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1 Introduction

There is a general agreement that just a numerical solution of a partial differential
equation is not sufficient. An information about the error is needed. The usage of a
priori error estimates for these purposes is limited to the verification of the asymptotic

∗ This research has been supported by Grant no. 102/07/0496 of the Czech Science Foundation by
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rate of convergence. On the other hand, the a posteriori error estimates are capable
to quantify the size of the error. In addition, they play an irreplaceable role in
mesh adaptation processes. They serve as local indicators of the error for the mesh
refinement and as the global estimators for the stopping criteria.

The topic of a posteriori error estimates for numerical solutions of partial dif-
ferential equations has a long tradition going back to 1960s. The pioneering works
[4, 6] introduce explicit residual error estimators. This kind of estimators was gener-
alized for many types of problems and today it is probably the most popular strategy.
However, during the time, people develop several different approaches like implicit
residual estimates, hierarchical estimates, estimates based on postprocessing, and
complementarity based error estimates. For general information we refer to books
[2, 5, 16, 17, 24].

In general, the a posteriori error estimator is a quantity η, which approximates
or bounds a suitable norm ‖e‖ of an error e. There is several desirable properties
the error estimator should satisfy. The estimator η can be a guaranteed upper or
lower bound of the error (‖e‖ ≤ η or η ≤ ‖e‖). The estimator is efficient and/or
reliable if there exist constants C1 and C2 (independent from the discretization pa-
rameter h) such that C1η ≤ ‖e‖ and/or ‖e‖ ≤ C2η, respectively. The estimator is
robust if constants C1 and C2 are independent from parameters of the problem (e.g.
coefficients in the equation, mesh aspect ratio, etc.). The estimator is asymptotically
exact if limh→0 Ieff = 1, where Ieff = η/ ‖e‖ is the index of effectivity and h stand for
the discretization parameter. Finally, we distinguish local and global estimators, de-
pending whether they can be computed locally (e.g. element by element) or whether
a solution of a global problem is required. The evaluation of an local estimator is
fast in comparison with the computation of the approximate solution, while the ef-
fort for evaluation of the global estimator is comparable to the computation of the
approximate solution.

A useful estimator should be efficient and reliable, because these two properties are
necessary for convergence of adaptive procedures [8]. In addition, it should provide the
guaranteed upper bound, because then it can be used for reliable stopping criterion.
It also should be robust, because otherwise it can be used for a narrow range of
parameters only. Pleasant properties are the asymptotic exactness and the locality
of the estimator. An estimator meeting all these requirements is not know, up to
the author’s knowledge. However, in this contribution, we are going to present an
approach which is a good candidate to satisfy all these criteria.

This approach is based on the method of error majorants of S. Repin and others,
see e.g. [16, 17, 18, 19, 20, 12], however the idea origins much deeper in the history.
Very similar idea was utilized in the dual (finite element) methods (or complementary
energy approaches) by I. Hlaváček and his followers, see e.g. [9, 10, 11, 22, 13]. The
idea is also connected to the method of hypercircle which goes back to J.L. Synge
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[21], see also [3]. This idea is however used by other authors as well, see e.g. [7, 25].
In the current contribution we introduce a model diffusion-reaction problem and

its FEM discretization in Section 2. Section 3 defines the a posteriori error estimator
and proves the upper bound property. Section 4 shows the connection with a dual
problem. Section 5 presents the sufficient and necessary conditions for the efficiency
and asymptotic exactness of the estimator and, in addition, a result about the method
of hypercircle. Section 6 is devoted to the generalization of the presented approach
to the Poisson (i.e. pure diffusion) problem. Section 7 illustrates the numerical
performance of the described estimators on two test cases. Finally, Section 8 draws
the conclusions.

2 Model problem

The complementarity approach we are going to present is fairly general and it can be
used for various linear and nonlinear problems. However, to simplify the exposition,
we intentionally choose the following simple model problem.

Let Ω ⊂ R
d be a Lipschitz domain. The classical formulation of the model problem

reads: find u ∈ C2(Ω) ∩ C0(Ω) such that

−∆u + κ2u = f in Ω,

u = 0 on ∂Ω.

For simplicity, we assume κ to be a nonnegative constant. In Sections 3–5 we consider
κ > 0, because the case κ = 0 brings additional technical difficulties which are
treated in Section 6. Anyway, the complementarity approach can be generalized in a
straightforward way to the case of variable coefficient κ, the Laplacian can be replaced
by a general diffusion operator with nonhomogeneous and anisotropic diffusion tensor,
and we may consider any combination of the standard boundary conditions.

The complementarity a posteriori error estimator is based on the following weak
formulation: find u ∈ V , V = H1

0
(Ω), such that

B(u, v) = F(v) ∀v ∈ V, (1)

where

B(u, v) =

∫

Ω

(∇u · ∇v + κ2uv) dx, F(v) =

∫

Ω

fv dx.

Here we assume f ∈ L2(Ω) to ensure integrability. The existence and uniqueness of
the weak solution u is guaranteed by the Lax-Milgram lemma.

We conclude this section by a regularity result for the weak solution. We denote
by H(div, Ω) the usual space of L2 vector fields with divergence in L2.
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Lemma 1 Let Ω ⊂ R
d be Lipschitz domain and let u ∈ H1

0
(Ω) be the weak solution

of problem (1). Then ∇u ∈ H(div, Ω).

Proof By definition, a vector field g is in H(div, Ω) if g ∈ [L2(Ω)]d and if exists
z ∈ L2(Ω) such that

∫

Ω

zv dx = −
∫

Ω

g · ∇v dx ∀v ∈ C∞

0 (Ω).

