There is a C-colored decomposition

UGrC(m,n) =
∐

ci,dj∈C

UGrC
(
d1, . . . , dm

c1, . . . , cn

)
,

where (G, ζ) ∈ UGrC
(
d1,...,dm

c1,...,cn

)
if and only if the input legs {l1in, . . . l

n
in} of G have colors c1, . . . , cn

and the output legs {l1out, . . . , l
m
out} of G have colors d1, . . . , dm.

As in [39], UGrC(m,n) and UGrC
(
d1,...,dm

c1,...,cn

)
are categories with color-respecting isomorphisms as

morphisms. Elements in UGrC(m,n) are called C-colored directed (m,n)-graphs.



THE L∞-DEFORMATION COMPLEX OF DIAGRAMS OF ALGEBRAS 5

2.6. Decoration on colored directed graphs. Let E be a C-colored Σ-bimodule and (G, ζ) be

a C-colored directed (m,n)-graph. Define

E(G, ζ) =
⊗

v∈V ert(G)

E

(
ζ(o1

v), . . . , ζ(o
q
v)

ζ(iv1), . . . , ζ(i
v
p)

)
, (2.6.1)

where in(v) = {iv1, . . . , i
v
p} and out(v) = {o1

v, . . . , o
q
v}. Its elements are called E-decorated C-colored

directed (m,n)-graphs.

For an element Γ = ⊗vev ∈ E(G, ζ), the element ev ∈ E
(
ζ(o1

v),...,ζ(oq
v)

ζ(iv1),...,ζ(ivp)

)
corresponding to the vertex

v ∈ V ert(G) is called the decoration of v.

In other words, E(G, ζ) is the space of decorations of the vertices of the C-colored directed

(m,n)-graph (G, ζ) with elements of E with matching biarity and colors.

2.7. Free colored PROP. Let E be a C-colored Σ-bimodule. For c1, . . . , cn, d1, . . . , dm ∈ C, define

the module

FC(E)

(
d1, . . . , dm

c1, . . . , cn

)
= colimE(G, ζ),

where the colimit is taken over the category UGrC
(
d1,...,dm

c1,...,cn

)
. Then

FC(E) =



FC(E)(m,n) =

⊕

ci,dj∈C

FC(E)

(
d1, . . . , dm

c1, . . . , cn

)


is a C-colored PROP, in which the horizontal composition ⊗ is given by disjoint union of E-decorated

C-colored directed (m,n)-graphs. The vertical composition ◦ in FC(E) is given by grafting of C-

colored legs with matching colors.

Note that there is a natural Z≥0-grading,

FC(E) =
⊕

k≥0

FC
k(E),

where FC

k(E) is the submodule generated by the monomials involving k elements in E.

Proposition 2.8 (= C-colored version of Proposition 57 in [39]). FC(E) = {FC(E)(m,n)} is the

free C-colored PROP generated by the C-colored Σ-bimodule E. In other words, the functor FC is

the left adjoint of the forgetful functor from C-colored PROPs to C-colored Σ-bimodules.

In particular, elements in the free C-colored PROP FC(E) can be written as sums of E-decorated

C-colored directed graphs.

Convention 2.9. From now on, everything will be tacitly assumed to be C-colored with a suitable

set of colors C. When there is no danger of ambiguity, we will, for brevity, suppress C from the

notation.
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Example 2.10 (Morphisms). Let P be an ordinary PROP (i.e., a 1-colored PROP). Then there is

a 2-colored PROP PB→W whose algebras are of the form f : U → V , in which U and V are P-algebras

and f is a morphism of P-algebras [35, Example 1]. It can be constructed as the quotient

PB→W =
PB ∗ PW ∗ F(f)

(f⊗mxB = xWf⊗n for all x ∈ P(m,n))
,

where PB and PW are copies of P concentrated in the colors B and W, respectively, xB and xW are the

respective copies of x in PB and PW, and F(f) is the free 2-colored PROP on the generator f : B → W.

The star ∗ denotes the free product (= the coproduct) of 2-colored PROPs.

In the case that P is the operad As for associative algebras, cohomology of AsB→W-algebras (i.e.,

associative algebra morphisms) will be discussed in details in Sections 5 and 6.

Example 2.11 (Modules). There is a 2-colored operad AsMod whose algebras are of the form

(A,M), where A is an associative algebra and M is a left A-module. It can be constructed as the

quotient

AsMod =
F(µ, λ)

(µ(µ⊗ 1A) − µ(1A ⊗ µ), λ(µ⊗ 1M) − λ(1A ⊗ λ))
.

Here F(µ, λ) is the free 2-colored operad (with C = {A, M}) on the generators,

µ ∈ F(µ, λ)

(
A

A, A

)
and λ ∈ F(µ, λ)

(
M

A, M

)
,

which encode the multiplication in A and the left A-action on M , respectively.

If we depict the multiplication µ as • and the module action λ as • , then the associativity

of µ is expressed by the diagram

•
•

= •
•

(2.11.1)

and the compatibility between the multiplication and the module action by

•
•

= •
•
. (2.11.2)

The diagrams in the above two displays should be interpreted as elements of the free colored PROP

F(µ, λ), with the A-colored edges of the underlying graph represented by simple lines , and the

M-colored edges by the double lines . We use the convention that the directed edges point upwards,

i.e. the composition is performed from the bottom up.

Example 2.12 (Module-algebras). Let H = (H,µH ,∆H) be a (co)associative bialgebra. An H-

module-algebra is an associative algebra (A,µA) that is equipped with a left H-module structure

such that the multiplication map on A becomes an H-module morphism. In other words, the

module-algebra axiom

x(ab) =
∑

(x)

(x(1)a)(x(2)b)
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holds for x ∈ H and a, b ∈ A, where ∆H(x) =
∑

(x) x(1) ⊗ x(2) using the Sweedler’s notation for

comultiplication.

This algebraic structure arises often in algebraic topology [2], quantum groups [24], Lie and Hopf

algebras theory [7, 44, 53], and group representations [1]. For example, in algebraic topology, the

complex cobordism ring MU∗(X) of a topological space X is an S-module-algebra, where S is the

Landweber-Novikov algebra [30, 48] of stable cobordism operations.

Another important example of a module-algebra arises in the theory of Lie algebras. Finite

dimensional simple sl(2,C)-modules are, up to isomorphism, the highest weight modules V (n) (n ≥

0) [23, Theorem 7.2]. There is a U(sl(2,C))-module-algebra structure on the polynomial algebra

C[x, y] such that the submodule C[x, y]n of homogeneous polynomials of degree n is isomorphic to

the highest weight module V (n) [24, Theorem V.6.4]. In other words, all the finite dimensional

simple sl(2,C)-modules can be encoded inside a single U(sl(2,C))-module-algebra.

There is a 2-colored PROP ModAlg whose algebras are of the form (H,A), where H is a

(co)associative bialgebra and A is an H-module-algebra. (The third author first learned about this

fact from Bruno Vallette in private correspondence.) It can be constructed as the quotient (with

C = {H, A})

ModAlg = F(µH,∆H, µA, λ)/I, (2.12.1)

where F = F(µH,∆H, µA, λ) is the free 2-colored PROP on the generators:

µH ∈ F

(
H

H, H

)
, ∆H ∈ F

(
H, H

H

)
, µA ∈ F

(
A

A, A

)
, and λ ∈ F

(
A

H, A

)
,

which encode the multiplication and comultiplication in H, the multiplication in A, and the H-

module structure on A, respectively. The ideal I is generated by the elements:

µH(µH ⊗ 1H) − µH(1H ⊗ µH) (associativity of µH),

(∆H ⊗ 1H)∆H − (1H ⊗ ∆H)∆H (coassociativity of ∆H),

∆HµH − µ⊗2
H

(2 3)∆⊗2
H

(compatibility of µH and ∆H),

µA(µA ⊗ 1A) − µA(1A ⊗ µA) (associativity of µA),

λ(µH ⊗ 1A) − λ(1H ⊗ λ) (H-module axiom),

λ(1H ⊗ µA) − µAλ
⊗2(2 3)(∆H ⊗ 1⊗2

A
) (module-algebra axiom).

Here (2 3) ∈ Σ4 is the permutation that switches 2 and 3.

If we draw the multiplication µH as • , the comultiplication ∆H as • , the multiplication µA

as • , and the H-module action λ as • , then the bialgebra axioms for H are expressed by

•
•

= •
•
, •

• = •
• and

•
• =

•

•

•

•
,
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The associativity of µH is given by the obvious -colored version of (2.11.1), the H-module axiom

by (2.11.2), and the module-algebra axiom by

•
•

=
•

•• • .

Variants of module-algebras, including, module-co/bialgebras and comodule-(co/bi)algebras are

algebras over similar 2-colored PROPs. Deformations, in the classical sense [13], of module-algebras

and its variants were studied in [57, 58].

Example 2.13 (Entwining structures). An entwining structure [4, 6] is a tuple (A,C, ψ), in which

A = (A,µ) is an associative algebra, C = (C,∆) is a coassociative coalgebra, and ψ : C⊗A→ A⊗C,

such that the following two entwining axioms are satisfied:

ψ(IdC ⊗µ) = (µ⊗ IdC)(IdA ⊗ψ)(ψ ⊗ IdA),

(IdA ⊗∆)ψ = (ψ ⊗ IdC)(C ⊗ ψ)(∆ ⊗ IdA).
(2.13.1)

If we symbolize µ by • , ∆ by • and ψ by • , then the entwining axioms can be written as

•
•

= •
•

•
and •

• = •
•

•
.

This algebraic structure arises in the study of coalgebra-Galois extension and its dual notion,

algebra-Galois coextension [5], generalizing the Hopf-Galois extension of [26].

There is a 2-colored PROP Ent whose algebras are entwining structures. It can be constructed

as the quotient

Ent = F(µ,∆, ψ)/I

of the free 2-colored PROP F = F(µ,∆, ψ) (with C = {A, C}) on the generators:

µ ∈ F

(
A

A, A

)
, ∆ ∈ F

(
C, C

C

)
, and ψ ∈ F

(
A, C

C, A

)
.

The ideal I is generated by the elements expressing the associativity of µ, the coassociativity of ∆,

and the two entwining axioms (2.13.1).

