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Abstract: The weak Neumann problem for the Poisson eqution is studied
on Lipschitz domain with compact boundary using the direct integral equation
method. The domain is bounded or unbounded, the boundary might be discon-
nected. The problem leads to a uniquely solvable integral equation in H1/2(∂Ω).
It is proved that we can get the solution of this equation using the successive
approximation method.
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1 Introduction

The theory of integral equations is an important tool in the theory of boundary
value problems and in a numerical application. It is standard to look for a
classical solution of the Neumann problem for the Laplace equation in a form of
a single layer potential with density B. If a corresponding domain Ω is bounded
and has smooth boundary, then the original problem is reduced to the integral
equation TB = F on the boundary ∂Ω, where F is a boundary condition. It
is a classical result that for Ω convex we can express a solution of the equation
TB = F in the form of a Neumann series

B = 2
∞∑

j=0

(I − 2T )jF, (1)

where I is the identity operator. (For the history of the problem see [3].) Weaker
solutions of the Neumann problem for the Laplace equation have been studied on
nonsmooth domains by the integral equation method for the last fifty years (see
[14], [17]). A solution is again looked for in the form of a single layer potential,
which leads to the integral equation TB = F . J. Král and I. Netuka studied in
1977 this problem on general bounded convex domains with a boundary condi-
tion given by a real measure on ∂Ω (see [15]) and proved the representability of a
solution of the equation TB = F in the form (1). They proved that the spectral
radius of the operator I − 2T is smaller than 1 in the space of real measures
µ on ∂Ω with µ(∂Ω) = 0. E. Fabes, M. Sand, J. K. Seo studied the Neumann
problem with a boundary condition from the space L2(∂Ω) on bounded con-
vex domains in 1992 (see [6]) and they proved that a solution of the equation
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TB = F can be given by (1). D. Medková studied in 1998 the representability
of a solution of the equation TB = F in the form (1) for domains with smooth
compact boundaries and boundary conditions given by real measures (see [18]).
It was shown that a solution of the equation TB = F can be express by (1) if
and only if Ω is a bounded domain with connected boundary. For a domain Ω
with arbitrary topology she proved that a solution of the equation TB = F can
be calculating by

B =
∞∑

j=0

α−1(I − α−1T )jF, (2)

where α is an arbitrary constant greater than 1/2 (see [19]). (For α = 1/2
we get an expression (1).) O. Steinbach and W. L. Wendland studied in 2001
the weak Neumann problem for the Laplace equation in W 1,2(Ω) with bound-
ary conditions from H−1/2(∂Ω) on bounded Lipschitz domains with connected
boundary in R2 and R3 (see [27]). They proved that the operator I − T is a
contractive operator in the space {F ∈ H−1/2(∂Ω);F (1) = 0} and the integral
equation TB = F is solvable by the Neumann series

B =
∞∑

j=0

(I − T )jF. (3)

(It is a series (2) with α = 1.) The same result was proved by a totally different
method by M. Constanda in 2007 (see [3]). He proved that T is a nonnegative
operator for which σ(T ) ⊂ 〈0, 1〉. (Here σ(T ) is the spectrum of the operator
T .) Since T is invertible on {F ∈ H−1/2(∂Ω);F (1) = 0} the representation (3)
holds true. T. Chang and K. Lee studied the spectral properties of the operator
T in 2008 (see [1]). They proved using properties of single layer potentials
and double layer potentials and the interpolation that σ(T ) ⊂ 〈0, 1〉. So, the
representation (3) can be shown by a further method.

D. Medková studied in 2007 the weak Neumann problem for the Laplace
equation and later the weak Neumann problem for the Poissson equation on a
general open set Ω ⊂ Rm, m > 2 (see [20], [21])). It was shown that each solution
of this problem is a Newton potential, which density B is a distribution with
finite energy supported on the closure of Ω. The distribution B is supported
on the boundary of Ω in the case of the Laplace equation. If we look for a
solution in the form of a Newton potential then the original problem reduces to
the integral equation TB = F , where F is the corresponding right side. It was
proved for a general open set Ω that a solution of the equation TB = F can
be expressed by the series (3) provided the Neumann problem is solvable. It is
a generalization of the result of Steinbach and Wendland because H−1/2(∂Ω)
is the space of distributions with finite energy supported on ∂Ω for a bounded
domain Ω with Lipschitz boundary.

So, we are able to solve the Neumann problem for the Poisson equation
using the indirect integral equation method. But some experts from numerical
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analysis prefer the direct integral equation method, i.e. the method using the
fact that u = V Ω(−∆u)+SΩ(∂u/∂n)−DΩu, where V Ωϕ is a volume potential,
SΩϕ is a single layer potential and DΩϕ is a double layer potential. It is usually
supposed that −∆u = 0 in Ω. If we study the Neumann problem for the
Laplace equation with the boundary condition f we get the integral equation
(1/2)u + Ku = SΩf on ∂Ω. (See for example [2], [26], [9].) We shall study a
weak solution of the Neumann problem for the Poisson equation on a domain
Ω ⊂ Rm, m > 2, with compact locally Lipschitz boundary. We do not suppose
either that Ω is bounded or that the boundary ∂Ω is connected. We study
a weak solution in the space Ĥ1,2(Ω) with the right side F ∈ [Ĥ1,2(Ω)]′. If
Ω is bounded then Ĥ1,2(Ω) = W 1,2(Ω) is a common Sobolev space. If Ω is
unbounded then Ĥ1,2(Ω) = {u ∈ L2m/(m−2)(Ω);∇u ∈ [L2(Ω)]m}. If u is a
solution of the problem −∆u = f in Ω, ∂u/∂n = g on ∂Ω with f ∈ L2(Ω),
g ∈ L2(∂Ω), then the right side F = f(Hm|Ω) + g(Hm−1|∂Ω). If we solve the
Neumann problem for the Laplace equation then F ∈ H−1/2(∂Ω) ⊂ [H1,2(Ω)]′.
We shall study the Neumann problem for the Poisson equation with the right
side F ∈ [Ĥ1,2(Ω)]′ and we shall get the integral equation (1/2)u+Ku = SΩF
on ∂Ω. We shall solve this integral equation in the space H1/2(∂Ω).