From (1) we immediately see that g = ∇u ∈ [L2(Ω)]d satisfies this definition for
z = κ2u − f ∈ L2(Ω), because C∞

0
(Ω) ⊂ H1

0
(Ω). �

3 Complementarity based a posteriori error estimator

The complementarity approach is independent from the way how the approximate
solution is obtained. We simply consider any function uh ∈ V and we estimate the
error e = u − uh, where u ∈ V is the weak solution (1). Further in this section and
also in Sections 4–5 we assume κ > 0. See Section 6 for the case κ = 0 .

Let us first derive the a posteriori error estimator. The derivation is based on the
divergence theorem

∫

Ω

v div y dx +

∫

Ω

y · ∇v dx −
∫

∂Ω

vy · ndx = 0 ∀v ∈ H1(Ω) ∀y ∈ H(div, Ω), (2)

where n stands for the unit outward normal to ∂Ω. For brevity, we denote W =
H(div, Ω) in what follows. Taking any v ∈ V and any y ∈ W, using the fact that
v vanishes on ∂Ω, using κ > 0, (1), (2) and the Cauchy-Schwarz inequality, we can
obtain the following estimate

B(u − uh, v) =

∫

Ω

fv dx −
∫

Ω

∇uh · ∇v dx −
∫

Ω

κ2uhv dx +

∫

Ω

v div y dx +

∫

Ω

y · ∇v dx

=

∫

Ω

κ−1(f − κ2uh + divy)κv dx +

∫

Ω

(y − ∇uh) · ∇v dx

≤
∥∥κ−1(f − κ2uh + divy)

∥∥
0
‖κv‖

0
+ ‖y − ∇uh‖0

‖∇v‖
0

≤
(∥∥κ−1(f − κ2uh + divy)

∥∥2

0
+ ‖y − ∇uh‖2

0

)1/2

|||v||| (3)

where ‖·‖
0

stands for the L2(Ω) norm and |||v|||2 = B(v, v) = ‖∇v‖2

0
+ ‖κv‖2

0
is the

energy norm. Setting v = u − uh in (3), we immediately obtain the following upper
bound for the energy norm of the error

|||u − uh|||2 ≤
∥∥κ−1(f − κ2uh + divy)

∥∥2

0
+ ‖y − ∇uh‖2

0
∀y ∈ W. (4)
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This the fundamental result for our subsequent considerations. The right-hand side
of (4) serves as the error estimator. Thus, let us define

η2(uh,y) =
∥∥κ−1(f − κ2uh + divy)

∥∥2

0
+ ‖y − ∇uh‖2

0
(5)

for κ > 0 and summarize our findings in the following theorem.

Theorem 1 Let κ > 0, let u ∈ V be the weak solution of (1), and let uh ∈ V be
arbitrary. Then

|||u − uh||| ≤ η(uh,y) ∀y ∈ W. (6)

Hence, the estimator η(uh,y) provides the guaranteed upper bound for any choice of
y ∈ W. However, in order to obtain a sharp upper bound the vector field y must be
chosen in an appropriate way. This issue is discussed in the following section.

4 Minimization of the estimator – the dual problem

Naturally, we may ask what is the minimum of η(uh,y) over W for the fixed uh. Let
us define the minimization problem: find y∗ ∈ W such that

η(uh,y∗) ≤ η(uh,y) ∀y ∈ W. (7)

Since η2(uh,y) is a quadratic functional in y, we may infer in a standard way the
equivalent variational problem – the dual problem to (1). The dual problem reads:
find y∗ ∈ W such that

B∗(y∗,w) = F∗(w) ∀w ∈ W, (8)

where

B∗(y∗,w) =

∫

Ω

κ−2 div y∗ div w dx +

∫

Ω

y∗ · w dx, F∗(w) = −
∫

Ω

κ−2f div w dx,

and κ > 0. Notice that the bilinear form B∗ induces the inner product in W. The
corresponding norm is |||w|||2∗ = B∗(w,w) =

∥∥κ−1 div w
∥∥2

0
+ ‖w‖2

0
.

The following lemma presents the crucial complementarity result for the estimator
η(uh,y). The subsequent theorems show the equivalence of problems (7) and (8) and
their unique solvability.

Lemma 2 Let κ > 0, let y∗ ∈ W be the solution of the dual problem (8), and let
uh ∈ V and y ∈ W be arbitrary then

η2(uh,y) = η2(uh,y∗) + |||y∗ − y|||2∗.
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Proof Putting w = y∗ − y and using (5), we may directly compute

η2(uh,y) = η2(uh,y∗ − w) =
∥∥κ−1(f − κ2uh + div y∗)

∥∥2

0

− 2

∫

Ω

κ−2(f − κ2uh + div y∗) div w dx +
∥∥κ−1 div w

∥∥2

0

+ ‖y∗ − ∇uh‖2

0
− 2

∫

Ω

(y∗ − ∇uh) · w dx + ‖w‖2

0
. (9)

Since y∗ solves (8) and due to (2) we have the following orthogonality relation

∫

Ω

κ−2(f − κ2uh + divy∗) div w dx +

∫

Ω

(y∗ − ∇uh) · w dx = 0 ∀w ∈ W. (10)

The proof is finished by substitution of (10) into (9). �

Theorem 2 There exists unique solution of the dual problem (8).

Proof The statement follows immediately from the Riesz representation theorem, be-
cause the bilinear form B∗ is an inner product in W and F∗ is a linear and continuous
functional on W. �

Theorem 3 Vector field y∗ ∈ W solves the minimization problem (7) if and only if
it solves the dual problem (8).