Example 2.14 (Yetter-Drinfel’d modules). A Yetter-Drinfel’d module [60] (a.k.a. crossed bimodule

and quantum Yang-Baxter module) over a (co)associative bialgebra (H,µ,∆) is a vector space

M together with a left H-module action ω : H ⊗ M → M and a right H-comodule coaction

ρ : M →M ⊗H that satisfy the Yetter-Drinfel’d condition,

(IdM ⊗µ) ◦ (ρ⊗ IdH) ◦ τ ◦ (IdH ⊗ω) ◦ (∆ ⊗ IdM ) = (ω ⊗ µ) ◦ (IdH ⊗τ ⊗ IdH) ◦ (∆ ⊗ ρ), (2.14.1)
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where τ is the twist isomorphism H ⊗M ∼= M ⊗H. If we depict µ as • , ∆ as • , ω as • , and

ρ as • , then

•
•

•
•

=
•

•

•

•
.

Yetter-Drinfel’d modules were introduced by Yetter [60], and are studied further in [29, 49, 50,

51, 52], among others. If the bialgebra H is a finite dimensional Hopf algebra, then the left-

modules over its Drinfel’d double D(H) are exactly the Yetter-Drinfel’d modules over H. These

objects play important roles in the theory of quantum groups and mathematical physics. Indeed,

a finite dimensional Yetter-Drinfel’d module M gives rise to a solution of the quantum Yang-

Baxter equation [29, 50] (i.e., an R-matrix [24, Chapter VIII]). Conversely, through the so-called

FRT construction [8, 24], every R-matrix on a finite dimensional vector space gives rise to a

Yetter-Drinfel’d module over some bialgebra. Cohomology for Yetter-Drinfel’d modules and their

morphisms over a fixed bialgebra have been studied in [49] and [59], respectively.

There is a 2-colored PROP YD whose algebras are of the form (H,M), where H is a bialgebra

and M is a Yetter-Drinfel’d module over H. It can be constructed as the quotient

YD = F(µ,∆, ω, ρ)/I

of the free 2-colored PROP F = F(µ,∆, ω, ρ) (with C = {H, M}) on the generators:

µ ∈ F

(
H

H, H

)
, ∆ ∈ F

(
H, H

H

)
, ω ∈ F

(
M

H, M

)
, and ρ ∈ F

(
M, H

M

)
.

The ideal I is generated by elements expressing the bialgebra axioms for µ and ∆, the left H-module

axiom for ω, the right H-comodule axiom for ρ, and the Yetter-Drinfel’d condition (2.14.1).

Example 2.15 (Hopf modules). A Hopf module over a bialgebra (H,µ,∆) is a vector space M

together with a left H-module action ω : H ⊗M → M and a right H-comodule coaction ρ : M →

M ⊗H that satisfy the Hopf module condition:

ρ ◦ ω = (ω ⊗ µ) ◦ (IdH ⊗τ ⊗ IdH) ◦ (∆ ⊗ ρ). (2.15.1)

There is a 2-colored PROP HopfMod whose algebras are of the form (H,M), in which H is a

bialgebra and M is a Hopf module over H. It admits the same construction as YD, except that the

Yetter-Drinfel’d condition (2.14.1) is replaced by the Hopf module condition (2.15.1) in the ideal I

of relations.

3. Minimal models and cohomology

In this section, we define (i) minimal models for colored PROPs and (ii) cohomology for algebras

over a colored PROP based on minimal models. Since minimal models are (at least in most cases)

known to be unique up to isomorphism, the cohomology based on minimal models is unique already
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on the chain level. We will therefore require minimality whenever possible, though an arbitrary

cofibrant resolution should give the same cohomology. There are, however, important PROPs that

do not have a minimal model, as the colored operad Iso considered in Section 9.

First we recall the notions of modules and derivations for colored PROPs.

3.1. Modules. For a C-colored PROP P and a C-colored Σ-bimodule U , a P-module structure on

U [34, p.203] consists of the following operations:

◦ = ◦l : P

(
d1, . . . , dm

c1, . . . , cn

)
⊗ U

(
b1, . . . , bn
a1, . . . , ak

)
→ U

(
d1, . . . , dm

a1, . . . , ak

)
,

◦ = ◦r : U

(
d1, . . . , dm

c1, . . . , cn

)
⊗ P

(
b1, . . . , bn
a1, . . . , ak

)
→ U

(
d1, . . . , dm

a1, . . . , ak

)
,

⊗ = ⊗l : P

(
d1, . . . , dm1

c1, . . . , cn1

)
⊗ U

(
b1, . . . , bm2

a1, . . . , an2

)
→ U

(
d1, . . . , dm1 , b1, . . . , bm2

c1, . . . , cn1 , a1, . . . , an2

)
,

⊗ = ⊗r : U

(
d1, . . . , dm1

c1, . . . , cn1

)
⊗ P

(
b1, . . . , bm2

a1, . . . , an2

)
→ U

(
d1, . . . , dm1 , b1, . . . , bm2

c1, . . . , cn1 , a1, . . . , an2

)
.

As usual, the vertical operations ◦l and ◦r are trivial unless bi = ci for 1 ≤ i ≤ n. The following

compatibility axioms are also imposed on the four operations:

f ◦ (g ◦ h) = (f ◦ g) ◦ h,

f ⊗ (g ⊗ h) = (f ⊗ g) ⊗ h,

(f1 ◦ f2) ⊗ (g1 ◦ g2) = (f1 ⊗ g1) ◦ (f2 ⊗ g2).

Here exactly one of f, g, and h lies in U and the other two lie in P. Likewise, exactly one of f1, f2,

g1, and g2 lies in U and the other three lie in P.

We note that P-modules can also be defined as abelian group objects in the category PROP/P of

C-colored PROPs over P.

For example, if β : P → Q is a morphism of C-colored PROPs, then Q becomes a P-module via

β in the obvious way.

3.2. Derivations. Given a P-module U , a derivation P → U is a C-colored Σ-bimodule morphism

d : P → U that satisfies the usual derivation property with respect to both the vertical operations

◦ and the horizontal operations ⊗ [34, p.204]. Denote by Der(P, U) the vector space of derivations

P → U .

Proposition 3.3 (= C-colored version of Proposition 3 in [40]). Let U be an FC(E)-module for

some C-colored Σ-bimodule E. Then there is a canonical isomorphism

Der(FC(E), U) ∼= HomC
Σ(E,U), (3.3.1)

where HomC
Σ(E,U) denotes the vector space of C-colored Σ-bimodule morphisms E → U .
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In one direction, the isomorphism (3.3.1) takes a derivation θ ∈ Der(FC(E), U) to its restriction

θ|E to the space E of generators. In the other direction, it takes a map ϕ : E → U ∈ HomC
Σ(E,U)

to its unique extension Ex(ϕ) : FC(E) → U as a derivation such that Ex(ϕ)|E = ϕ.

Following [33, 38], we make the following definition.

Definition 3.4. Let P be a C-colored PROP. A minimal model of P is a differential graded C-colored

PROP (FC(E), ∂) for some C-colored Σ-bimodule E together with a homology isomorphism

ρ : (FC(E), ∂) → (P, 0)

such that the following minimality condition is satisfied:

∂(E) ⊆
⊕

k≥2

FC

k(E).

In other words, the image of E under ∂ consists of decomposables.

3.5. Cohomology. Here we define cohomology of an algebra over a colored PROP following [34,

40].

Let P be a C-colored PROP, and let (FC(E), ∂)
ρ
−→ (P, 0) be a minimal model of P. Let P

α
−→ EndC

T

be a P-algebra structure on T = ⊕c∈CTc. Consider EndC
T as an FC(E)-module via the morphism

β = αρ : FC(E) → EndC
T .

Then the map

Der(FC(E),EndC
T )

δ
−→ Der(FC(E),EndC

T )

θ 7→ θ∂

is well-defined and is a differential (δ2 = 0) because ∂2 = 0.

Definition 3.6. In the above setting, define the cochain complex

C∗
P
(T ;T ) = ↑ Der(FC(E),EndC

T )−∗, (3.6.1)

where the degree +1 differential δP is induced by δ, ↑ denotes suspension, and −∗ denotes reversed

grading. We call (C∗
P
(T ;T ), δP) the deformation complex of T . Its cohomology,

H∗
P(T ;T ) = H(C∗

P(T ;T ), δP ),

is called the cohomology of T with coefficients in itself.

Note that if C = {∗}, i.e., P is an ordinary (1-colored) PROP, then (C ∗
P
(T ;T ), δP) and H∗

P
(T ;T )

defined above coincide with the definitions in [34, 40].
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4. L∞-structure on C∗
P
(T ;T ) and deformations

In this section, we observe that the deformation complex (C ∗
P
(T ;T ), δP) (Definition 3.6) of an

algebra T over a colored PROP P has the natural structure of an L∞-algebra (Theorem 4.2). The

relationship between this L∞-algebra and deformations of T is discussed in Section 4.3. An explicit

construction of the L∞-operations lk in (C∗
P
(T ;T ), δP) is given in Section 4.4. This construction

will first be applied in Sections 5 and 6 to obtain very explicit formulas for the operations lk in the

deformation complex of an associative algebra morphism.

First we recall the notion of an L∞-algebra.

Definition 4.1 (Definition 2.1 in [27], Example 3.90 in [41]). An L∞-structure on a Z-graded

module V consists of a sequence of operations (δ = l1, l2, l3, . . .) with

ln : V ⊗n → V

of degree 2 − n such that each ln is anti-symmetric and the condition
∑

i+j=n+1

∑

σ

χ(σ)(−1)i(j−1)lj
(
li(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)

)
= 0 (4.1.1)

holds for n ≥ 1. Here σ runs through all the (i, n− i)-unshuffles for i ≥ 1, and

χ(σ) = sgn(σ) · ε(σ;x1, . . . , xn),

where ε(σ;x1, . . . , xn) is the Koszul sign given by

x1 ∧ · · · ∧ xn = ε(σ;x1, . . . , xn) · xσ(1) ∧ · · · ∧ xσ(n).

In this case, we call (V, δ, l2, l3, . . .) an L∞-algebra. The anti-symmetry of ln means that

ln(xσ(1), . . . , xσ(n)) = χ(σ)ln(x1, . . . , xn)

for σ ∈ Σn and x1, . . . , xn ∈ V .

Theorem 4.2. In the setting of §3.5, there exists an L∞-structure (δP, l2, l3, . . .) on C∗
P
(T ;T )

capturing deformations of colored P-algebras in the sense of 4.3 below. This L∞-structure induces

a graded Lie algebra structure on H∗
P
(T ;T ).