Suppose first that Ω is unbounded. Then 1
2I +K is an invertible operator

in H1/2(Ω). We shall show that(
1
2
I +K

)−1

=
∞∑

j=0

(
1
2
I −K

)j

and the successive approximation method converges. Moreover, we shall show
that the spectral radius of the operator K − 1

2I is smaller than 1. That means
that there is a norm ‖ · ‖ on H1/2(∂Ω) equivalent to the original norm such that
‖K − 1

2I‖ < 1 (see [8]). Now we can approximate SΩF by fj and the operator
K by the operator Kj . If fj → SΩF and Kj → K then for sufficiently large
j the equation 1

2uj + Kjuj = fj is uniquely solvable and uj → u. Moreover
‖ 1

2I −Kj‖ < 1, (
1
2
I +Kj

)−1

=
∞∑

j=0

(
1
2
I −Kj

)j

and the successive approximation method converges.
Let now Ω be bounded. Denote by K̃ the restriction of K onto the range

( 1
2I +K)(H1/2(∂Ω)). We shall show that 1

2I + K̃ is invertible and(
1
2
I + K̃

)−1

=
∞∑

j=0

(
1
2
I − K̃

)j

.

If g ∈ ( 1
2I +K)(H1/2(∂Ω)), f0 ∈ H1/2(∂Ω),

fj+1 =
(

1
2
I −K

)
fj + g,
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then fj → f , where f is some solution of the equation ( 1
2I+K)f = g. Since this

equation is not uniquely solvable, different choices of f0 give different solutions of
the equation ( 1

2I+K)f = g. If we solve the equation ( 1
2I+K)f̃ = g̃, where g̃ is

close to g then this equation will stop to be solvable. For the numerical practice
we need to solve the integral equation which is stable under small perturbation.
So we introduce a new operator

Mf =
1
2
f +Kf +

1
Hm−1(∂Ω)

∫
∂Ω

f dHm−1.

We shall show that Mf = g is uniquely solvable. Moreover, if Mf = g and
there is a solution of the integral equation ( 1

2I +K)ϕ = g then (1
2I +K)f = g.

If there is a solution of the Neumann problem for the Poisson equation with the
right side F then the solution f of the integral equation Mf = UF is the trace
of a solution of the Neumann problem for the Poisson equation with the right
side F . We shall show that the spectral radius of the operator M − I is smaller
than 1. That means that there is a norm ‖ · ‖ on H1/2(∂Ω) equivalent to the
original norm such that ‖M − I‖ < 1 (see [8]). Thus

M−1 =
∞∑

j=0

(I −M)j

and the successive approximation method converges. If fj → SΩF andMj →M
then for sufficiently large j the equation Mjuj = fj is uniquely solvable and
uj → u. Moreover ‖Mj − I‖ < 1,

M−1
j =

∞∑
j=0

(I −Mj)j

and the successive approximation method converges.

2 Neumann problem

We study the Neumann problem for the Poisson equation

−∆u = f in Ω,
∂u
∂n

= g on ∂Ω (4)

for a domain Ω ⊂ Rm, m > 2, with compact Lipschitz boundary ∂Ω, where n
is the outward unit normal of Ω. We say that Ω has Lipschitz boundary if for
each x ∈ ∂Ω there is a coordinate system centered at x and a Lipschitz function
Φ on Rm−1 such that Φ(0, . . . , 0) = 0 and in some neighborhood of x the set
Ω lies under the graph of Φ and Rm \ Ω lies above the graph of Φ. (Here Ω
denotes the closure of Ω.) We do not suppose that ∂Ω is connected.
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Suppose first that Ω is a bounded domain with smooth boundary and u ∈
C2(Ω) is a classical solution of the problem. Denote by Hk the k-dimensional
Hausdorff measure normalized so that Hk is the Lebesgue measure in Rk. Then
Green’s formula yields∫

Ω

∇u · ∇ϕ dHm =
∫
Ω

fϕ dHm +
∫

∂Ω

gϕ dHm−1 (5)

for ϕ ∈ D(Rm), where D(G) is the space of all compactly supported infinitely
differentiable real functions in G. This motivates a formulation of a weak so-
lution in the Sobolev space W 1,2(Ω) of the Neumann problem for the Poisson
equation on bounded domains with Lipschitz boundary.

If Ω ⊂ Rm is a nonempty open set denote by L2
loc(Ω) the class of all mea-

surable functions in Ω that are in L2(K) for every compact subset K of Ω and
by L1,2(Ω) the space of all functions in L2

loc(Ω) for which all generalized deriva-
tives of order 1 are in L2(Ω). The Sobolev space W 1,2(Ω) = L1,2(Ω) ∩ L2(Ω) is
equipped with the norm

‖u‖W 1,2(Ω) =

√√√√∫
Ω

(|u|2 + |∇u|2) dHm (6)

and (W 1,2(Ω))′ is the dual space of W 1,2(Ω). Remark, that for Ω bounded with
Lipschitz boundary ∂Ω we have W 1,2(Ω) = L1,2(Ω) = {u|Ω;u ∈ L1,2(Rm}.

If Ω is a bounded domain with Lipschitz boundary then u ∈ W 1,2(Ω) is a
weak solution in W 1,2(Ω) of the Neumann problem for the Poisson equation in
Ω with the right side F ∈ (W 1,2(Ω))′ if∫

Ω

∇u · ∇ϕ dHm = F (ϕ) ∀ϕ ∈W 1,2(Ω)

(see [23], Exemple 2.8). Since D(Rm) is a dense subset of W 1,2(Ω) (see [23],
Chapitre 2, Théorem 3.1) we can consider only test functions ϕ ∈ D(Rm). If
u is a weak solution of the Neumann problem for the Poisson equation in Ω
then u can be extended onto the whole Rm such that u ∈ L1,2(Rm) (see for
example [23], Théorème 3.9). Using these facts we define a weak solution of the
Neumann problem for the Poisson equation on general open subset of Rm.

Let Ω be a nonempty open subset of Rm, F ∈ D′(Rm) supported in Ω, where
D′(Rm) is the space of distributions on Rm. We say that a function u is a weak
solution of the Neumann problem for the Poisson equation in Ω with the right
side F if u can be extended onto Rm as a function from L1,2(Rm) and∫

Ω

∇u · ∇ϕ dHm = F(ϕ) ∀ϕ ∈ D(Rm)
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for each ϕ ∈ D(Rm).
This problem was studied in [21] using the indirect integral equation method.