Proof The proof is fairly standard. Let y∗ ∈ W solves (7) and let w ∈ W be
arbitrary. Then the function J(t) = η2(uh,y∗ + tw) attains its minimum for t = 0.
The derivative J ′(0) exists, it must vanish, and it can be explicitly computed from
the definition of the derivative as

0 = J ′(0) = 2

∫

Ω

κ−2(f − κ2uh + div y∗) div w dx + 2

∫

Ω

(y∗ − ∇uh) · w dx.

Thus, using (2), we conclude that y∗ solves (8).
Vice versa, if y∗ ∈ W solves the dual problem (8) then Lemma 2 implies

η2(uh,y∗) ≤ η2(uh,y∗) + |||y∗ − y|||2∗ = η2(uh,y) ∀y ∈ W.

�

The following theorem shows that the solution of the dual problem (8) is y∗ = ∇u.

Theorem 4 Let κ > 0 and let u ∈ V be the weak solution of (1). Then y∗ = ∇u
solves the dual problem (8) and η(uh,y∗) = |||u − uh|||.
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Proof By Lemma 1 we have ∇u ∈ W. Using the divergence theorem (2) in (1), we
obtain ∫

Ω

(−div ∇u + κ2u − f)v dx = 0 ∀v ∈ V. (11)

Thus −div ∇u + κ2u − f = 0 a.e. in Ω. Consequently,
∫

Ω

div(∇u) div w dx −
∫

Ω

κ2u div w dx = −
∫

Ω

f div w dx ∀w ∈ W.

Since −
∫
Ω

κ2u div w dx =
∫
Ω

κ2∇u ·w dx for all w ∈ W, we conclude that ∇u solves
(8). The equality η(uh, ∇u) = |||u−uh||| is immediate from (5), because f +div ∇u =
κ2u a.e. in Ω. �

Theorem 4 and Lemma 2 immediately imply the following complementarity result.

Corollary 1 Let κ > 0, let u ∈ V be the weak solution of (1), and let y∗ ∈ W be the
solution of the dual problem (8). Then

|||u − uh|||2 + |||y∗ − yh|||2∗ = η2(uh,yh) ∀uh ∈ V, ∀yh ∈ W. (12)

Thus, the quantity η(uh,yh) measures exactly the sum of the errors in the primal and
dual problem. Consequently, taking uh = u, we obtain

|||y∗ − yh|||∗ = η(u,yh).

Hence, the ||| · |||∗-norm of the error y∗ − yh in the dual problem is equal to the
quantity η(u,yh) with u being the exact solution of the primal problem (1). This
statement is complementary to the equality |||u−uh||| = η(uh,y∗) proved in Theorem 4.
Consequently, complementarity equality (12) can be written as

η2(uh,y∗) + η2(u,yh) = η2(uh,yh). (13)

5 Properties of the estimator

Practical application of the estimator (5) requires suitable choice of the vector field
y ∈ W. The best choice y = ∇u, see Theorem 4, is apparently not accessible.
A reasonable choice seems to be certain approximate solution yh ∈ W of the dual
problem (8). At this point, we do not specify any particular choice of yh and simply
consider arbitrary yh ∈ W.

Theorem 1 already proves that η(uh,yh) is a guaranteed upper bound of the energy
norm of the error. However, this upper bound can be too large. Therefore, we have to
require the estimator to be efficient and/or to be asymptotically exact. The following
theorems present sufficient and necessary conditions for these two properties.
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Theorem 5 Let κ > 0, let u ∈ V be the weak solution of (1), let y∗ ∈ W be the
solution of the dual problem (8), and let yh ∈ W and uh ∈ V be arbitrary. The
estimator η(uh,yh) given by (5) is efficient (i.e. there exists a constant C1 > 0 such
that C1η(uh,yh) ≤ |||u − uh|||) if and only if there exists a constant C > 0 such that

|||y∗ − yh|||∗ ≤ C|||u − uh|||. (14)

Proof It follows immediately from (12). �

Hence, the estimator η(uh,yh) is efficient if and only if the error in the dual problem
measured in the ||| · |||∗-norm is controlled by the error in the primal problem measured
in the energy norm.

Theorem 6 Let κ > 0, let u ∈ V be the weak solution of (1), let y∗ ∈ W be the
solution of the dual problem (8), and let uh ∈ V and yh ∈ W be defined for all h > 0.
The estimator η(uh,yh) given by (5) is asymptotically exact if and only if

lim
h→0

|||y∗ − yh|||∗
|||u − uh|||

= 0. (15)

Proof It follows immediately from (12). �

Condition (15) requires the error |||y∗−yh|||∗ in the dual problem to converge faster
towards zero than the error |||u − uh||| in the primal problem. Further, notice that
asymptotic exactness implies the efficiency, provided h is sufficiently small. Indeed,
(15) implies |||y∗ − yh|||∗ ≤ |||u − uh||| for small enough h, which is the sufficient and
necessary condition (14) for the efficiency.

The final property of the estimator (5) is connected with the method of hypercircle
[21, 3]. This method is remarkable in the context of a posteriori error estimates,
because it allows to compute the error of a certain approximation exactly. The method
of hypercircle can be utilized in the presented framework as follows.