Proof. This is the C-colored version of [40, Theorem 1], whose proof, with some very minor modifi-

cations, applies to the C-colored setting as well. In fact, Sections 3 and 4 in [40] (which contain the

proof of Theorem 1 in that paper) apply basically verbatim to the C-colored setting. An explicit

“graphical” construction of the operations lk will be given below (§4.4). �
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4.3. Deformations of colored PROP algebras. Section 5 in [40] concerning deformations of

algebras over a PROP also applies to the C-colored setting without change. In particular, defor-

mations of an algebra T over a C-colored PROP P (i.e., FC(E)-algebra structures on T ) correspond

to elements κ ∈ C1
P
(T ;T ) that satisfy the Quantum Master Equation [40, Eq.(4)]:

0 = δP(κ) +
1

2!
l2(κ, κ) −

1

3!
l3(κ, κ, κ) −

1

4!
l4(κ, κ, κ, κ) + · · · . (4.3.1)

In other words, the L∞-algebra

(C∗
P
(T ;T ), δP, l2, l3, . . .)

in Theorem 4.2 controls the deformations of T as a P-algebra. As explained in [40, Introduction],

this L∞-algebra is an L∞-version of the Deligne groupoid [20, 21] governing deformations that are

described by the usual Master Equation (also known as the Maurer-Cartan Equation):

0 = dκ+
1

2
[κ, κ].

When P is a properad [54], there is another approach to studying L∞-deformations of P-algebras

due to Merkulov and Vallette [43]. Their approach is based on a generalization of Van der Laan’s

homotopy (co)operads [55] to homotopy (co)properads. They show that the deformation complex

(C∗
P
(T ;T ), δP) inherits a L∞-algebra structure from a homotopy properad (Theorem 28 of [43]).

Vallette recently informed the third author in private correspondence that the paper [43] can also

be extended to the colored setting.

4.4. Construction of the operations lk on C∗
P
(T ;T ). Here we describe how the operations lk

in Theorem 4.2 are constructed, again following [40, Section 2] closely.

Suppose that F1, . . . , Fk ∈ HomC
Σ(E,EndC

T ) and that Γ ∈ E(G, ζ) is an E-decorated C-colored

directed (m,n)-graph (2.6.1) with underlying C-colored graph (G, ζ) ∈ UGrC(m,n). Let v1, . . . , vk ∈

V ert(G) be k distinct vertices in G. Consider the EndC
T -decorated C-colored directed (m,n)-graph

Γ
{v1,...,vk}
{β} [F1, . . . , Fk] ∈ EndC

T (G, ζ)

obtained from Γ by:

(1) replacing the decoration evi
∈ E of the vertex vi by Fi(evi

) ∈ EndC
T for 1 ≤ i ≤ k, and

(2) replacing the decoration ev ∈ E of any vertex v 6∈ {v1, . . . , vk} by β(ev) = αρ(ev).

The graph Γ
{v1,...,vk}
{β} [F1, . . . , Fk] is visualized in Figure 1 which is a colored version of a pic-

ture taken from [40]. Using the C-colored PROP structure on EndC
T (Example 2.3), the graph

Γ
{v1,...,vk}
{β} [F1, . . . , Fk] produces an element

γ
(
Γ
{v1,...,vk}
{β} [F1, . . . , Fk]

)
∈ EndC

T

(
ζ(l1out), . . . , ζ(l

m
out)

ζ(l1in), . . . , ζ(lnin)

)
⊆ EndC

T (m,n).

Here {l1out, . . . , l
m
out} and {l1in, . . . , l

n
in} are the output and input legs, respectively, of (G, ζ).
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· · ·

· · ·

β
...

...
•

β
...

...
•

β
...

...
•

Fk...

...
•

F2...

...
•

F3...

...
•

F1...

...
•

666

666

Figure 1. The EndC
T -decorated graph Γ

{v1,...,vk}
{β} [F1, . . . , Fk]. Vertices labelled Fi

are decorated by Fi(evi
), 1 ≤ i ≤ k, the remaining vertices are decorated by β(ev).

Now pick cochains f1, . . . , fk ∈ C∗
P
(T ;T ), which correspond to F1, . . . , Fk ∈ HomC

Σ(E,EndC
T )

under the isomorphism (3.3.1):

C∗
P(T ;T ) = ↑ Der(FC(E),EndC

T )−∗ ∼= ↑ HomC
Σ(E,EndC

T )−∗. (4.4.1)

If ξ ∈ E
(
d1,...,dm

c1,...,cn

)
, then ∂(ξ) ∈ FC(E)

(
d1,...,dm

c1,...,cn

)
can be written as a finite sum

∂(ξ) =
∑

s∈Sξ

Γs,

where each Γs ∈ E(G, ζ) for some (G, ζ) ∈ UGrC
(
d1,...,dm

c1,...,cn

)
. Define

lk(f1, . . . , fk)(ξ) ∈ EndC
T

(
d1, . . . , dm

c1, . . . , cn

)

to be the element

lk(f1, . . . , fk)(ξ)
def
= (−1)ν(f1 ,...,fk)

∑

s∈Sξ

∑

(v1,...,vk)

γ
(
Γ
{v1,...,vk}
s,{β} [F1, . . . , Fk]

)
, (4.4.2)

where (v1, . . . , vk) runs through all the k-tuples of distinct vertices in the underlying graph of Γs.

The sign on the right-hand side of (4.4.2) is given by

ν(f1, . . . , fk)
def
= (k − 1)|f1| + (k − 2)|f2| + · · · + |fk−1|. (4.4.3)

Since ξ is arbitrary, (4.4.2) specifies an element

lk(f1, . . . , fk) ∈ HomC
Σ(E,EndC

T ) ∼= C∗
P(T ;T ). (4.4.4)

The arguments in Sections 3-4 in [40] ensure that (4.4.4) is indeed well-defined. We note that

the L∞ axiom (4.1.1) for the operations lk constructed above is a consequence of ∂2 = 0. Also, an

obvious modification of the above construction applies to free cofibrant, not necessarily minimal,

models as well. We will see an instance of such a generalization in Section 9.
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5. Deformation complex of an associative algebra morphism

In this section and Section 6, we illustrate the L∞-deformation theory of colored PROP algebras

(Section 4) in the case of associative algebra morphisms. Let g : U → V be an associative algebra

morphism, and set T = U ⊕ V as a 2-colored graded module. Let AsB→W denote the 2-colored

operad encoding associative algebra morphisms (Example 2.10). The morphism g : U → V can be

regarded as an AsB→W-algebra structure on T .

The purposes of this section are (i) to express the differential δAsB→W
in C∗

AsB→W
(T ;T ) (3.6.1) in

terms of the Hochschild differential (Theorem 5.5), and (ii) to observe that the cochain complex

(C∗
AsB→W

(T ;T ), δAsB→W
) is isomorphic to the Gerstenhaber-Schack cochain complex (C ∗+1

GS (g; g), dGS )

of the morphism g [14, 15, 16] (Theorem 5.5). This isomorphism allows us to transfer the L∞-

structure on (C∗
AsB→W

(T ;T ), δAsB→W
) to the Gerstenhaber-Schack cochain complex (C ∗+1

GS (g; g), dGS )

(Corollary 5.6).

The materials in this section and Section 6 can be easily dualized to obtain an explicit L∞-

structure on the deformation complex of a morphism of coassociative coalgebras. The associated

deformation theory of coalgebra morphisms is the one constructed in [56].

5.1. Background. Deformation of an associative algebra morphism g, in the classical sense of

Gerstenhaber [13], was studied by Gerstenhaber and Schack in [14, 15, 16]. In the case of a single

associative algebra A, the deformation complex is the Hochschild cochain complex C ∗(A;A) of A

with coefficients in itself, which has the structure of a differential graded Lie algebra [12]. On

the other hand, the work of Gerstenhaber and Schack [14, 15, 16] left open the question of what

structure the deformation complex (C∗
GS(g; g), dGS ) of g possesses. Borisov answered this question

in [3] by showing that (C∗
GS(g; g), dGS ), while not a differential graded Lie algebra, is isomorphic

to the underlying cochain complex of an L∞-algebra.

With our approach based on minimal models, we are able to write down all the L∞-operations

lk on C∗
AsB→W

(T ;T ) explicitly (with l1 in Theorem 5.5 and lk (k ≥ 2) in Section 6). In particular,

all the higher lk (k ≥ 3) can be written in terms of a certain generalized “comp” operation (6.3.1),

which extends the classical ◦i operation in the Hochschild cochain complex [12]. As far as we know,

these higher operations lk have never been explicitly written down before. We believe that this

example of associative algebra morphisms will serve as a guide for obtaining explicit formulas for

the L∞-operations in the deformation complexes of other kinds of morphisms and general diagrams.

5.2. The Gerstenhaber-Schack complex (C∗
GS(g; g), dGS ). Here we recall the Gerstenhaber-

Schack cochain complex (C∗
GS(g; g), dGS ) [14, 15, 16].

Fix a morphism g : U → V of associative algebras. We also consider V as a U -bimodule via g.

Then

Cn
GS(g; g)

def
= Hom(U⊗n, U) ⊕ Hom(V ⊗n, V ) ⊕ Hom(U⊗n−1, V ) (5.2.1)
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for n ≥ 1. A typical element in Cn
GS(g; g) is denoted by (xU , xV , xg) with xU ∈ Hom(U⊗n, U),

xV ∈ Hom(V ⊗n, V ), and xg ∈ Hom(U⊗n−1, V ). Its differential is defined as

dn
GS(xU , xV , xg)

def
= (bxU , bxV , gxU − xV g

⊗n − bxg),

where b denotes the Hochschild differential in Hom(U⊗∗, U), Hom(V ⊗∗, V ), or Hom(U⊗∗, V ).

5.3. The minimal model of AsB→W. Here we recall from [35, 36] the minimal model of the

2-colored operad AsB→W that encodes associative algebra morphisms.

The 2-colored operad AsB→W can be represented as (Example 2.10)

AsB→W =
AsB ∗AsW ∗F(f)

(fµ = νf⊗2)
,

where µ and ν denote the generators in AsB(1, 2) and AsW(1, 2), respectively, which encode the

multiplications in the domain and the target.

Let E be the 2-colored Σ-bimodule with the following generators:

µn : B⊗n → B of degree n− 2 and biarity (1, n) (n ≥ 2),

νn : W⊗n → W of degree n− 2 and biarity (1, n) (n ≥ 2), and

fn : B⊗n → W of degree n− 1 and biarity (1, n) (n ≥ 1).