In the rest of the paragraph we briefly sketch the results. (See also [18] and [4].)
For x, y ∈ Rm denote

hx(y) =
1

(m− 2)Hm−1(∂B(0; 1))
|x− y|2−m

where B(x; r) is the open ball with the center x and the radius r. For a closed
set F denote by C′(F ) the space of all finite real Borel measures with support
in F .

Denote E(Rm) = {∆u;u ∈ L1,2(Rm)} the space of distributions with finite
energy. If µ ∈ C′(Rm), then µ ∈ E(Rm) if and only if∫

Rm

∫
Rm

hx(y) d|µ|(x) d|µ|(y) <∞,

where |µ| denotes the total variation of µ. If µ ∈ E(Rm) ∩ C′(Rm) then the
Newton potential corresponding to µ

Uµ(x) =
∫

Rm

hx(y) dµ(y) (7)

is defined for almost all x ∈ Rm and Uµ = h0 ∗ µ ∈ L1,2(Rm). (Here ∗ denotes
the convolution.) Define now the Newton potential for F ∈ E(Rm). Fix F ∈
E(Rm). Then F is a tempered distribution and the Fourier transform F̂ of F is
defined. Moreover, F̂ ∈ L1

loc(R
m) and there is only tempered distribution UF

such that for its Fourier transform we have ÛF(x) = F̂(x)|x|−2. Remark that
UF ∈ L1,2(Rm) and ∆UF = −F . If F ∈ C′(Rm) then UF is given by (7). If
F has compact support, then UF = h0 ∗ F . It is chosen such representation of
UF that

UF(x) = lim
r↘0

(Hm(B(x; r)))−1

∫
B(x;r)

UF dHm (8)

at each x ∈ Rm for which the limit on the right side exists. The function UF is
called the Newton potential of F .

The space E(Rm) is a Hilbert space with inner product

(F ,G)E =
∫

Rm

∇UF · ∇UG dHm. (9)

If F ∈ E(Rm) and ν ∈ E(Rm) ∩ C′(Rm), then

(F , ν)E =
∫
UF dν. (10)
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For the closed set K denote by E(K) the space of all distribution from E(Rm)
supported on K with the energy ‖ ‖E as a norm. Then E(K) is a Hilbert
space. If Ω is a bounded domain with Lipschitz boundary then E(∂Ω) =
H−1/2(∂Ω), E(Ω) = (W 1,2(Ω))′ and the corresponding norms are equivalent.
(Here H1/2(∂Ω) is the space of traces of functions from W 1,2(Ω) and H−1/2(∂Ω)
is its dual space.)

Fix a nonempty open subset Ω of Rm, m > 2. If u is a solution of the weak
Neumann problem for the Poisson equation in Ω then there are G ∈ E(Ω) and a
real number a such that u = UG + a in Ω. So, we can look for a solution in the
form of a Newton potential UG with G ∈ E(G). If G ∈ E(G) then UG is a weak
solution of the Neumann problem for the Poisson equation in Ω with the right
side F if and only if F ∈ E(Ω) and JΩG = F , where JΩG is the unique element
of E(Rm) such that ∫

Ω

∇UB · ∇UG dHm = (B, JΩG)E

for each B ∈ E(Rm). The operator JΩ : G 7→ JΩG is a bounded linear nonneg-
ative operator on E(Rm) with ‖JΩ‖ ≤ 1. Moreover, JΩ(E(Rm)) = JΩ(E(Ω)) ⊂
E(Ω), JΩ(E(∂Ω)) ⊂ E(∂Ω). Fix F ∈ E(Ω) such that the Neumann problem for
the Poisson equation in Ω with the right side F is solvable. Then the series

G̃ =
∞∑

j=0

(I − JΩ)jF (11)

is convergent in E(Ω) and UG̃ is a weak solution of the Neumann problem for
the Poisson equation in Ω with the right side F . Fix G0 ∈ E . Put

Gn = (I − JΩ)Gn−1 + F (12)

for positive integer n. Then there is G ∈ E such that Gn → G as n → ∞ and
UG is a weak solution of the Neumann problem for the Poisson equation in Ω
with the right side F . If G0 ∈ E(Ω) then Gn,G ∈ E(Ω). If F ,G0 ∈ E(∂Ω) then
Gn,G ∈ E(∂Ω). If we choose G0 = 0 then G = G̃. By different choice of G0 we
obtain different solutions of JΩG = F , because this equation is not uniquely
solvable for each Ω. But we do not get fundamentally different solutions UG
because for two solutions u, v of the Neumann problem for the Poisson equation
in Ω with the right side F the function u− v is constant on each component of
Ω.

For general Ω we are not able to say how quickly converge Gn to G and this
convergence is not uniform on bounded sets of E(Ω). For domains with compact
boundary and W 1,2-extension property we can say more. We restrict ourselves
to domains with compact Lipschitz boundary. We shall suppose from now that
Ω is a domain with compact Lipschitz boundary. (We do not suppose that
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∂Ω is connected.) If the Neumann problem with the right side F is solvable,
G0 ∈ E(Rm), Gn is given by (12) and Gn → G, then

‖G − Gn‖E ≤ qn[(1− q)−1‖F‖E + ‖G0‖E ]

where the constant q ∈ (0, 1) depends only on Ω. If Ω is unbounded then there
is a weak solution of the Neumann problem for the Poisson equation in Ω with
the right side F if and only if F ∈ E(Ω). If Ω is bounded, then there is a weak
solution of the Neumann problem for the Poisson equation in Ω with the right
side F if and only if F ∈ E(Ω) and F(1) = 0.

We can ask how to calculate JGF . It is well-known for some special cases.
Denote by H the restriction of Hm−1 onto ∂Ω. Then there is the exterior unit
normal nΩ(x) of Ω at H-a.a. x ∈ ∂Ω. Let F = fH ∈ E(∂Ω), where f ∈ Lp(H),
1 < p <∞. Then UF is the single layer potential with density f and for H-a.a.
x ∈ ∂Ω there exists the limit

K∗f(x) = lim
ε↘0

∫
∂Ω\B(x;ε)

nΩ(x) · ∇hy(x)f(y) dH(y) (13)

and JΩF = (1
2f +K∗f)H.

3 Representation by potentials

We shall use the following convention: If X(G) is a Hilbert space of functions or
distributions on an open set G with an inner product (f, g), denote by X(G,C)
its complexification, i.e. X(G,C) = {f1+if2; f1, f2 ∈ X(G)}, (f1+f2, g1+ig2) =
(f1, g1)− (f2, g2) + i(f1, g2) + i(f2, g1).