Theorem 7 Let κ > 0, let u ∈ V be the weak solution of (1) and let yh ∈ W be
arbitrary. Further, let ūh = [κ−2(f + div yh) + uh]/2 and Gūh = (yh + ∇uh)/2 be
approximations of u and ∇u, respectively. Then

‖∇u − Gūh‖2

0
+ ‖κ(u − ūh)‖2

0
=

1

4
η2(uh,yh). (16)

Proof Since y∗ = ∇u, we can modify the first term in (16) as follows

4 ‖∇u − Gūh‖2

0
= ‖∇(u − uh) + ∇u − yh‖2

0
(17)

= ‖∇(u − uh)‖2

0
+ ‖y∗ − yh‖2

0
+ 2

∫

Ω

∇(u − uh) · (y∗ − yh) dx

8



To adjust the second term in (16) in a similar way, we have to use the equality
κu = κ−1(f + div y∗) a.e. in Ω which follows from (11) and from the fact that
∇u ∈ W:

4 ‖κ(u − ūh)‖2

0
=

∥∥κ(u − uh) + κu − κ−1(f + div yh)
∥∥2

0
(18)

=
∥∥κ(u − uh) + κ−1 div(y∗ − yh)

∥∥2

0

= ‖κ(u − uh)‖2

0
+

∥∥κ−1 div(y∗ − yh)
∥∥2

0
+ 2

∫

Ω

(u − uh) div(y∗ − yh) dx.

Summing up (17) and (18), using the divergence theorem (2) and equality (12), we
conclude

4 ‖∇u − Gūh‖2

0
+ 4 ‖κ(u − ūh)‖2

0
= |||u − uh|||2 + |||y∗ − yh|||2∗ = η2(uh,yh).

�

6 Poisson problem

The estimator (5) is not defined for κ = 0 due to the factor κ−1. Moreover, the
numerical experiments show that it is not robust for small values of κ (it overestimates
the error by a factor proportional to κ−1). Therefore, the case with small or zero
coefficient κ has to be treated in a different way. There are two principal possibilities
how to handle this case. In Section 6.1 we describe the approach of error majorants,
while in Section 6.2 we present the approach based on a complementarity technique.

6.1 Error majorant

This approach is presented e.g. in [16, 17, 18, 19, 20, 12]. The idea is to use the
Friedrichs’ inequality

‖v‖
0
≤ CΩ ‖∇v‖

0
∀v ∈ V, (19)

where the smallest possible value CF
Ω

of CΩ is known as the Friedrichs’ constant. In
the case V = H1

0
(Ω), several upper bounds of the Friedrichs’ constant are known. For

example, the following bound is presented in [15]:

CF
Ω ≤ 1

π

(
1

a1

+ · · · + 1

ad

)−1/2

, (20)

where a1, . . . , ad are lengths of edges of a rectangular cuboid such that the domain
Ω is contained in it. However, in the case of mixed boundary conditions, i.e. if the
space V consists of functions from H1(Ω) which vanish on a part of the boundary ∂Ω
only, the bounds on CΩ are not known, in general.
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The error estimator can be derived similarly as in (3) but instead of introducing
the factor κ−1, we use the Friedrichs’ inequality:

B(u − uh, v) =

∫

Ω

(f − κ2uh + div y)v dx +

∫

Ω

(y − ∇uh) · ∇v dx

≤
(
CΩ

∥∥f − κ2uh + divy
∥∥

0
+ ‖y − ∇uh‖0

)
|||v||| ∀y ∈ W.

This yields the error estimate

|||u − uh||| ≤ η̂(uh,y) ∀y ∈ W, (21)

where
η̂(uh,y) = CΩ

∥∥f − κ2uh + div y
∥∥

0
+ ‖y − ∇uh‖0

. (22)

Notice that

η̂2(uh,y) ≤ 2C2
Ω

∥∥f − κ2uh + div y
∥∥2

0
+ 2 ‖y − ∇uh‖2

0
. (23)

The bound (23) has certain practical advantages in comparison with (22), because it
represents a simple quadratic functional in y with the same structure as (5). On the
other hand, the error bound (22) is sharper.

6.2 Complementarity approach

An alternative approach how to handle the case κ = 0 was worked out in [9, 10, 11, 13].
They treat the case κ > 0 by introducing the factor κ−1 as described in Section 3.
The case κ = 0 is handled in the way we present below. However, we generalize this
approach in a new way also for κ > 0, see also [23].

The idea is to choose y in (5) such that f − κ2uh + div y vanishes. Therefore, we
define the affine space

Q(f, uh) =

{
y ∈ [L2(Ω)]d :

∫

Ω

y · ∇v dx =

∫

Ω

(f − κ2uh)v dx ∀v ∈ V

}
. (24)

Notice that Q(f, uh) ⊂ H(div, Ω), because f − κ2uh ∈ L2(Ω). In analogy with (5) we
define

η̃(uh, ỹ) = ‖ỹ − ∇uh‖0
for ỹ ∈ Q(f, uh). (25)

Clearly, η̃(uh, ỹ) = η(uh, ỹ) for all ỹ ∈ Q(f, uh) and for κ > 0. However, η̃(uh, ỹ) is
well defined also for κ = 0. In addition, η̃(uh, ỹ) provides a guaranteed upper bound
for the energy norm of the error even in the case κ = 0. This fact follows from the
following complementarity result which uses a special norm

|||v|||2∼ = |||v|||2 + ‖κv‖2

0
= ‖∇v‖2

0
+ 2 ‖κv‖2

0
for v ∈ V.
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Lemma 3 Let u ∈ V be the weak solution of (1) and let ỹ ∈ Q(f, uh) and uh ∈ V be
arbitrary. Then

‖ỹ − ∇u‖2

0
+ |||u − uh|||2∼ = η̃2(uh, ỹ).