Then the minimal model for AsB→W is

(F(E), ∂)
α
−→ AsB→W,

where

α(µn) =




µ if n = 2,

0 otherwise
, α(νn) =




ν if n = 2,

0 otherwise
,

and

α(fn) =




f if n = 1,

0 otherwise
.

The differential ∂ is given by:

∂(µn) =
∑

i+j = n+1
i,j ≥ 2

n−j∑

s=0

(−1)i+s(j+1)µi ◦s+1 µj, (5.3.1a)

∂(νn) =
∑

i+j = n+1
i,j ≥ 2

n−j∑

s=0

(−1)i+s(j+1)νi ◦s+1 νj , (5.3.1b)

∂(fn) = −
n∑

l=2

∑

r1+···+rl=n

(−1)
P

1≤i<j≤l ri(rj+1)νl(fr1 ⊗ · · · ⊗ frl
)
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(s + 1)th input

· · ·

· · · · · ·

•µj

•µi

Figure 2. The graph corresponding the composition µi ◦s+1 µj.

−
∑

i+j = n+1
i≥ 1, j ≥ 2

n−j∑

s=0

(−1)i+s(j+1)fi ◦s+1 µj. (5.3.1c)

Here

µi ◦s+1 µj
def
= µi

(
1⊗s
B

⊗ µj ⊗ 1⊗i−s−1
B

)
, (5.3.2)

which “plugs” µj into the (s + 1)st input of µi (see Figure 2), and similarly for νi ◦s+1 νj and

fi ◦s+1 µj .

5.4. The cochain complex (C∗
AsB→W

(T ;T ), δAsB→W
). Suppose that T = U⊕V as a 2-colored graded

module and that g : U → V is a morphism of associative algebras represented by the morphism

ρ : AsB→W → EndT of 2-colored operads. Then the canonical isomorphism (4.4.1) says in this case,

C∗
AsB→W

(T ;T ) = ↑ Der(F(E),EndT )−∗ ∼= ↑ Hom
{B,W}
Σ (E,EndT )−∗.

Under this isomorphism, an element θ ∈ Cn
AsB→W

(T ;T ) is uniquely determined by the tuple

(θU , θV , θg)
def
= (θ(µn+1), θ(νn+1), θ(fn)) ∈ Cn+1

GS (g; g). (5.4.1)

This establishes a linear isomorphism

Cn
AsB→W

(T ;T ) ∼= Cn+1
GS (g; g),

θ ↔ (θU , θV , θg) .

Denote by δGS the differential on the graded module C∗
GS(g; g) induced by δAsB→W

. The identifi-

cation (5.4.1) provides an isomorphism

(C∗
AsB→W

(T ;T ), δAsB→W
)

∼=
−→ (C∗+1

GS (g; g), δGS )

of cochain complexes.

Theorem 5.5. For θ ∈ Cn−1
AsB→W

(T ;T ), we have

δGS (θU , θV , θg) =
(
(−1)n+1bθU , (−1)n+1bθV , gθU − θV g

⊗n − (−1)nbθg

)
, (5.5.1)

in which b denotes the appropriate Hochschild differential. In particular, there is a cochain complex

isomorphism (
C∗−1

AsB→W
(T ;T ), δAsB→W

)
∼= (C∗

GS(g; g), dGS ) (5.5.2)
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given by

θ ∈ Cn−1
AsB→W

(T ;T ) 7→
(
(−1)

n(n+1)
2 θU , (−1)

n(n+1)
2 θV , (−1)

(n−1)n
2 θg

)
.

Since (C∗
AsB→W

(T ;T ), δAsB→W
= l1, l2, l3, . . .) is an L∞-algebra (Theorem 4.2), we can use the

cochain complex isomorphism (5.5.2) to transfer the higher brackets lk (k ≥ 2) to (C∗+1
GS (g; g), dGS).

Corollary 5.6. There is an L∞-algebra structure (dGS = l1, l2, l3, . . .) on C∗+1
GS (g; g) governing

deformations of the associative algebra morphism g.

Proof of Theorem 5.5. Since δAsB→W
= l1 in the L∞-algebra and since the degree of l1 is +1, we

have

δGS (θU , θV , θg) = (l1(θ)(µn+1), l1(θ)(νn+1), l1(θ)(fn))

by the identification (5.4.1). Therefore, to prove (5.5.1), it suffices to show:

l1(θ)(µn+1) = (−1)n+1bθU ,

l1(θ)(νn+1) = (−1)n+1bθV , and

l1(θ)(fn) = gθU − θV g
⊗n − (−1)nbθg.

(5.6.1)

From the description (4.4.2) of the operation lk, the computation of l1(θ)(µn+1) starts with

∂(µn+1) (5.3.1a). As an E-decorated 2-colored directed (1, n + 1)-graph, the term µi ◦s+1 µj in

∂(µn+1) has two vertices, whose decorations are µi and µj , see Figure 2. Therefore, the expres-

sion (4.4.2), when applied to the current situation, gives

l1(θ)(µn+1) =
∑

i+j =n+2
i,j ≥ 2

n+1−j∑

s=0

(−1)i+s(j+1) {θ(µi) ◦s+1 β(µj) + β(µi) ◦s+1 θ(µj)} . (5.6.2)

Note that, since θ ∈ Cn−1
AsB→W

(T ;T ),

θ(µi) =





0 if i 6= n,

θU if i = n,
and β(µj) = ρ(α(µj)) =





0 if j 6= 2,

µU if j = 2,

where µU : U⊗2 → U is the multiplication on U . It follows that (5.6.2) reduces to

l1(θ)(µn+1) =

n−1∑

s=0

(−1)n+s(2+1)θU ◦s+1 µU +

1∑

s=0

(−1)2+s(n+1)µU ◦s+1 θU

= (−1)n+1µU (−, θU ) + µU(θU ,−) + (−1)n+1
n∑

s=1

(−1)sθU (Id⊗s−1
U ⊗µU ⊗ Id⊗n−s

U )

= (−1)n+1bθU ,

which is the first condition in (5.6.1).
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The previous paragraph applies verbatim to l1(θ)(νn+1) (with νl replacing µl everywhere), since

the definition of ∂(ν∗) (5.3.1b) admits the same formula as that of ∂(µ∗). Therefore, it remains to

show the last condition in (5.6.1).

In ∂(fn) (5.3.1c), the term νl(fr1 ⊗· · ·⊗frl
) (respectively, fi ◦s+1 µj) is an E-decorated 2-colored

directed (1, n)-graph with l + 1 (respectively, 2) vertices. Since

β(fj) = ρ(α(fj)) =




g : U → V if j = 1,

0 otherwise,

the same kind of analysis as above gives

l1(θ)(fn) = −θV g
⊗n − (−1)(n−1)(1+1)µV (θg ⊗ g) − (−1)n−1+1µV (g ⊗ θg)

−

n−2∑

s=0

(−1)n−1+s(2+1)θg ◦s+1 µU − (−1)1+0gθU .

= gθU − θV g
⊗n − (−1)n

{
µV (g ⊗ θg) + (−1)nµV (θg ⊗ g) +

n−1∑

s=1

(−1)sθg ◦s µU

}

= gθU − θV g
⊗n − (−1)nbθg.

Here µV : V ⊗2 → V denotes the multiplication on V . This establishes the last condition in (5.6.1)

and finishes the proof of Theorem 5.5. �

6. The higher brackets in C∗
AsB→W

(T ;T )

We keep the same setting and notations as in the previous section. The purpose of this section

is to make explicit the L∞-operations lk on C∗
AsB→W

(T ;T ) for k ≥ 2. The cases k = 2 (Theorem

6.2) and k ≥ 3 (Theorem 6.4) are treated separately. As an immediate consequence of our explicit

formula for lk (k ≥ 3), we observe that, when applied to the tensor powers of C≤q
AsB→W

(T ;T ) for

some fixed q ≥ 0, only δAsB→W
(T ;T ) = l1, l2, . . . , lq+2 can be non-trivial (Corollary 6.5).

6.1. The operation l2. First we deal with the case k = 2. Pick elements θ ∈ Cn−1
AsB→W

(T ;T ) and

ω ∈ Cm−1
AsB→W

(T ;T ). Under the identification (5.4.1), θ and ω correspond to

(θU , θV , θg) ∈ Cn
GS(g; g) and (ωU , ωV , ωg) ∈ Cm

GS(g; g),

respectively.

Since l2 has degree 0, the element l2(θ, ω) lies in C
(n+m−1)−1
AsB→W

(T ;T ). Under the identification

(5.4.1), l2(θ, ω) is uniquely determined by

(l2(θ, ω)(µn+m−1), l2(θ, ω)(νn+m−1), l2(θ, ω)(fn+m−2)) ∈ C
n+m−1
GS (g; g).
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Theorem 6.2. With the notations above, we have

l2(θ, ω)(µn+m−1) = −

n∑

s=1

(−1)(s+1)(m+1)θU ◦s ωU − (−1)n+m
m∑

s=1

(−1)(s+1)(n+1)ωU ◦s θU , (6.2.1a)

l2(θ, ω)(νn+m−1) = −

n∑

s=1

(−1)(s+1)(m+1)θV ◦s ωV − (−1)n+m
m∑

s=1

(−1)(s+1)(n+1)ωV ◦s θV , (6.2.1b)

l2(θ, ω)(fn+m−2) = −

n−1∑

s=1

(−1)(s+1)(m+1)θg ◦s ωU − (−1)n+m
m−1∑

s=1

(−1)(s+1)(n+1)ωg ◦s θU

+ (−1)n
n∑

i=1

(−1)(i−1)mθV ◦i ωg +

m∑

j=1

(−1)jnωV ◦j θg

+ (−1)nm+n+mθg ` ωg + (−1)nmωg ` θg. (6.2.1c)

In the statement of the above Theorem, the notations are as in (5.3.2) and (5.4.1), except that

θV ◦i ωg = θV (g⊗i−1 ⊗ ωg ⊗ g⊗n−i),

ωV ◦j θg = ωV (g⊗j−1 ⊗ θg ⊗ g⊗m−j),

θg ` ωg = µV (θg ⊗ ωg),

(6.2.2)

and similarly for ωg ` θg, θg ◦s ωU , and ωg ◦s θU . In other words, θV ◦i ωg is obtained by plugging

ωg into the ith input of θV and g into the other (n− 1) inputs of θV . Likewise, θg ` ωg is simply

the usual cup-product of θg and ωg.

The proof will be given at the end of this section.