Let Ω ⊂ Rm be an open set with compact Lipschitz boundary, g ∈ L2(∂Ω).
Define

SΩg(x) =
∫

∂Ω

g(y)hx(y) dHm−1(y) (14)

the single layer potential corresponding to g and

DΩg(x) =
∫

∂Ω

g(y)
∂hx(y)
∂n

dHm−1(y) =
∫

∂Ω

nΩ(y) · (x− y)
Hm−1(∂B(0; 1))|x− y|m

dHm−1(y)

(15)
the double layer potential corresponding to g whenever these integrals make
sense. Here n(y) denotes the outward unit normal of Ω at y. (Remark that
SΩg = U(gHm−1|∂Ω). Then SΩg , DΩg are harmonic functions in the comple-
ment of ∂Ω. If g ∈ L2(Ω) with compact support, denote V Ωf = U(fHm|Ω) the
volume potential.

Suppose for a while that Ω is bounded. If u ∈ C2(Ω) then u = V Ω(−∆u) +
SΩ(∂u/∂n) − DΩu. Since u is a classical solution of the problem (4) with
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f = −∆u and g = ∂u/∂n, the function u is a weak solution of Neumann problem
for the Poisson equation in Ω with the right side F = fHm|Ω+ gHm−1|∂Ω. We
can rewrite the formula for the representation of u by u = UF −DΩu in Ω.

We would like to prove the same representation for arbitrary weak solution of
the Neumann problem. But it does not hold in general for unbounded domains.
(If u ≡ 1 then u is a weak solution of the Neumann problem for the Poisson
equation with right side F = 0. If Ω is an exterior domain then DΩu = 0 in Ω
and UF + DΩu ≡ 0 6= 1 ≡ u in Ω.) In the case of exterior domains we restrict
ourselves to solutions in the form of a Newton potential UG with G ∈ E(Rm).

If G ⊂ Rm is an open set, define on D(G) an inner product by

(u, v)Ĥ1,2
0 (G) =

∫
G

∇u · ∇v dHm. (16)

Denote by Ĥ1,2
0 (G) the completion of D(G) with respect to the correspond-

ing norm. This space is used when the Dirichlet problem with the homo-
geneous boundary condition is studied in an exterior domain (see for exam-
ple [7], [11], [13]). According to [12], Lemma 2.2 we have Ĥ1,2

0 (Rm) = {u ∈
L2m/(m−2)(Rm);∇u ∈ L2(Rm;Rm)}.

Remark that Ĥ1,2
0 (Rm) = {UG;G ∈ E(Rm)}. If ϕ ∈ D(Rm) then ∆ϕ ∈

E(Rm) and ϕ = U(−∆ϕ). This gives that Ĥ1,2
0 (Rm) ⊂ {UG;G ∈ E(Rm)}.

Since D(Rm) is dense in {UG;G ∈ E(Rm)} (see [16], Theorem 1.17 and [28],
Lemma 6.5), we infer that Ĥ1,2

0 (Rm) = {UG;G ∈ E(Rm)}. The relations (9),
(16) give that F 7→ −UF is an isometric isomorphism of the Hilbert space
E(Rm) onto the Hilbert space Ĥ1,2

0 (Rm). The inverse operator u 7→ −∆u is
an isometric isomorphism of the Hilbert space Ĥ1,2

0 (Rm) onto the Hilbert space
E(Rm).

If G ⊂ Rm is an open set denote Ĥ1,2(G) = {u|G;u ∈ Ĥ1,2
0 (Rm)}. Clearly,

Ĥ1,2(Rm) = Ĥ1,2
0 (Rm) and we use the same norm on both spaces. As usually,

the norm on Ĥ1,2(G) is given by

‖u‖Ĥ1,2(G) = inf{‖v‖Ĥ1,2(Rm); v ∈ Ĥ
1,2(Rm), u = v|G}. (17)

Fix u ∈ Ĥ1,2(G). If v ∈ Ĥ1,2(Rm), v = u in G, then there is F ∈ E(Rm) such
that v = UF . (Remark that F = −∆v.) Denote by Gu the orthogonal projection
of F onto E(G). Since UGu = UF in G (see [16], Chapter VI, Theorem 6.3), we
have u = UGu in G. Since

‖UGu‖Ĥ1,2(Rm) = ‖Gu‖E ≤ ‖F‖E = ‖v‖Ĥ1,2(Rm),

we deduce that
‖u‖Ĥ1,2(G) = ‖UGu‖Ĥ1,2(Rm) = ‖Gu‖E . (18)

So, (17) gives a norm on Ĥ1,2(G) and U : F 7→ UF represents an isometric
isomorphism from the Hilbert space E(G) onto the Hilbert space Ĥ1,2(G).

9



We now show that (Ĥ1,2(G))′ = E(G) and the corresponding norms are
equivalent. Fix µ ∈ E(G) ∩ C′(G). If ϕ ∈ D(Rm) then

µ(ϕ) =
∫
ϕ dµ =

∫
UGϕ dµ = (Gϕ, µ)E

by (10). If F ∈ E(G) then there is a sequence µn in E(G) ∩ C′(G) such that
µn → F in E(G) (see [4], p. 143). Since µn converges to F in distributional
sense we have

F(ϕ) = (Gϕ,F)E

for each ϕ ∈ D(Rm). Thus

|F(ϕ)| ≤ ‖Gϕ‖E · ‖F‖E = ‖ϕ‖Ĥ1,2(G) · ‖F‖E .

Since D(Rm) is a dense subset of Ĥ1,2(G), there is unique extension of F as a
bounded linear functional on Ĥ1,2(G)

F(ϕ) = (Gϕ,F)E , ‖F‖Ĥ1,2(G))′ ≤ ‖F‖E . (19)

Since
F(UF) = ‖F‖2 = ‖F‖ · ‖UF‖Ĥ1,2(G),

we infer
‖F‖Ĥ1,2(G))′ = ‖F‖E . (20)

Thus E(G) is a closed subspace of Ĥ1,2(G))′. Let now F ∈ (Ĥ1,2(G))′. Since
Ĥ1,2(G) is a Hilbert space, Riesz representation theorem gives that there is
u ∈ Ĥ1,2(G) such that

F (v) = (v, u)Ĥ1,2(G) = (Gu,Gv)E ∀v ∈ Ĥ1,2(G).