Proof Since η̃2(uh, ỹ) = ‖ỹ − ∇uh‖2

0
, we express

‖ỹ − ∇uh‖2

0
− ‖ỹ − ∇u‖2

0
= 2

∫

Ω

ỹ · ∇(u − uh) dx + ‖∇uh‖2

0
− ‖∇u‖2

0
. (26)

Definitions (24) and (1) yield

∫

Ω

ỹ·∇(u−uh) dx =

∫

Ω

(f−κ2uh)(u−uh) dx =

∫

Ω

∇u·∇(u−uh) dx+

∫

Ω

κ2(u−uh)2 dx

= ‖∇u‖2

0
−

∫

Ω

∇u · ∇uh dx + ‖κ(u − uh)‖2

0
.

Inserting this into (26), we end up with the desired equality

‖ỹ − ∇uh‖2

0
− ‖ỹ − ∇u‖2

0
= ‖∇(u − uh)‖2

0
+ 2 ‖κ(u − uh)‖2

0
.

�

Lemma 3 is analogous to Corollary 1 and it yields the following upper bound for the
energy norm of the error

|||u − uh||| ≤ |||u − uh|||∼ ≤ η̃2(uh, ỹ) ∀ỹ ∈ Q(f, uh), ∀uh ∈ V. (27)

Further, we can proceed in analogy with Section 4. The vector field ỹ ∈ Q(f, uh)
which minimizes η̃(uh, ỹ) for a fixed uh ∈ V also minimizes ‖ỹ‖

0
, because

η̃2(uh, ỹ) = ‖ỹ − ∇uh‖2

0
= ‖ỹ‖2

0
− 2

∫
(f − κ2uh)uh dx + ‖∇uh‖2

0
.

Hence, the dual problem reads: find ỹ∗ ∈ Q(f, uh) such that ‖ỹ∗‖
0
≤ ‖w̃‖

0
for all

w̃ ∈ Q(f, uh). Or equivalently: find ỹ∗ ∈ Q(f, uh) such that

∫

Ω

ỹ∗ · w̃ dx = 0 ∀w̃ ∈ Q0, (28)

where we denote Q0 = Q(0, 0) =
{
y ∈ [L2(Ω)]d :

∫
Ω

y · ∇v dx = 0 ∀v ∈ V
}
. Notice

that the dual problem (28) possesses unique solution ỹ∗ = ∇z̃, where z̃ ∈ V satisfies

∫

Ω

∇z̃ · ∇v dx =

∫

Ω

(f − κ2uh)v dx ∀v ∈ V.

11



Hence, the minimal value the estimator η̃ can attain for a given uh ∈ V is
η̃(uh, ∇z̃). However, Lemma 3 yields the following estimate

|||u − uh|||2 ≤ ‖∇z̃ − ∇u‖2

0
+ |||u − uh|||2∼ = η̃2(uh, ∇z̃).

Thus, if κ > 0 and u 6= uh then the estimator (25) is not exact. There are two sources
of this inexactness First, ‖∇z̃ − ∇u‖2

0
is positive for κ > 0 and u 6= uh. Second,

|||u − uh||| < |||u − uh|||∼ for κ > 0 and u 6= uh. However, in the following we show that
the estimator (25) is exact for κ = 0 and in addition that there is the same theory as
for the estimator (5), see Section 4.

Indeed, if κ = 0 then |||v||| = |||v|||∼ for all v ∈ V and z̃ = u, where u is the weak
solution of (1), i.e. the exact solution to the dual problem (28) is ỹ∗ = ∇u. Thus,
the complementarity identity from Lemma 3 reshapes into a complementarity relation
analogous to (12), namely:

‖ỹh − ỹ∗‖2

0
+ |||u − uh|||2 = η̃2(uh, ỹh) ∀ỹh ∈ Q(f), (29)

where we use the notation Q(f) instead of Q(f, uh), because κ = 0. Further, trivially
η̃(uh, ỹ∗) = |||u − uh||| which is an analogy to the exactness result presented in Theo-
rem 4 for the estimator (5). Finally, identity η̃(u, ỹh) = ‖ỹ∗ − ỹh‖0

is also trivial in
case κ = 0 and it enables to rewrite (29) as follows

η̃2(uh, ỹ∗) + η̃2(u, ỹh) = η̃2(uh, ỹh) ∀ỹh ∈ Q(f).

which is an analogy to equality (13).
These facts immediately yield the sufficient and necessary conditions for the effi-

ciency and asymptotic exactness of η̃ for κ = 0, see Theorems 5 and 6.

Theorem 8 Let κ = 0, let u ∈ V be the weak solution of (1), let ỹ∗ ∈ Q(f) be the
solution of the dual problem (28), and let ỹh ∈ Q(f) and uh ∈ V be arbitrary. The
estimator η̃(uh, ỹh) given by (25) is efficient if and only if there exists a constant
C > 0 such that

‖ỹh − ỹ∗‖
0
≤ C|||u − uh|||.

Proof It follows immediately from (29). �

Theorem 9 Let κ = 0, let u ∈ V be the weak solution of (1), let ỹ∗ ∈ Q(f) be the
solution of the dual problem (28), and let uh ∈ V and ỹh ∈ Q(f) be defined for all
h > 0. The estimator η̃(uh, ỹh) given by (25) is asymptotically exact if and only if

lim
h→0

‖ỹh − ỹ∗‖
0

|||u − uh|||
= 0.

12



Proof It follows immediately from (29). �

The error estimator by the method of hypercircle is particularly interesting for
κ = 0, see e.g. [3, 22, 14, 21]. If the goal is an approximation of the gradient ∇u of
the weak solution u of (1), then we can compute a conforming approximation uh ∈ V
and an approximation ỹh ∈ Q(f) of the dual problem (28). The arithmetic average
(ỹh + ∇uh)/2 is then a better approximation of ∇u and its error is known exactly,
because

‖∇u − (ỹh + ∇uh)/2‖
0

=
1

2
‖ỹh − ∇uh‖0

∀uh ∈ V, ∀ỹh ∈ Q(f).