Note that Gerstenhaber and Schack did construct a bracket [−,−] on their cochain complex

(C∗
GS(g; g), dGS ) (see, e.g., the graded commutator bracket of the operation [14, p.11 (9)] or [16,

pp.158-159]). It is straightforward to check that the linear isomorphism (5.5.2) is compatible with

[−,−] and l2 as well.

6.3. The operations lk for k ≥ 3. Now consider the cases k ≥ 3. Pick elements θs ∈ Cns−1
AsB→W

(T ;T )

(1 ≤ s ≤ k). Each θs corresponds, via the identification (5.4.1), to the tuple

(θs,U , θs,V , θs,g) = (θs(µns), θs(νns), θs(fns−1)) ∈ Cns

GS(g; g).

Since lk has degree 2 − k, the element lk(θ1, . . . , θk) lies in C t−1
AsB→W

(T ;T ), where

t = 3 − 2k +

k∑

s=1

ns.

Under the identification (5.4.1), lk(θ1, . . . , θk) is uniquely determined by

(lk(θ1, . . . , θk)(µt), lk(θ1, . . . , θk)(νt), lk(θ1, . . . , θk)(ft−1)) ∈ Ct
GS(g; g).



THE L∞-DEFORMATION COMPLEX OF DIAGRAMS OF ALGEBRAS 21

Now we extend the first ◦i operation in (6.2.2) as follows. Fix s ∈ {1, . . . , k}. Let

a = (a1, . . . , âs, . . . , ak)

be a (k − 1)-tuple of distinct points in the set {1, . . . , ns}. Then we define

θs,V ◦a (θ1,g, . . . , θ̂s,g, . . . , θk,g) ∈ Hom(U⊗t−1, V ) (6.3.1)

to be the element obtained by plugging θj,g (1 ≤ j ≤ k, j 6= s) into the ajth input of θs,V and g

into the other (ns − (k − 1)) inputs of θs,V . Also define the sign

(−1)a = (−1)
P

1≤i<j≤ns
ri(rj+1),

where

ra =




|θj| = nj − 1 if a = aj ∈ {a1, . . . , âs, . . . , ak},

1 otherwise.

Theorem 6.4. For k ≥ 3 and notations as above, we have

lk(θ1, . . . , θk)(µt) = 0, (6.4.1a)

lk(θ1, . . . , θk)(νt) = 0, and (6.4.1b)

lk(θ1, . . . , θk)(ft−1) = −(−1)ν(θ1,...,θk)
k∑

s=1

∑

a

(−1)a θs,V ◦a (θ1,g, . . . , θ̂s,g, . . . , θk,g). (6.4.1c)

Here ν(θ1, . . . , θk) is defined in (4.4.3) and, for each s, a = (a1, . . . , âs, . . . , ak) runs through all the

(k − 1)-tuples of distinct points in the set {1, . . . , ns}.

Corollary 6.5. Suppose that k ≥ 3 and that θs ∈ Cns−1
AsB→W

(T ;T ) (1 ≤ s ≤ k). If

ns < k − 1 for 1 ≤ s ≤ k,

then

lk(θ1, . . . , θk) = 0.

In other words, for each q ≥ 0 and any k ≥ q + 3, the operation

lk :
(
C≤q

AsB→W
(T ;T )

)⊗k

→ C∗
AsB→W

(T ;T )

is trivial.

Proof of Theorem 6.2. To prove (6.2.1a), first note that

∂(µn+m−1) =
∑

i+j = n+m
i,j ≥ 2

n+m−1−j∑

s=0

(−1)i+s(j+1)µi ◦s+1 µj.
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Since the E-decorated 2-colored directed (1, n+m− 1)-graph µi ◦s+1 µj has two vertices, we have

l2(θ, ω)(µn+m−1)

= (−1)|θ|
∑

i+j = n+m
i,j ≥ 2

n+m−1−j∑

s=0

(−1)i+s(j+1) {θ(µi) ◦s+1 ω(µj) + ω(µi) ◦s+1 θ(µj)}

= (−1)n−1

(
n−1∑

s=0

(−1)n+s(m+1)θU ◦s+1 ωU +

m−1∑

s=0

(−1)m+s(n+1)ωU ◦s+1 θU

)
.

This is exactly (6.2.1a) after a shift of the summation indexes.

Since ∂(νn+m−1) has the same defining formula as ∂(µn+m−1) (with νl replacing µl everywhere),

the reasoning in the previous paragraph also applies to l2(θ, ω)(νn+m−1) to establish (6.2.1b).

To prove (6.2.1c), first note that

∂(fn+m−2) = −

n+m−2∑

l=2

∑

r1+···+rl = n+m−2

(−1)
P

1≤i<j≤l ri(rj+1)νl(fr1 ⊗ · · · ⊗ frl
)

−
∑

i+j = n+m−1
i≥1, j≥2

n+m−2−j∑

s=0

(−1)i+s(j+1)fi ◦s+1 µj.

(6.5.1)

An argument essentially identical to the first paragraph of this proof can be applied to the terms

fi ◦s+1 µj . This gives rise to the sums

−
n−1∑

s=1

(−1)(s+1)(m+1)θg ◦s ωU − (−1)n+m
m−1∑

s=1

(−1)(s+1)(n+1)ωg ◦s θU (6.5.2)

in l2(θ, ω)(fn+m−2).

In (6.5.1), the E-decorated 2-colored directed (1, n+m−2)-graph Γ = νl(fr1 ⊗· · ·⊗frl
) has l+1

vertices, say, vtop, v
1
bot, . . . , v

l
bot, with decorations νl, fr1 , . . . , frl

, respectively. In this graph Γ, the

only pairs of distinct vertices are (vtop, v
∗
bot), (v∗bot, vtop), and (vi

bot, v
j
bot) (i 6= j). The corresponding

elements in l2(θ, ω)(fn+m−2) (without the signs) are:

(1) θ(νl)(β(fr1)⊗ · · · ⊗ ω(fri
) ⊗ · · · β(frl

)) (1 ≤ i ≤ l), which is 0 unless l = n, ri = m− 1, and

all the other r∗ = 1;

(2) ω(νl)(β(fr1) ⊗ · · · ⊗ θ(frj
) ⊗ · · · ⊗ β(frl

)) (1 ≤ j ≤ l), which is 0 unless l = m, rj = n− 1,

and all the other r∗ = 1;

(3) β(νl)(β(fr1)⊗· · ·⊗ θ(fri
)⊗· · ·⊗ω(frj

)⊗· · ·⊗β(frl
)), which is 0 unless l = 2 and (r1, r2) =

(n− 1,m− 1);

(4) β(νl)(β(fr1)⊗· · ·⊗ω(fri
)⊗· · ·⊗ θ(frj

)⊗· · ·⊗β(frl
)), which is 0 unless l = 2 and (r1, r2) =

(m− 1, n− 1).
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Taking all the signs into account, we obtain the following sums in l2(θ, ω)(fn+m−2):

− (−1)|θ|
n∑

i=1

(−1)(i−1)(m−1+1)θV (g⊗i−1 ⊗ ωg ⊗ g⊗n−i)

− (−1)|θ|
m∑

j=1

(−1)(j−1)(n−1+1)ωV (g⊗j−1 ⊗ θg ⊗ g⊗m−j)

− (−1)|θ|
{

(−1)(n−1)(m−1+1)µV (θg ⊗ ωg) + (−1)(m−1)(n−1+1)µV (ωg ⊗ θg)
}
.

(6.5.3)

The required result (6.2.1c) is now obtained by combining (6.5.2) and (6.5.3). This finishes the

proof of Theorem 6.2. �

Proof of Theorem 6.4. The computation of lk(θ1, . . . , θk)(µt) involves choosing k ≥ 3 distinct ver-

tices in the graphs µi ◦s+1 µj, each of which has only two vertices. It follows that

lk(θ1, . . . , θk)(µt) = 0,

which is (6.4.1a). The same argument establishes (6.4.1b). Moreover, the same reasoning also

shows that the terms fi ◦s+1 µj in ∂(ft−1) cannot contribute non-trivially to lk(θ1, . . . , θk)(ft−1).

The remaining statement (6.4.1c) is now proved by an argument very similar to the last paragraph

in the proof of Theorem 6.2. There is one major difference: In order for the term νl(fr1 ⊗ · · · ⊗ frl
)

in ∂(ft−1) to contribute non-trivially to lk(θ1, . . . , θk)(ft−1), the vertex vtop (with decoration νl)

must be chosen as one of the k distinct vertices because k ≥ 3 and β(νl) = 0 for l ≥ 3. It follows

that each non-trivial term in lk(θ1, . . . , θk)(ft−1) has the form (6.3.1), except for the sign, which is

−(−1)ν(θ1 ,...,θk)(−1)a.

The desired condition (6.4.1c) now follows. �

7. Deformation complex of a Lie algebra morphism

In this section and section 8, we give a second illustration of the L∞-deformation theory of

colored PROP algebras (Section 4) in the case of Lie algebra morphisms. The parallelism of the

analysis in the associative and Lie cases shows the unifying character of this approach.

Let g : U → V be a Lie algebra morphism, and set T = U ⊕ V as a 2-colored graded mod-

ule. Let LieB→W denote the 2-colored operad encoding Lie algebra morphisms. The purposes

of this section are (i) to express the differential δLieB→W
in C∗

LieB→W
(T ;T ) (3.6.1) in terms of

the Chevalley-Eilenberg differential (Theorem 7.5), and (ii) to observe that the cochain complex

(C∗
LieB→W

(T ;T ), δLieB→W
) is isomorphic to the S-cohomology cochain complex (Λ∗(U, V ),∆∗) of

the morphism g [9, 17] (Corollary 7.6). This isomorphism allows us to transfer the L∞-structure on

(C∗
LieB→W

(T ;T ), δLieB→W
) to the S-cohomology cochain complex (Λ∗(U, V ),∆∗) (Corollary 7.7).
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7.1. Background. The question of deformation of morphisms of Lie algebras was treated for the

first time by Nijenhuis and Richardson in [47]. The approach chosen was not the classical method of

Gerstenhaber [13], but the use of the formalization of deformation theory in terms of graded algebras

on the space of cochains developed by Nijenhuis and Richardson in [46]. The starting point was then

the graded Lie algebra on cochains and the differential which were guessed, the deformation theory

being only a corollary. As drawbacks, the algebras were not allowed to be deformed and the notion

of equivalent deformations was not natural. In order to cure these two problems, the first author

reexamined this problem from the classical point of view of Gerstenhaber and introduced in [9]

the S-cohomology, concluding his work by addressing the question of the description of a structure

for its deformation complex. Later, in [17], Gerstenhaber, Giaquinto and Schack showed that this

construction is completely parallel to the one given in [14] which leads to Diagram cohomology of

associative algebras, and hence gave the diagrammatic description of S-cohomology.