Thus F = Gu ∈ E(Rm).
Let now Ω ⊂ Rm, m > 2, be an unbounded domain with compact Lipschitz

boundary. We shall show that the inner product (16) gives a norm on Ĥ1,2(Ω)
which is equivalent to the norm given by (17). According to the definition we
have ∫

Ω

|∇u|2 dHm ≤ ‖u‖2
Ĥ1,2(Ω)

for each u ∈ Ĥ1,2(Ω). It was shown in [20] and [21] that JΩ is a positive
invertible operator on E(Ω, C). Moreover, 0 ≤ JΩ ≤ I, where I is the identity
operator. Therefore there is α > 0 such that σ(JΩ) ⊂ (α, 1〉, where σ(JΩ) is the
spectrum of JΩ on E(Ω, C) (see [5], Proposition 4.15). Put T = I − JΩ. Then
σ(T ) ⊂ 〈0, 1 − α). According to [30], Chapter VII, §3, Theorem 3 and [25],
Theorem 1 we have 1 − α > sup{λ ∈ σ(T )} = ‖T‖ = sup{(TF ,F)E ; ‖F‖E =

10



1} = 1− inf{(JΩF ,F)E ; ‖F‖E = 1}. This gives (JΩF ,F)E ≥ α(F ,F)E for each
F ∈ E(Ω). Fix u ∈ Ĥ1,2(Ω). We have shown that there is G ∈ E(Ω) such that
u = UG on Ω and (18) holds. Then

‖u‖2
Ĥ1,2(Ω)

= ‖G‖E ≤ α−1(JΩG,G)E = α−1

∫
Ω

|∇UG|2 dHm = α−1

∫
Ω

|∇u|2 dHm.

Therefore the norm (17) is equivalent to the norm√√√√∫
Ω

|∇u|2 dHm (21)

given by the inner product (16). Consequently, Ĥ1,2(Ω) is the completion of the
inner product space {u|Ω;u ∈ D(Rm)} endowed with the inner product (16).

Let now Ω be a bounded open set with Lipschitz boundary. Then Ĥ1,2(Ω) =
W 1,2(Ω). Clearly, (21) is not a norm on Ĥ1,2(Ω). We shall show that the norm
given by (17) is equivalent to the usual norm (6) in W 1,2(Ω). According to [20],
Lemma 8.4 there is a positive constant C such that

C−1‖F‖E ≤ ‖UF‖W 1,2(Ω) ≤ C‖F‖E (22)

for each F ∈ E(Ω). Fix u ∈ Ĥ1,2(Ω). We have proved that there is G ∈ E(Ω)
such that u = UG on Ω and (18) holds. Using (18) and (22) we obtain

C−1‖u‖Ĥ1,2(Ω) = C−1‖G‖E ≤ ‖u‖W 1,2(Ω) ≤ C‖G‖E = C‖u‖Ĥ1,2(Ω).

We can reformulate the Neumannn problem for the Poisson equation as
follows: The function u ∈ Ĥ1,2(Ω) is a weak solution of the Neumann problem
for the Poisson equation with the right side F ∈ (Ĥ1,2(Ω))′ if∫

Ω

∇u · ∇v dHm = F(v) ∀v ∈ Ĥ1,2(Ω).

Now we express a solution of the Neumann problem for an open set Ω with
compact Lipschitz boundary in the form of potentials. We can find this result
in [26] for Ω ⊂ R3 a bounded domain with connected Lipschitz boundary.

Proposition 3.1. Let Ω ⊂ Rm, m > 2, be an open set with compact Lipschitz
boundary. Let u ∈ Ĥ1,2(Ω) be a weak solution of the Neumann problem for the
Poisson equation in Ω with the right side F . Then

u = UF −DΩu in Ω, (23)

where u on ∂Ω is the trace of u.

Proof. We can suppose that u ∈ Ĥ1,2
0 (Rm). Suppose first that Ω is bounded.

Fix uk ∈ D(Rm) such that uk → u in Ĥ1,2
0 (Rm) as k → ∞. Put G = −∆u,

11



Gk = −∆uk. Then u = UG, uk = UGk and Gk → G in E(Rm). Put Fk =
JΩG. Then Fk = JΩG → JΩG = F in E(Rm). Since Fk = (−∆uk)(Hm|Ω) +
(∂uk/∂n)(Hm−1|∂Ω), we have

uk = UFk −DΩuk (24)

in Ω. Since uk → u in Ĥ1,2
0 (Rm), we infer that uk → u in W 1,2(Ω). Since

Fk → F in E(Rm) we obtain UFk → UF in Ĥ1,2
0 (Rm) and hence also in

W 1,2(Ω). Since uk → u in W 1,2(Ω) we have uk → u in H1/2(∂Ω). This gives
that DΩuk → DΩu locally uniformly in Ω. Letting k →∞ in (24) we get (23).

Let now Ω be unbounded. Fix R > 0 such that Rm \ Ω ⊂ B(0;R). Choose
ψ ∈ D(Rm) supported in B(0, R) such that ψ = 1 on a neighborhood of Rm \Ω.
Denote u1 = uψ, u2 = u − u1. Then uj is a weak solution of the Neumann
problem for the Poisson equation in Ω with the right side Fj for j = 1, 2 and
F = F1 + F2. Since u2 ∈ Ĥ1,2

0 (Rm), there is G ∈ E(Rm) such that u2 = UG in
Rm. Since u2 = 0 on the neighborhood of Rm \ Ω we have for ϕ ∈ D(Rm)

F2(ϕ) =
∫
Ω

∇u2 · ∇ϕ dHm =
∫

Rm

∇UG · ∇ϕ dHm = G(ϕ).

Thus F2 = G and u2 = UF2. Since u2 vanishes on ∂Ω we have obtained (23)
for u2.

Let R < ρ < ∞. Since u1 = 0 in Rm \ B(0;R), we deduce that F1 is
supported in Ω∩B(0;R) and u1 is a weak solution of the Neumann problem for
the Poisson equation in Ω ∩B(0; ρ) with the right side F2. Since Ω ∩B(0; ρ) is
bounded we have u1 = UF1 −DΩ∩B(0;ρ)u1 in Ω ∩B(0; ρ). Since u1 vanishes on
∂B(0; ρ) we obtain (23) for u1.