In general, a practical difficulty of this complementarity approach lies in the fact,
that the approximate solution ỹh of the dual problem (28) must be in Q(f, uh), i.e.
its divergence must be exactly equal to −f + κ2uh in the weak sense. This difficulty
can be easily overcome if an antiderivative of the function f = f(x1, . . . , xd) is known
at least with respect to one of its variables. Indeed, let us assume without loss of
generality that the antiderivative is known with respect to x1. Then we construct a
vector field F ∈ R

d as follows

F(x1, . . . , xd) =

(∫ x1

0

f(s, x2, . . . , xd) ds, 0, . . . , 0

)⊤

. (30)

Then, clearly, divF = f . Theoretically, a vector field Uh ∈ R
d such that divUh = uh

can be constructed in the same way as F. Practically, it is advantageous to use special
properties of uh known from its construction, e.g. the fact that uh is piecewise linear.
Anyway, vector field q = −F + κ2Uh lies in Q(f, uh) and we can express the affine
space Q(f, uh) as Q(f, uh) = q + Q0. Furthermore, Q0 = curlH1(Ω) for d = 2 and
Ω being Lipschitz with finitely many holes [13]. Here, curl v = (∂v/∂x2,−∂v/∂x1)

⊤.
This enable to find an approximate solution of the dual problem (28) in a convenient
way, see [13, 23] for more details.

7 Numerical examples

In this section we compare the performance of estimators η, η̂, and η̃ given by (5),
(22), and (25), respectively, for two-dimensional model problem (1) for values of κ
ranging from 0 to 106. The approximate solution uh is obtain by the finite element
method (FEM) of the lowest order. Thus, we consider a triangulation Th of a polyg-
onal approximation Ωh of Ω and define a space Vh of piecewise linear and globally
continuous functions on Th, i.e.

Vh = {v ∈ V : v|K ∈ P 1(K), K ∈ Th},

13



where P 1(K) stands for the space of linear functions on K. The Galerkin solution
uh ∈ Vh of (1) is then uniquely determined by the requirement

B(uh, vh) = F(vh) ∀vh ∈ Vh. (31)

7.1 Approximate solution of the dual problems

The dual problems are solved in a similar way as the primal one using the same mesh
Th. In the case of η

(
uh,yp∗

h

)
given by (5), we compute y

p∗
h ∈ W

p∗
h ⊂ W as a Galerkin

solution of (8). The finite dimensional space W
p∗
h is defined as

W
p∗
h =

{
w ∈ W : w|K ∈ [P p∗(K)]d, K ∈ Th

}
,

where P p∗(K) stands for the space of polynomials of degree at most p∗ on K. Thus,
the approximate solution y

p∗
h ∈ W

p∗
h of the dual problem (8) satisfies

B∗(yp∗
h ,wh) = F∗(wh) ∀wh ∈ W

p∗
h , κ > 0. (32)

In the case of η̂(uh, ŷp∗
h ) given by (22), we proceed in a very similar way. We

minimize the upper bound (23) in the space W
p∗
h . This is equivalent to the variational

problem of finding ŷ
p∗
h ∈ W

p∗
h such that

B̂∗(ŷp∗
h ,wh) = F̂∗(wh) ∀wh ∈ W

p∗
h , (33)

where

B̂∗(y,w) = C2
Ω

∫

Ω

div y div w dx +

∫

Ω

y · w dx, F̂∗(w) = −C2
Ω

∫

Ω

f div w dx.

Notice that problems (32) and (33) only differ in the constant factors κ−2 and C2
Ω
,

respectively. Furthermore, we stress that we minimize the quadratic functional (23)
and use the obtained ŷ

p∗
h in (22) to compute the error estimator η̂(uh, ŷp∗

h ).
Finally, in the case of η̃(uh, ỹp

h) given by (25), we obtain ỹ
p
h ∈ Q(f, uh) by Galerkin

approximation of the dual problem (28). We use the technique described at the end
of Section 6.2. In particular, we define q = −F+ κ2Uh, where F is given by (30) and
the piecewise quadratic vector field Uh satisfies div Uh = uh. Clearly, q ∈ Q(f, uh).
Further, since Q0 = curlH1(Ω), we can express the solution of the dual problem (28)
as ỹ∗ = q + curl z, where z ∈ H1(Ω) satisfies

∫

Ω

curl z · curl v dx = −
∫

Ω

q · curl v dx ∀v ∈ H1(Ω). (34)

Notice that curl z · curl v = ∇z · ∇v and hence problem (34) is just the Poisson
problem with homogeneous Neumann boundary conditions. Solution of this problem
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is unique up to an additive constant. The value of this constant is irrelevant, because
we use curl z only. We solve problem (34) approximately by the p-version of the
FEM using the same mesh Th. In particular, we define a finite dimensional space
Ṽ p

h = {v ∈ H1(Ω) : v|K ∈ P p(K), K ∈ Th} and find zh ∈ Ṽ p
h such that

∫

Ω

∇zh · ∇vh dx = −
∫

Ω

q · curl vh dx ∀vh ∈ Ṽ p
h . (35)

The approximate solution of the dual problem (28) is then given by ỹ
p
h = q+curl zh.