7.2. The S-Cohomology complex (Λn(U, V ),∆n). Here we recall the S-cochain complex

(Λ∗(U, V ),∆∗) [9]. We modify slightly the notations from [9] to be coherent with the present

notations.

Fix a morphism g : U → V of Lie algebras. We also consider V as a left U -module via g. Then

Λn(U, V )
def
= Hom(U∧n, U) ⊕ Hom(V ∧n, V ) ⊕ Hom(U∧n−1, V )

for n ≥ 1. We will also denote a typical element in Λn(U, V ) by (xU , xV , xg) with xU ∈

Hom(U∧n, U), xV ∈ Hom(V ∧n, V ), and xg ∈ Hom(U∧n−1, V ). Its differential is defined as

∆n(xU , xV , xg)
def
= (bxU , bxV , (−1)n−1gxU − (−1)n−1xV g

⊗n + bxg), (7.2.1)

where b denotes the Chevalley-Eilenberg differential in Hom(U ∧∗, U), Hom(V ∧∗, V ), or

Hom(U∧∗, V ).

7.3. The minimal model of LieB→W . Here we construct the minimal model of the 2-colored

operad LieB→W that encodes Lie algebra morphisms. This definition is very similar to the one in

the associative category, except for the definition of the differential which differs slightly. Moreover

one has to be careful with respect to the symmetry which is a new feature of the Lie category.

The 2-colored operad LieB→W can be represented as

LieB→W =
LieB ∗LieW ∗F(f)

(fµ = νf⊗2)
,

where µ and ν denote the generators in LieB(1, 2) and LieW (1, 2), respectively, which encode the

multiplications in the domain and the target.
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Let E be the 2-colored Σ-bimodule with the following skew symmetric generators:

µn : B⊗n → B of degree n− 2 and biarity (1, n) (n ≥ 2)

νn : W⊗n →W of degree n− 2 and biarity (1, n) (n ≥ 2), and

fn : B⊗n →W of degree n− 1 and biarity (1, n) (n ≥ 1).

Then the minimal model for LieB→W is

(F(E), ∂)
α
−→ LieB→W ,

where

α(µn) =




µ if n = 2,

0 otherwise
, α(νn) =




ν if n = 2,

0 otherwise
,

and

α(fn) =




f if n = 1,

0 otherwise
.

The differential ∂ is given by:

∂(µn) =
∑

i+j =n+1
i,j ≥ 2

(−1)j(i−1)
∑

σ∈Sj,i−1

sgn(σ)µi ◦ (µj ⊗ Id⊗
i−1

) ◦ σ, (7.3.1a)

∂(νn) =
∑

i+j =n+1
i,j ≥ 2

(−1)j(i−1)
∑

σ∈Sj,i−1

sgn(σ)νi ◦ (νj ⊗ Id⊗
i−1

) ◦ σ, (7.3.1b)

∂(fn) =

n∑

l=2

∑

r1+···+rl=n
r1 ≤···≤ rl

(−1)
l(l−1)

2
+

Pl−1
i=1 ri(l−i)

∑

σ∈S<
r1,...,rl

sgn(σ)νl(fr1 ⊗ · · · ⊗ frl
) ◦ σ

−
∑

i+j =n+1
i≥ 1,j ≥ 2

(−1)j(i−1)
∑

σ∈Sj,i−1

sgn(σ)fi ◦ (µj ⊗ Id⊗
i−1

) ◦ σ, (7.3.1c)

where Sj,i−1 denotes the set of j, i − 1 unshuffles and by S<
r1,...,rl

the set of r1, . . . , rl-unshuffles

satisfying σ(r1 + · · ·+ ri−1 +1) < σ(r1 + · · ·+ ri +1) if ri = ri+1. It is also assumed in this notation

that ri ≤ ri+1. We refer to [10] for the proof that it is a minimal model.

One may alternatively write the above formulas with the summations running over the entire

symmetric groups, with coefficients involving factorials. This would reflect the convention in de-

scribing the morphism of L∞-algebras used for instance in [25]. The graded anti-symmetry of the

structure operations allows one to bring these formulas into the above ‘reduced’ form.

7.4. The cochain complex (C∗
LieB→W

(T ;T ), δLieB→W
). Suppose that T = U ⊕ V as a 2-colored

graded module and that g : U → V is a morphism of Lie algebras represented by the morphism

ρ : LieB→W → EndT of 2-colored operads. Then the canonical isomorphism (4.4.1) says in this

case,

C∗
LieB→W

(T ;T ) = ↑ Der(F(E),EndT )−∗ ∼= ↑ Hom
{B,W}
Σ (E,EndT )−∗.
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Under this isomorphism, an element θ ∈ Cn
LieB→W

(T ;T ) is determined by the tuple

(θU , θV , θg)
def
= (θ(µn+1), θ(νn+1), θ(fn)) ∈ Λn+1(U, V ). (7.4.1)

This establishes a linear isomorphism

Cn
LieB→W

(T ;T ) ∼= Λn+1(U, V ),

θ ↔ (θU , θV , θg) .

Denote by δ the differential on the graded module Λ∗(U, V ) induced by δLieB→W
. The identifi-

cation (7.4.1) provides an isomorphism

(C∗
LieB→W

, δLieB→W
)

∼=
−→ (Λ∗+1(U, V ), δ) (7.4.2)

of cochain complexes.

Theorem 7.5. For θ ∈ Cn−1
LieB→W

(T ;T ), we have

δ (θU , θV , θg) =
(
bθU , bθV ,−bθg + θV g

⊗n − gθU

)
, (7.5.1)

in which b denotes the appropriate Chevalley-Eilenberg differential.

One can then compare this complex (7.5.1) with the S-cohomology (7.2.1).

Corollary 7.6. There is a cochain complex isomorphism

π = (π∗, π∗, π̃∗) : (Λ∗(U, V ), δ)
∼=
−→ (Λ∗(U, V ),∆)

given by 


πn = Id,

π̃n = (−1)n−1 Id .

Combined with (7.4.2), we obtain an isomorphism

(C∗
LieB→W

(T ;T ), δLieB→W
)

∼=
−→ (Λ∗(U, V ),∆) (7.6.1)

of cochain complexes.

Since (C∗
LieB→W

(T ;T ), δLieB→W
= l1, l2, l3, . . .) is an L∞-algebra (Theorem 4.2), we can use the

cochain complex isomorphism (7.6.1) to transfer the higher brackets lk (k ≥ 2) to (Λ∗(U, V ),∆).

Corollary 7.7. There is an L∞-algebra structure (∆ = l1, l2, l3, . . .) on Λ∗(U, V ) capturing defor-

mations of the Lie algebra morphism g.

Proof of Theorem 7.5. Since δ = l1 in the L∞-algebra and since the degree of l1 is +1, we have

δ (θU , θV , θg) = (l1(θ)(µn+1), l1(θ)(νn+1), l1(θ)(fn))
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by the identification (7.4.1). Therefore, to prove (7.5.1), it suffices to show:

l1(θ)(µn+1) = bθU ,

l1(θ)(νn+1) = bθV , and

l1(θ)(fn) = −bθg + θV g
⊗n − gθU .

(7.7.1)

From the description (4.4.2) of the operation lk, the computation of l1(θ)(µn+1) starts with

∂(µn+1) (7.3.1a). As an E-decorated 2-colored directed (1, n + 1)-graph, the term µi ◦s+1 µj in

∂(µn+1) has two vertices, whose decorations are µi and µj . Therefore, the expression (4.4.2), when

applied to the current situation and using notation (5.3.2), gives

l1(θ)(µn+1) =
∑

i+j = n+2
i,j ≥ 2

(−1)j(i−1)
∑

σ∈Sj,i−1

sgn(σ) {θ(µi) ◦1 β(µj) + β(µi) ◦1 θ(µj)} ◦ σ. (7.7.2)

Note that, since θ ∈ Cn−1
LieB→W

(T ;T ),

θ(µi) =





0 if i 6= n,

θU if i = n,
and β(µj) = ρ(α(µj)) =





0 if j 6= 2,

µU if j = 2,

where µU : U∧2 → U is the multiplication on U . It follows that (7.7.2) reduces to

l1(θ)(µn+1) = (−1)2(n−1)
∑

σ∈S2,n−1

sgn(σ)(θU ◦1 µU ) ◦ σ

︸ ︷︷ ︸
(a)

+ (−1)n(2−1)
∑

σ∈Sn,1

sgn(σ)(µU ◦1 θU ) ◦ σ

︸ ︷︷ ︸
(b)

.

In particular, applied to elements of U, (a) and (b) give:

(a)(x1, . . . , xn+1) = (−1)s+t−1
∑

1≤s<t≤n+1

θU (µU (xs, xt), x1, . . . , x̂s, . . . , x̂t, . . . , xn+1),

(b)(x1, . . . , xn+1) = (−1)n(2−1)
∑

1≤s≤n+1

(−1)n+1−sµU (θU (x1, . . . , x̂s, . . . , xn+1), xs)

= (−1)−s
∑

1≤s≤n+1

µU (xs, θU (x1, . . . , x̂s, . . . , xn+1)).

Therefore, by the definition of the Chevalley-Eilenberg differential, we have

l1(θ)(µn+1) = bθU ,

which is the first condition in (7.7.1).