4 Integral equation

We shall suppose that Ω is a domain with compact Lipschitz boundary. If
x ∈ ∂Ω, α > 0, denote the non-tangential approach region of opening α at the
point x

Γα(x) = {y ∈ Ω; |x− y| < (1 + α) dist(y, ∂Ω)},

where dist(y, ∂Ω) is the distance of y from ∂Ω. If u is a function on Ω and

c = lim
y→x,y∈Γα(x)

u(y)

for each α > α0, we say that c is the nontangential limit of u at x.
Since Ω is a Lipschitz domain there is α0 > 0 such that x ∈ Γα(x) for each

x ∈ ∂Ω, α > α0.
If f ∈ L2(∂Ω) then the single layer potential SΩf(x) is defined for almost all

x ∈ ∂Ω and it is the nontangential limit of SΩf . Moreover, since SΩf ∈ L2(∂Ω),
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we have f(Hm−1|∂Ω) ∈ E(∂Ω) and SΩf ∈ Ĥ1,2(Rm). The nontangential limit
of SΩf on ∂Ω is also the trace of SΩf and thus SΩf is the trace of SΩf on ∂Ω.
If K∗ is given by (13), i.e.

K∗f(x) = lim
ε↘0

∫
∂Ω\B(x;ε)

nΩ(x) · (y − x)
Hm−1(∂B(0; 1))|x− y|m

f(y) dHm−1(y),

then K∗ is a bounded linear operator on L2(∂Ω). If f ∈ L2(∂Ω) then there
is the nontangential limit of ∇SΩf at almost all points of boundary ∂Ω and
nΩ · ∇SΩf = 1

2f +K∗f in the sense L2(∂Ω) (see [10], Theorem 2.2.13).
If f ∈ L2(∂Ω) then for almost all x ∈ ∂Ω there is

Kf(x) = lim
ε→0+

1
Hm−1(∂B(0; 1))

∫
∂Ω\B(x;ε)

nΩ(y) · (x− y)
|y − x|m

f(y) dHm−1(y).

Moreover, − 1
2f(x)+Kf(x) is the nontangential limit of DΩf at x for almost all

x ∈ ∂Ω (see [10], Theorem 2.2.13). The operator K is a bounded linear operator
in L2(∂Ω) and K∗ is the adjoint operator of K (see [10], Theorem 2.2.13 and
[29], Lemma 2.18).

If f ∈ L2(∂Ω) we can identify f with f(Hm−1|∂Ω). Since K∗f = JΩf − 1
2f

for f ∈ L2(∂Ω), the operator K∗ can be extended as a bounded linear operator
on H−1/2(∂Ω) = E(∂Ω) by the formula K∗f = JΩf − 1

2f . Similarly we can
put SΩf = Uf for f ∈ H−1/2(∂Ω) = E(∂Ω). Then SΩf ∈ Ĥ1,2(Ω) is harmonic
and its normal derivative is JΩf = 1

2f +K∗f . Since K∗ is a bounded operator
on H−1/2(∂Ω), the adjoint operator of K∗ is a bounded operator on H1/2(∂Ω).
SinceK andK∗ are adjoint operators on L2(∂Ω), we deduce thatK is a bounded
operator on H−1/2(∂Ω) which is the adjoint operator of K∗. (For Ω ⊂ R3

compare [26].)
If g ∈ H1/2(∂Ω) then there is u ∈ Ĥ1,2(Ω) such that the trace of u on ∂Ω is

equal to g. The function u is a solution of the Neumann problem for the Poisson
equation with a right side F ∈ (Ĥ1,2(Ω))′ = E(Ω). Proposition 3.1 gives that
DΩg = UF − u ∈ Ĥ1,2(Ω). The trace of DΩg is the nontangetial limit of DΩg,
i.e. − 1

2g +Kg.
Let now u ∈ Ĥ1,2(Ω) be a weak solution of the Neumann problem for the

Poisson equation with the right side F ∈ (Ĥ1,2(Ω))′ = E(Ω). Then u = UF −
DΩu in Ω by Proposition 3.1. Since UF is the trace of UF , we obtain u =
UF − (− 1

2u+Ku) on ∂Ω. So, we get the integral equation

1
2
u+Ku = UF (25)

on ∂Ω. If we find a solution of this equation then we reconstruct a solution of
the Neumann problem using Proposition 3.1.
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5 Unbounded domain

Suppose first that Ω is an unbounded domain with compact Lipschitz boundary.
We know that the Neumann problem is solvable for each F ∈ (Ĥ1,2(Ω))′. Since
two solutions of the problem differ by a constant and v ≡ 1 is not an element of
Ĥ1,2(Ω), a solution of the Neumann problem is unique. We now show how to
solve the equation 1

2u+Ku = g(= UF).
We shall use the following Proposition 5.1 proved in [8].

Proposition 5.1. Let X be a complex Banach space. Denote by N the set
of all norms on X equivalent to the original norm. If T is a bounded linear
operator in X denote by σ(T ) the spectrum of T and

r(T ) = sup{|λ|;λ ∈ σ(T )}

the spectral radius of T . Then

r(T ) = inf
‖·‖∈N

‖T‖.

Theorem 5.2. Let Ω ⊂ Rm, m > 2, be an unbounded domain with Lipschitz
boundary. Then 1

2I +K is a continuously invertible operator in H1/2(∂Ω) and(
1
2
I +K

)−1

=
∞∑

j=0

(
1
2
I −K

)j

.

Moreover, there are constants d ≥ 1 and q ∈ (0, 1) such that∥∥∥∥(
1
2
I −K

)j∥∥∥∥
H1/2(∂Ω)

≤ dqj

for each nonnegative integer j. Fix now g ∈ H1/2(∂Ω), f0 ∈ H1/2(∂Ω). Put

fj+1 =
(

1
2
I −K

)
fj + g (26)

for a nonnegative integer j. Then there exists

f = lim
j→∞

fj ,

f is the unique solution of the equation 1
2f +Kf = g and

‖f − fj‖H1/2(∂Ω) ≤ Cqj(‖g‖H1/2(∂Ω) + ‖f0‖H1/2(∂Ω))
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for arbitrary j, where C is a constant dependent only on Ω.

Proof. Put T = I − ( 1
2I + K) = 1

2I −K. Then (I − T )′ = 1
2I + K ′ = JΩ

is a continuously invertible operator in H−1/2(∂Ω) and r(T ′) < 1 (see [21]). By
a duality we obtain that I − T = 1

2I +K is a continuously invertible operator
in H1/2(∂Ω) and r(T ) < 1. According to Proposition 5.1 there is an equivalent
norm ‖ · ‖ on H1/2(∂Ω) such that ‖T‖ < 1. The rest is a classical result.
(Compare also Proposition 6.1 bellow.)