7.2 Test problems

We present two test problems. Both fit into the framework of the model problem (1).
The first problem is defined on a square Ω = (−1/2, 1/2)2. The right-hand side is
f(x1, x2) = cos(πx1) cos(πx2) and the exact solution is

u(x1, x2) =
cos(πx1) cos(πx2)

2π2 + κ2
.

The finite element mesh Th is shown in Figure 1 (left). By (20), the Friedrichs’
constant is bounded by CΩ = (π

√
2)−1 in this case. We use this value in estimator

(22).
The second test problem is posed in a unit circle Ω = {(x1, x2) : r < 1} with

r = (x2
1
+ x2

2
)1/2. The right-hand side and the exact solution are f(x1, x2) = 1 and

u(x1, x2) =
1

κ2

(
1 − I0(κr)

I0(κ)

)
for κ > 0 and u(x1, x2) =

1 − x2
1
− x2

2

4
for κ = 0,

where I0 denotes the modified Bessel function. For the FEM solution, the circle Ω
is approximated by an inscribed regular polyhedron Ωh with 16 vertices. The used
mesh Th is sketched in Figure 1 (right). The estimate (20) yields the value CΩ = 1/π
for the second test problem.

7.3 Results

In this section we present the numerical performance of the estimators η
(
uh,yp∗

h

)
,

η̂
(
uh, ŷp∗

h

)
, and η̃

(
uh, ỹp

h

)
, given by (5), (22), and (25) with the vector fields y

p∗
h , ŷ

p∗
h ,

and ỹ
p
h = q + curl zh obtained by (32), (33), and (35), respectively. Tables 1 and 2

present the results for the first test problem while Tables 3 and 4 for the second test
problem. In Tables 1 and 3 we provide the indices of effectivity Ieff = η/|||u− uh||| for
the above estimators with p∗ = 1 and p = 1. Tables 2 and 4 show the same results
for p∗ = 2 and p = 2, 3.
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Figure 1: The meshes used for the first (left) and the second (right) test problem.

κ η
(
uh,y1

h

)
η̂

(
uh, ŷ1

h

)
η̃

(
uh, ỹ1

h

)
ηcomb

0 — 1.782 1.410 1.782
10−3 3.513 · 103 1.782 1.410 1.782
10−2 3.513 · 102 1.782 1.409 1.782
10−1 3.514 · 101 1.782 1.429 1.782
1 3.650 1.784 5.041 · 101 1.784
10 1.058 1.889 5.343 · 103 1.058
102 1.001 2.219 · 101 9.066 · 104 1.001
103 1.000 2.292 · 102 1.458 · 106 1.000
104 1.000 2.293 · 103 1.705 · 107 1.000
105 1.000 2.293 · 104 1.359 · 108 1.000
106 1.000 2.293 · 105 1.112 · 109 1.000

Table 1: Indices of effectivity for the first test problem with piecewise linear solutions
of the dual problem.
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κ η
(
uh,y2

h

)
η̂

(
uh, ŷ2

h

)
η̃

(
uh, ỹ2

h

)
η̃

(
uh, ỹ3

h

)
ηcomb

0 — 1.161 1.008 1.000 1.161
10−3 4.937 · 102 1.161 1.008 1.000 1.161
10−2 4.939 · 101 1.161 1.009 1.000 1.161
10−1 5.038 1.161 1.036 1.000 1.161
1 1.115 1.166 4.496 · 101 1.003 1.166
10 1.001 1.640 4.763 · 103 1.131 1.001
102 1.000 1.732 · 101 8.082 · 104 5.752 1.000
103 1.000 1.771 · 102 1.300 · 106 5.744 · 101 1.000
104 1.000 1.771 · 103 1.520 · 107 5.744 · 102 1.000
105 1.000 1.771 · 104 1.212 · 108 5.744 · 103 1.000
106 1.000 1.771 · 105 9.908 · 108 5.744 · 104 1.000

Table 2: Indices of effectivity for the first test problem with piecewise quadratic (and
cubic in one case) solutions of the dual problem.

κ η
(
uh,y1

h

)
η̂

(
uh, ŷ1

h

)
η̃

(
uh, ỹ1

h

)
ηcomb

0 — 1.092 1.708 1.092
10−3 1.000 1.092 1.708 1.092
10−2 1.000 1.092 1.708 1.092
10−1 1.001 1.092 1.711 1.092
1 1.086 1.166 7.789 1.148
10 1.223 3.712 7.051 · 101 1.223
102 1.021 2.641 · 101 4.406 · 102 1.021
103 1.000 2.579 · 102 6.811 · 103 1.000
104 1.000 2.579 · 103 6.739 · 104 1.000
105 1.000 2.579 · 104 9.389 · 105 1.000
106 1.000 2.579 · 105 8.363 · 106 1.000

Table 3: Indices of effectivity for the second test problem with piecewise linear solu-
tions of the dual problem.
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κ η
(
uh,y2

h

)
η̂

(
uh, ŷ2

h

)
η̃

(
uh, ỹ2

h

)
η̃

(
uh, ỹ3

h

)
ηcomb

0 — 1.083 1.000 0.978 1.083
10−3 0.978 1.083 1.000 0.978 1.083
10−2 0.978 1.083 1.000 0.978 1.083
10−1 0.978 1.083 1.002 0.978 1.083
1 0.976 1.093 6.642 0.978 1.049
10 1.013 1.674 6.098 · 101 1.402 1.013
102 1.011 9.805 3.821 · 102 8.219 1.011
103 1.000 9.539 · 101 5.906 · 103 7.996 · 101 1.000
104 1.000 9.539 · 102 5.845 · 104 7.996 · 102 1.000
105 1.000 9.539 · 103 8.100 · 105 7.996 · 103 1.000
106 1.000 9.539 · 104 7.250 · 106 7.996 · 104 1.000

Table 4: Indices of effectivity for the second test problem with piecewise quadratic
(and cubic in one case) solutions of the dual problem.