The previous paragraph applies verbatim to l1(θ)(νn+1) (with νl replacing µl everywhere), since

the definition of ∂(ν∗) (7.3.1b) admits the same formula as that of ∂(µ∗). Therefore, it remains to

show the last condition in (7.7.1).
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In ∂(fn), the term νl(fr1 ⊗ · · · ⊗ frl
) (respectively, fi ◦1 µj) is an E-decorated 2-colored directed

(1, n)-graph with l + 1 (respectively, 2) vertices. Since

β(fj) = ρ(α(fj)) =




g : U → V if j = 1,

0 otherwise,

the same kind of analysis as above gives

l1(θ)(fn) =
∑

σ∈S<
1,...,1

sgn(σ)θV (g⊗n) ◦ σ

︸ ︷︷ ︸
(s1)

+
∑

σ∈S1,n−1

sgn(σ)µV (g ⊗ θg) ◦ σ

︸ ︷︷ ︸
(s2)

− (−1)2(n−1)
∑

σ∈S2,n−2

sgn(σ)θg(µU ⊗ Id⊗
n−2

) ◦ σ

︸ ︷︷ ︸
(s3)

− (−1)n(1−1)
∑

σ∈Sn,0

sgn(σ)gθU ◦ σ

︸ ︷︷ ︸
(s4)

.
(7.7.3)

We now apply the middle summands of (7.7.3) on elements and rearrange them in order to

recognize the Chevalley-Eilenberg differential. We have

(s2)(x1 ⊗ · · · ⊗ xn) =
∑

1≤s≤n

(−1)s−1µV (g ⊗ θg)(xs ⊗ x1 ⊗ · · · ⊗ x̂s ⊗ · · · ⊗ xn),

so

((s2) + (s3))(x1 ⊗ · · · ⊗ xn) = +
∑

1≤s≤n

(−1)s−1µV (g(xs), θg(x1, . . . , x̂s, . . . , xn))

−
∑

1≤s<t≤n

(−1)s−1+t−2θg(µU (xs, xt), x1, . . . , x̂s, . . . , x̂t, . . . , xn)

= −bθg(x1 ⊗ · · · ⊗ xn).

Considering the fact that both Sn,0 and S<
1,...,1 consist of a single element, the trivial permutation,

one finally gets

l1(θ)(fn) = −bθg + θV g
⊗n − gθU ,

which ends the proof of Theorem 7.5. �

8. The higher brackets in C∗
LieB→W

(T ;T )

We keep the same setting and notations as in the previous section. The purpose of this section

is to make explicit the L∞-operations lk on C∗
LieB→W

(T ;T ) for k ≥ 2. The cases k = 2 (Theorem

8.2) and k ≥ 3 (Theorem 8.4) are treated separately. As an immediate consequence of our explicit

formula for lk (k ≥ 3), we observe that, when applied to the tensor powers of C≤q
LieB→W

(T ;T ) for

some fixed q ≥ 0, only δLieB→W
(T ;T ) = l1, l2, . . . , lq+2 can be non-trivial (Corollary 8.5).
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8.1. The operation l2. First we deal with the case k = 2. Pick elements θ ∈ Cn
LieB→W

(T ;T ) and

ω ∈ Cm
LieB→W

(T ;T ). Under the identification (7.4.1), θ and ω correspond to

(θU , θV , θg) ∈ Λn(U, V ) and (ωU , ωV , ωg) ∈ Λm(U, V ),

respectively.

Since l2 has degree 0, the element l2(θ, ω) lies in Cn+m
LieB→W

(T ;T ). Under the identification (7.4.1),

l2(θ, ω) is determined by

(l2(θ, ω)(µn+m+1), l2(θ, ω)(νn+m+1), l2(θ, ω)(fn+m)) ∈ Λn+m(U, V ).

Theorem 8.2. With the notations above, we have

l2(θ, ω)(µn+m+1) = (−1)mn(
∑

σ∈Sm+1,n

sgn(σ)θU ◦1 ωU ◦ σ

+ (−1)m+n
∑

σ∈Sn+1,m

sgn(σ)ωU ◦1 θU ◦ σ), (8.2.1a)

l2(θ, ω)(νn+m+1) = (−1)mn(
∑

σ∈Sm+1,n

sgn(σ)θV ◦1 ωV ◦ σ

+ (−1)m+n
∑

σ∈Sn+1,m

sgn(σ)ωV ◦1 θV ◦ σ), (8.2.1b)

l2(θ, ω)(fn+m) = (−1)m(n−1)(
∑

σ∈Sm+1,n−1

sgn(σ)θg ◦1 ωU ◦ σ +
∑

σ∈Sn+1,m−1

sgn(σ)ωg ◦1 θU ◦ σ)

(−1)n(
∑

σ∈S<
1,...,1,m

sgn(σ)θV (g⊗n ⊗ ωg) ◦ σ +
∑

σ∈S<
1,...,1,n

sgn(σ)ωV (g⊗m ⊗ θg) ◦ σ)

− (
∑

σ∈S<
n,m

sgn(σ)µV (θg ⊗ ωg) ◦ σ + (−1)n+m
∑

σ∈S<
m,n

sgn(σ)µV (ωg ⊗ θg) ◦ σ).

(8.2.1c)

In the above Theorem, we use the notation of (5.3.2) and of S< as defined after (7.3.1c). One

should remark that depending on whether m < n or n < m, the first or the second summand in

the last bracketed expression above is zero. The proof of the Theorem will be given at the end of

this section.

8.3. The operations lk for k ≥ 3. Now consider the cases k ≥ 3. Pick elements θs ∈

Cns

LieB→W
(T ;T ) (1 ≤ s ≤ k). Each θs corresponds, via the identification (7.4.1), to the tuple

(θs,U , θs,V , θs,g) = (θs(µns+1), θs(νns+1), θs(fns)) ∈

ns∧
(U ;V ).

Since lk has degree 2 − k, the element lk(θ1, . . . , θk) lies in C t
LieB→W

(T ;T ), where

t = −k + 2 +

k∑

s=1

ns.
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Under the identification (7.4.1), lk(θ1, . . . , θk) is determined by

(lk(θ1, . . . , θk)(µt+1), lk(θ1, . . . , θk)(νt+1), lk(θ1, . . . , θk)(ft)) ∈
t∧

(U ;V ).

Now we extend the ◦i operation as follows. Fix s ∈ {1, . . . , k}. Let

a′ = (a1, . . . , âs, . . . , ak)

be a (k − 1)-tuple of distinct points in the set {1, . . . , ns + 1}. Then we define

θs,V ◦a′ (θ1,g, . . . , θ̂s,g, . . . , θk,g) ∈ Hom(U⊗t, V )

to be the element obtained by plugging θj,g (1 ≤ j ≤ k, j 6= s) into the ajth input of θs,V and g

into the other (ns + 2 − k) inputs of θs,V . Also define the coefficient

(−1)a
′

= (−1)
(ns+1)(ns)

2
+

P

i=ns+1 ri(ns+1−i),

where

ra =




|θj | = nj if a = aj ∈ {a1, . . . , âs, . . . , ak},

1 otherwise.

Let us remark that the set {r1, . . . , rns+1} satisfies r1+· · ·+rns+1 = t. One says that a′ is admissible

if this set also satisfies r1 ≤ · · · ≤ rns+1. One denotes by A the set of admissible a′.

Theorem 8.4. For k ≥ 3 and notations as above, we have

lk(θ1, . . . , θk)(µt+1) = 0,

lk(θ1, . . . , θk)(νt+1) = 0, and

lk(θ1, . . . , θk)(ft) = (−1)ν(θ1 ,...,θk)
k∑

s=1

∑

a′∈A

∑

σ∈S<
r1,...,rns+1

sgn(σ)(−1)a
′

θs,V ◦a′ (θ1,g, . . . , θ̂s,g, . . . , θk,g)◦σ,

with ν(θ1, . . . , θk) defined as in (4.4.3), and S< defined after (7.3.1c).

Corollary 8.5. Suppose that k ≥ 3 and that θs ∈ Cns

LieB→W
(T ;T ) (1 ≤ s ≤ k). If

ns < k − 1 for 1 ≤ s ≤ k,

then

lk(θ1, . . . , θk) = 0.

In other words, for each q ≥ 0 and any k ≥ q + 3, the operation

lk :
(
C≤q

LieB→W
(T ;T )

)⊗k

→ C∗
LieB→W

(T ;T )

is trivial.
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Proof of Theorem 8.2. To prove (8.2.1a), first note that

∂(µn+m+1) =
∑

i+j = n+m+2
i,j ≥ 2

(−1)j(i−1)
∑

σ∈Sj,i−1

sgn(σ)µi ◦ (µj ⊗ Idi−1) ◦ σ.

Since the E-decorated 2-colored directed (1, n+m+1)-graph µi ◦ (µj ⊗ Idi−1) has two vertices, we

have

l2(θ, ω)(µn+m+1)

= (−1)|θ|
∑

i+j = n+m+2
i,j ≥ 2

(−1)j(i−1)
∑

σ∈Sj,i−1

sgn(σ)
{
θ(µi) ◦ (ω(µj) ⊗ g⊗

i−1
) + ω(µi) ◦ (θ(µj) ⊗ g⊗

i−1
)
}
◦ σ

= (−1)mn
∑

σ∈Sm+1,n

sgn(σ)θU ◦ (ωU ⊗ g⊗
n

) ◦ σ + (−1)(n+1)m+n
∑

σ∈Sn+1,m

sgn(σ)ωU ◦ (θU ⊗ g⊗
m

) ◦ σ.

Since ∂(νn+m+1) has the same defining formula as ∂(µn+m+1) (with νl replacing µl everywhere),

the reasoning in the previous paragraph also applies to l2(θ, ω)(νn+m+1) to establish (8.2.1b).

To prove (8.2.1c), first note that

∂(fn+m) =
n+m∑

l=2

∑

r1+···+rl=n+m
r1 ≤···≤ rl

(−1)
l(l−1)

2
+

Pl−1
i=1 ri(l−i)

∑

σ∈S<
r1,...,rl

sgn(σ)νl(fr1 ⊗ · · · ⊗ frl
) ◦ σ

−
∑

i+j = n+m+1
i≥ 1,j ≥ 2

(−1)j(i−1)
∑

σ∈Sj,i−1

sgn(σ)fi ◦ (µj ⊗ Id⊗
i−1

) ◦ σ,

An argument essentially identical to the first paragraph of this proof can be applied to the terms

fi ◦ (µj ⊗ Idi−1). This gives rise to the sums

(−1)m(n−1)(
∑

σ∈Sm+1,n−1

sgn(σ)θg ◦ (ωU ⊗g⊗
n−1

)◦σ+
∑

σ∈Sn+1,m−1

sgn(σ)ωg ◦ (θU ⊗g⊗
m−1

)◦σ) (8.5.1)

in l2(θ, ω)(fn+m).