6 Bounded domain

Suppose now that Ω is a bounded domain with Lipschitz boundary. Then the
Neumann problem for the Poisson equation with the right side F ∈ (Ĥ1,2(Ω)′ =
E(Ω) is solvable if and only if F(1) = 0. We would like to solve the equation
1
2u + Ku = UF . We know that there is a solution of this equation and thus
g = UF ∈ ( 1

2I + K)(H1/2(∂Ω)). If v is constant then v is a solution of the
Neumann problem with the zero right side. Thus v is a solution of the homoge-
neous equation (1

2I +K)v = 0. Lemma 6.2 will show that each solution of the
homogeneous equation is constant. Since a solution of the Neumann problem
is given up to an additive constant, every solution u of the integral equation
( 1
2I+K)u = UF gives the trace of some solution of the Neumann problem with

the right side F .
We should like to express a solution of the equation (25) by a Neumann series.

We shall need the following Proposition 6.1 proved in [22] (Proposition 3):

Proposition 6.1. Let X be a Banach space, T be a bounded linear operator
on X. Suppose that X is the direct sum of Ker(I −T ) and (I −T )(X). Denote
by T̃ the restriction of T onto (I − T )(X). Suppose that r(T̃ ) < 1. Then there
are constants d ≥ 1 and q ∈ (0, 1) such that

‖T̃ j‖ ≤ dqj

for each nonnegative integer j. Moreover,

(I − T̃ )−1 =
∞∑

j=0

T̃ j .

Fix now y ∈ (I − T )(X), x0 ∈ X. Put

xj+1 = Txj + y

for a nonnegative integer j. Then there exists

x = lim
j→∞

xj
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and
‖x− xj‖ ≤ Cqj(‖y‖+ ‖x0‖)

for arbitrary j, where C is a constant dependent only on T .

Lemma 6.2. Let T be a bounded linear operator on a Banach space X such
that T (X) is closed and X is the direct sum of T (X) and KerT = {x ∈ X;Tx =
0}. Denote by T ′ the adjoint operator of T defined on X ′, the dual space of X.
Then X ′ is the direct sum of T ′(X ′) and KerT ′.

Proof.
If A ⊂ X denote A0 = {S ∈ X ′;Sx = 0 ∀x ∈ A} the annihilator of A.

According to [24], Theorem 3.16 we have T ′(X ′) = [KerT ]0 and T ′(X ′) is
closed. Moreover, KerT ′ = [T (X)]0 by [24], Theorem 3.7 and [24], Lemma 3.6.
Denote by P the projection of X onto T (X) along KerT . If S in X ′ then
S = SP + S(I − P ), SP ∈ [KerT ]0 = T ′(X ′), S(I − P ) ∈ [T (X)]0 = KerT ′. If
S ∈ T ′(X ′)∩KerT ′ = [T (X)]0∩[KerT ]0, x ∈ X then Sx = SPx+S(I−P )x = 0
and thus S = 0. So, X ′ is the direct sum of T ′(X ′) and KerT ′.

Lemma 6.3. Let Ω ⊂ Rm, m > 2, be a bounded domain with Lipschitz bound-
ary. Then the space H1/2(∂Ω, C) is the direct sum of ( 1

2I +K)(H1/2(∂Ω, C))
and Ker( 1

2I + K). The kernel Ker( 1
2I + K) is the space of all constant func-

tions on ∂Ω, σ( 1
2I + K) ⊂ 〈0, 1〉. Denote by K̃ the restriction of K onto

( 1
2I +K)(H1/2(∂Ω, C)). Then r(K̃ − 1

2I) < 1.

Proof. ( 1
2I +K ′)(H−1/2(∂Ω, C)) = {F ∈ H−1/2(∂Ω, C);F(1) = 0} by [20],

[21]. Since 1
2I + K is an adjoint operator of 1

2I + K ′, Ker( 1
2I + K) = {u ∈

H1/2(∂Ω, C);F(u) = 0 ∀F ∈ ( 1
2I +K ′)((H−1/2(∂Ω, C))} by [24], Theorem 3.7

and [24], Lemma 3.6, we infer that Ker( 1
2I + K) is the space of all constant

functions on ∂Ω. Since H−1/2(∂Ω, C) is the direct sum of Ker( 1
2I + K ′) and

( 1
2I + K ′)(H−1/2(∂Ω, C)) (see [20], Proposition 7.5 and [20], Theorem 8.8),

Lemma 6.2 gives that H1/2(∂Ω, C) is the direct sum of Ker( 1
2I + K) and

( 1
2I + K)(H1/2(∂Ω, C)). The spectrum σ( 1

2I + K ′) ⊂ 〈0, 1〉 by [20], Propo-
sition 5.4, [5], Proposition 4.15 and [30], Chapter VII, §3, Theorem 3. The
duality argument gives that σ( 1

2I +K) ⊂ 〈0, 1〉 (see [24], Theorem 6.24). Since
H1/2(∂Ω, C) is the direct sum of Ker( 1

2I +K) and ( 1
2I +K)(H1/2(∂Ω, C)), we

deduce that σ( 1
2I + K̃) ⊂ (0, 1〉. Since σ(− 1

2I + K̃) is a closed subset of the
interval (−1, 0〉 (see [24], Theorem 6.3), we have r(K̃ − 1

2I) < 1.

Theorem 6.4. Let Ω ⊂ Rm, m > 2, be a bounded domain with Lipschitz
boundary. Then 1

2I + K̃ is a continuously invertible operator in the subspace

( 1
2I +K)(H1/2(∂Ω)) and(

1
2
I + K̃

)−1

=
∞∑

j=0

(
1
2
I − K̃

)j

.
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Moreover, there are constants d ≥ 1 and q ∈ (0, 1) such that∥∥∥∥(
1
2
I − K̃

)j∥∥∥∥ ≤ dqj

for each nonnegative integer j. Fix g ∈ ( 1
2I + K)(H1/2(∂Ω)), f0 ∈ H1/2(∂Ω).

Put

fj+1 =
(

1
2
I −K

)
fj + g (27)

for a nonnegative integer j. Then there exists

f = lim
j→∞

fj ,

f is a solution of the equation 1
2f +Kf = g and

‖f − fj‖H1/2(∂Ω) ≤ Cqj(‖g‖H1/2(∂Ω) + ‖f0‖H1/2(∂Ω))

for arbitrary j, where C is a constant dependent only on Ω.