Results in Tables 1–4 indicate that the estimator η is robust for great values of
κ and the estimators η̂ and η̃ are robust for small values of κ. Taking minimum of
values η, η̂, and η̃, we obtain a robust error estimator for the entire range of κ. In
addition, such an estimator is sharp and provides the guaranteed upper bound of the
error. However, computing all three values of η, η̂, and η̃ could be too costly. It
is possible to obtain sharp, robust, and guaranteed upper bound by a combination
of η and η̂, only. This combined approach requires practically the same number of
arithmetic operations as the evaluation of η and it can be expressed as follows

ηcomb =

{
min{η(uh,yh), η̂(uh,yh)} for C2

Ω
κ2 ≥ 1,

min{η(uh, ŷh), η̂(uh, ŷh)} otherwise,

where yh is computed by (32), ŷh by (33), and η(uh, ŷh) = ∞ for κ = 0. Notice that
the same computer code can be used for both yh and ŷh, because the corresponding
dual problems differ in the constant factors κ−2 and C2

Ω
only. Further notice that

having the norms
∥∥f − κ2uh + div yh

∥∥
0

and ‖yh − ∇uh‖0
computed, the evaluation

of η(uh,yh) and η̂(uh,yh) by (5) and (22) is trivial and practically for free. The
indices of effectivity for ηcomb are presented in the last columns of Tables 1–4.

However, if an upper bound CΩ of the Friedrichs’ constant is not available then
estimator η̃ must be used instead of η̂. In that case a robust and automatic procedure
requires evaluation of both η and η̃. This is computationally more intensive than the
approach combining η and η̂, because the estimators η and η̃ have different structure
and have to be computed independently.
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Further, we observe in Tables 3 and 4 that the estimator η behaves in a robust
way for the entire range of κ for the second test problem. This is exceptional and
it is due to the constantness of the right-hand side f . Furthermore, in Tables 3 and
4 we observe indices of effectivity less than one contradicting the fact that the error
estimators provide guaranteed upper bound of the error. This is caused by the error
stemming from the approximation of the circular domain Ω by a polygon Ωh. In
fact, we compute yh ∈ H(div, Ωh) but then yh 6∈ H(div, Ω) in general. If we treated
the approximate dual problem properly such that yh ∈ H(div, Ω) then the estimator
η(uh,yh) would provide the upper bound. The same is true for η̂ and η̃ as well.

The performance of all the estimators on finer meshes was tested as well. Uni-
form refinements of meshes depicted in Figure 1 have practically no influence on the
values of the indices of effectivity presented in Tables 1–4. Exceptional are the in-
dices of effectivity in Tables 3 and 4 smaller than one, which tend to one for finer
approximations Ωh of Ω.

Relations (12) and (29) confirm the intuitive statement that solving the dual prob-
lems with higher accuracy yields sharper bounds on the error. Tables 1–4 illustrate
this fact. Interestingly, the lowest order approximations (p∗ = 1 and p = 1) of the
dual problems provide already quite good results. Quadratic and higher-order ap-
proximations (p∗ = 2 and p = 2, 3) of the dual problems give the energy norm of the
error almost exactly in the robust regime.

8 Conclusions

Interestingly, the error estimators η, η̂, and η̃ given by (5), (22), and (25), respectively,
are independent from the way how the approximation uh ∈ V is obtained. In partic-
ular, the error u − uh in the estimates (6), (21), and (27) includes the discretization
error, the error in the solver of linear algebraic equations, quadrature errors, etc. Fur-
thermore, the upper bounds (6), (21), and (27) are guaranteed up to the quadrature
and round-off errors in the evaluation of L2-norms in (5), (22), and (25).

The key point for the performance of the estimators η(uh,yh), η̂(uh, ŷh), and
η̃(uh, ỹh) is the choice of the vector fields yh, ŷh, and ỹh. We showed that they are
connected with certain dual problems. In Section 7 we present numerical experiments,
where the vector fields yh, ŷh, and ỹh are obtained as Galerkin approximations of
the solution of the respective dual problems. This approach yields very sharp and
robust a posteriori error estimates for all values of the reaction coefficient κ. On the
other hand, this approach is not local. Galerkin method for the dual problems is
computationally intensive. For example, the number of degrees of freedom needed in
our tests in the discrete dual problems (32) and (33) is roughly 7–10 times (for p∗ = 1)
and 16–27 times (for p∗ = 2) higher than the number of degrees of freedom needed
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for the computation of uh by (31). In case of η̃ the number of degrees of freedom in
the dual problem (35) is comparable with the discrete problem (31) for p = 1, but its
several times higher for p = 2 and 3.

A useful approximation of the solution of the dual problem can be obtained by a
fast algorithm using a postprocessing of the approximate solution uh. A promising
approach is the method of equilibrated residuals described in [2]. This is a fast
method which is robust for small values of κ. A generalization robust in the singularly
perturbed case (κ large) is presented in [1]. A combination of this method with
estimators η, η̂, and η̃ can lead to an efficient, robust, fast, and fully computable
upper bound for the energy norm of the error. Construction and analysis of such an
estimator is still under research. However, a partial result was already published in
[23], where a combination of the method of equilibrated residuals with the estimator
η̃ is presented.
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[6] I. Babuška and W. Rheinboldt, A-posteriori error estimates for the finite
element method., Int. J. Numer. Methods Eng., 12 (1978), pp. 1597–1615.
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