In (8.5.1), the E-decorated 2-colored directed (1, n +m)-graph Γ = νl(fr1 ⊗ · · · ⊗ frl
) has l + 1

vertices, say, vtop, v
1
bot, . . . , v

l
bot, with decorations νl, fr1 , . . . , frl

, respectively. In this graph Γ, the

only pairs of distinct vertices are (vtop, v
∗
bot), (v∗bot, vtop), and (vi

bot, v
j
bot) (i 6= j). The corresponding

elements in l2(θ, ω)(fn+m) (without the signs) are:

(1) θ(νl)(β(fr1) ⊗ · · · ⊗ ω(fri
) ⊗ · · · β(frl

)) (1 ≤ i ≤ l), which is 0 unless l = n+ 1, rn+1 = m,

and all the other r∗ = 1;

(2) ω(νl)(β(fr1)⊗· · ·⊗ θ(frj
)⊗· · ·⊗β(frl

)) (1 ≤ j ≤ l), which is 0 unless l = m+1, rm+1 = n,

and all the other r∗ = 1;

(3) β(νl)(β(fr1)⊗· · ·⊗ θ(fri
)⊗· · ·⊗ω(frj

)⊗· · ·⊗β(frl
)), which is 0 unless l = 2 and (r1, r2) =

(n,m);

(4) β(νl)(β(fr1)⊗· · ·⊗ω(fri
)⊗· · ·⊗ θ(frj

)⊗· · ·⊗β(frl
)), which is 0 unless l = 2 and (r1, r2) =

(m,n).
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Taking all the signs into account, we also obtain the following sums in l2(θ, ω)(fn+m):

(−1)|θ|
∑

σ∈S<
1,...,1,m

sgn(σ)θV (g⊗n ⊗ ωg) ◦ σ

(−1)|θ|
∑

σ∈S<
1,...,1,n

sgn(σ)ωV (g⊗m ⊗ θg) ◦ σ

(−1)|θ|



(−1)1+n

∑

σ∈S<
n,m

sgn(σ)µV (θg ⊗ ωg) ◦ σ + (−1)1+m
∑

σ∈S<
m,n

sgn(σ)µV (ωg ⊗ θg) ◦ σ



 .

(8.5.2)

The required result (8.2.1c) is now obtained by combining (8.5.1) and (8.5.2). This finishes the

proof of Theorem 8.2. �

Proof of Theorem 8.4. This proof is identical to the proof of Theorem 6.4 if one shifts the indices,

replacing t by t+ 1, s+ 1 by 1, and (−1)a by −(−1)a
′

�

9. Deformations of diagrams

Recall that a diagram in a category C is a functor F : D → C from a small category D to C;

the category D is called the shape of the diagram F. Diagrams of shape D can equivalently be

described as algebras over an Ob(D)-colored operad D which has only elements of arity 1 (one

input, one output) and

D

(
d

c

)
:= MorD(c, d), for c, d ∈ Ob(D).

The operadic composition in D equals the categorial composition of D. It is clear that D-diagrams

in C are precisely Ob(D)-colored D-algebras in C.

The Ob(D)-colored operad D as defined above lives in the category of sets. Since we will be

primarily interested in diagrams in the category of k-vectors spaces, we may as well consider the

k-linear operad generated by D or assume from the very beginning that D is given by

D

(
d

c

)
:= Spank (MorD(c, d)) , for c, d ∈ Ob(D),

where Spank(−) denotes the k-linear span. We will call colored operads of the above form diagram

operads.

Example 9.1. In this example we describe the diagram operad Iso associated to the category Iso

consisting of two objects and two mutually inverse maps between these objects. Let f : B → W,

g : W → B be two degree-zero generators. Then

Iso :=
F(f, g)

(fg = 1W, gf = 1B)
,

where F(f, g) denotes the free {B, W}-colored operad on the set {f, g} and (fg = 1W, gf = 1B) the

operadic ideal generated by fg − 1W and gf − 1B.
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Algebras over Iso consist of two mutually inverse degree zero chain maps F : U → V and

G : V → U . In other words, Iso-algebras are diagrams

i

F

G

q

VU , FG = 1 and GF = 1.
(9.1.1)

A typical diagram operad D does not admit a minimal model. For instance, a hypothetical

minimal model of the operad Iso from Example 9.1 shall have generators f0, g0 for f and g, but

also a generator, say f1, whose boundary kills the difference f0g0 − 1W, i.e. satisfying

f0g0 − 1W = ∂f1.

The “constant” 1W however defies any thinkable notion of minimality.

This phenomenon is related to the fact that a typical diagram operad D, such as Iso, is not

augmented, by which we mean that it does not admit an operad morphism D → i to the terminal

Ob(D)-colored operad i. In the next example we will see that sometimes there still exists a cofibrant

resolution whose size is that of a minimal model.

Example 9.2. A small cofibrant resolution of Iso was described in [37, Theorem 9]. It is a graded

colored differential operad

Riso := (F(f0, f1, . . . ; g0, g1, . . .), d),

with generators of two types,

(i) generators {fn}n≥0, deg(fn) = n,





fn : B → W if n is even,

fn : B → B if n is odd,

(ii) generators {gn}n≥0, deg(gn) = n,





gn : W → B if n is even,

gn : W → W if n is odd.

The differential ∂ is given by

∂f0 := 0, ∂g0 := 0,

∂f1 := g0f0 − 1, ∂g1 := f0g0 − 1

and, on remaining generators, by the formula

∂f2m :=
∑

0≤i<m

(f2if2(m−i)−1 − g2(m−i)−1f2i), m ≥ 0,

∂f2m+1 :=
∑

0≤j≤m

g2jf2(m−j) −
∑

0≤j<m

f2j+1f2(m−j)−1, m ≥ 1,

∂g2m :=
∑

0≤i<m

(g2ig2(m−i)−1 − f2(m−i)−1g2i), m ≥ 0,

∂g2m+1 :=
∑

0≤j≤m

f2jg2(m−j) −
∑

0≤j<m

g2j+1g2(m−j)−1, m ≥ 1.
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The above resolution is “minimal’ in the following sense. Consider a one-parametric family Isoε

of {B, W}-colored operads defined by

Isoε :=
F(f, g)

(fg = ε · 1W, gf = ε · 1B)
,

where ε is a formal parameter. The operad Iso0 clearly describes couples (F,G) of maps F : U → V

and G : V → U such that FG = 0 and GF = 0, while Isoε is, at a generic ε, isomorphic to the

operad Iso. In other words, Iso is a deformation of Iso0. It turns out that Iso0 is an augmented

colored operad that admits a minimal model whose generators are the same as the generators of

Riso; see [37, Theorem 10].

An obvious generalization of the machinery developed in the previous sections applies verbatim

to resolutions of diagram operads. One typically gets an L∞-algebra with a nontrivial ‘curvature’ l0;

see [40, Section 5] for the terminology and definitions. The corresponding Maurer-Cartan equation

then involves the l0-term.

Example 9.3. Let us describe the L∞-deformation complex (C∗
Iso

(T, T ), l0, l1, l2, . . .) for a diagram

T as in (9.1.1). As we already observed, this deformation complex has, as a consequence of the

presence of 1 in the formulas for ∂f1 and ∂g1 in Riso, a nontrivial l0. On the other hand, since

the differential ∂ on the generators of Riso does not have higher than quadratic terms, all lk’s are

trivial, for k ≥ 3.

Formula (3.6.1) applied to the resolution Riso from Example 9.2 gives the underlying cochain

complex

Cn
Iso(T, T ) =





Hom(U, V ) ⊕ Hom(V,U) for n ≥ 1 odd, and

Hom(U,U) ⊕ Hom(V, V ) for n ≥ 1 even.

Formula (4.4.2) makes sense also for k = 0 and describes l0 ∈ C2
Iso

(T, T ) as the direct sum of the

identity maps IdU ⊕ IdV ∈ Hom(U,U) ⊕ Hom(V, V ).

Likewise, one obtains the following formulas for the operation

l1 : C∗
Iso(T, T ) → C∗+1

Iso
(T, T ).

If α⊕ β ∈ Cn
Iso

(T, T ), n ≥ 1 odd, then

l1(α ⊕ β) = (Gα + βF ) ⊕ (αG + Fβ) ∈ Cn+1
Iso

(T, T ).

For γ ⊕ δ ∈ Cn
Iso

(T, T ), n ≥ 1 even, we have

l1(γ ⊕ δ) = (Fγ − δF ) ⊕ (Gδ − γG) ∈ Cn+1
Iso

(T, T ).

The bracket

l2 : Cm
Iso(T, T ) ⊗ Cn

Iso(T, T ) → Cm+n
Iso

(T, T )
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is given as follows. For α′ ⊕ β′ ∈ Cm
Iso

(T, T ), α′′ ⊕ β′′ ∈ Cn
Iso

(T, T ), m,n odd, we have

l2(α
′ ⊕ β′, α′′ ⊕ β′′) = (β′α′′ + β′′α′) ⊕ (α′β′′ + α′′β′) ∈ Cm+n

Iso
(T, T ).

For α⊕ β ∈ Cm
Iso

(T, T ), γ ⊕ δ ∈ Cn
Iso

(T, T ), m odd, n even, we have

l2(α⊕ β, γ ⊕ δ) = −l2(γ ⊕ δ, α ⊕ β) = (αγ − δα) ⊕ (βδ − γβ) ∈ Cm+n
Iso

(T, T ).

Finally, for γ ′ ⊕ δ′ ∈ Cm
Iso

(T, T ), γ′′ ⊕ δ′′ ∈ Cn
Iso

(T, T ), m,n even, we have

l2(γ
′ ⊕ δ′, γ′′ ⊕ δ′′) = −l2(γ

′′ ⊕ δ′′, γ′ ⊕ δ′) = (γ′γ′′ − γ′′γ′) ⊕ (δ′δ′′ − δ′′δ′) ∈ Cm+n
Iso

(T, T ).

The higher lk’s, k ≥ 3, are trivial.

Observe that, for each w ∈ C∗
Iso

(T, T ), l2(l0, w) = 0; therefore, by [40, Section 5], l21 = 0. In other

words, l1 is a differential and the standard analysis of deformation theory applies. For instance,

there exists the canonical element χ := F ⊕G ∈ C1
Iso

(T, T ) such that

l1(w) = l2(χ,w), w ∈ C∗
Iso(T, T ).

As expected [40, 55], Iso-algebras are solutions of the Maurer-Cartan equation in the L∞-complex

of the trivial D-algebra Tø with F = 0, G = 0. Indeed, if κ = Φ⊕Ψ ∈ C1
Iso

(T, T ), then the Maurer-

Cartan equation

−l0 +
1

2
l2(κ, κ) = 0

expands into

−(IdU ⊕ IdV ) +
1

2
(2ΨΦ ⊕ 2ΦΨ) = 0,

which says precisely that Φ and Ψ are mutually inverse isomorphisms.
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