Proof. If fj is given by (26) and fj → f then f = (1
2I −K)f + g by a limit

procedure.
Put T = I−( 1

2I+K) = 1
2I−K. Now we use Lemma 6.3 and Proposition 4.1.

7 Uniquely solvable integral equation

In this paragraph we shall suppose that Ω is a bounded domain with Lipschitz
boundary, F ∈ (Ĥ1,2(Ω)′ = E(Ω), F(1) = 0. We would like to solve the equation
1
2u+Ku = UF . Theorem 6.4 shows how we can approximate a solution of this
problem. In the numerical practice we approximate UF , i.e. instead of the
equation 1

2u +Ku = UF we solve the equation 1
2u +Ku = g where g is close

to UF . If the given data g 6∈ ( 1
2I +K)(H1/2(∂Ω)) then the sequence fj given

by (26) does converge.
Instead of the equation 1

2u + Ku = g we shall solve a uniquely solvable
equation Mu = g. For f ∈ H1/2(∂Ω) put

Mf =
1
2
f +Kf +

1
Hm−1(∂Ω)

∫
∂Ω

f dHm−1.

We shall show that if g ∈ ( 1
2I+K)(H1/2(∂Ω)) and Mf = g then ( 1

2I+K)f = g.
So, if there is a solution of the Neumann problem for the Poisson equation with
the right side F and f is a solution of the equation Mf = UF then f is the
trace of some solution of the Neumann problem for the Poisson equation with
the right side F . We shall show that r(I −M) < 1 and we can approximate a
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solution of the equation Mf = g by the successive approximation method. But
in the numerical application we approximate also the operator M . So, instead
of the integral equation Mf = g we solve an equation M̃f = g where M̃ is close
to M . Since r(I −M) < 1 there is a norm ‖ · ‖ on H1/2(∂Ω) equivalent to the
original norm such that ‖I −M‖ < 1 (see Proposition 5.1). Thus if Mk → M ,
then M−1

k g →M−1g, ‖I −Mk‖ < 1 for sufficiently large k and we can use the
successive approximation method for solving the equation Mkf = g.

Lemma 7.1. The operator M is a continuously invertible operator in the com-
plex Hilbert space H1/2(∂Ω, C) with σ(M) ⊂ (0, 1〉.

Proof. Let Mf = 0. Since H1/2(∂Ω, C) is the direct sum of the space of
constants and ( 1

2I +K)(H1/2(∂Ω, C)) (see Lemma 6.3), we deduce that∫
∂Ω

f dHm−1 = 0,
(

1
2
I +K

)
f = 0. (28)

Since f ∈ Ker( 1
2I +K), Lemma 6.3 gives that f is constant. According to (28)

we infer that f = 0.
The operator 1

2I+K is a Fredholm operator with index 0 by Lemma 6.3 (i.e.
dim Ker( 1

2I + K) = codim( 1
2I + K)(H1/2(∂Ω, C)) < ∞). Since the operator

M − ( 1
2I +K) is an operator of finite rank and therefore compact, the operator

M is a Fredholm operator with index 0, too (see [24], Theorem 5.10). Since M
is injective, it is surjective. According to [5], Theorem 1.42 the operator M is
continuously invertible.

Fix λ ∈ C \ 〈0, 1〉. According to Lemma 6.3 we have σ( 1
2I + K) ⊂ 〈0, 1〉.

Since the operator M−( 1
2I+K) is compact, the operator λI−M is a Fredholm

operator with index 0 (see [24], Theorem 5.10). If λ ∈ σ(M) then λ is an
eigenvalue of M . Suppose that Mf = λf . Since H1/2(∂Ω, C) is the direct sum
of the space of constants and ( 1

2I + K)(H1/2(∂Ω, C)) (see Lemma 6.3), there
are f̃ ∈ ( 1

2I + K)(H1/2(∂Ω, C)) and a constant c such that f = f̃ + c. Since
c ∈ Ker( 1

2I +K) we have

λf̃ + λc =
(

1
2
I +K

)
f̃ +

1
Hm−1(∂Ω)

∫
∂Ω

f dHm−1.

Since H1/2(∂Ω, C) is the direct sum of ( 1
2I + K)(H1/2(∂Ω, C)) and the space

of constants, we deduce that λf̃ = ( 1
2I +K)f̃ . Since λ is not an eigenvalue of

1
2I +K, we infer that f̃ = 0. Since f = c we have λc = Mc = c. Since λ 6= 1
we obtain c = 0. This forces that λ 6∈ σ(M).

Theorem 7.2. Let Ω ⊂ Rm, m > 2, be a bounded domain with Lipschitz
boundary. Then M is a continuously invertible operator in H1/2(∂Ω) and

M−1 =
∞∑

j=0

(I −M)j .
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Moreover, there are constants d ≥ 1 and q ∈ (0, 1) such that

‖(I −M)j‖H1/2(∂Ω) ≤ dqj

for each nonnegative integer j. Fix now g ∈ H1/2(∂Ω), f0 ∈ H1/2(∂Ω). Put

fj+1 = (I −M)fj + g (29)

for a nonnegative integer j. Then there exists

f = lim
j→∞

fj ,

f is the unique solution of the equation Mf = g and

‖f − fj‖H1/2(∂Ω) ≤ Cqj(‖g‖H1/2(∂Ω) + ‖f0‖H1/2(∂Ω))

for arbitrary j, where C is a constant dependent only on Ω. If moreover g ∈
( 1
2I +K)(H1/2(∂Ω)) then 1

2f +Kf = g.

Proof. Let g ∈ ( 1
2I + K)(H1/2(∂Ω)) and Mf = g. Since H1/2(∂Ω, C)

is the direct sum of the space of constants and ( 1
2I + K)(H1/2(∂Ω, C)) (see

Lemma 6.3), g = Mf = (1
2I+K)f+c with some constant c, we infer that c = 0

and thus g = (1
2I +K)f .

Lemma 7.1 gives that σ(M) ⊂ (0, 1〉. Since σ(I −M) ⊂ (−1, 0〉 is a closed
set (see [24], Theorem 6.3), we have r(I−M) < 1. According to Proposition 5.1
there is a norm ‖ · ‖ on H1/2(∂Ω, C) equivalent to the original norm such that
‖I − M‖ < 1. The rest is a classical result. (See also Proposition 6.1 for
T = I −M .)
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