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Abstract. We introduce and study the notion of operator hyperreflexivity of subspace lattices.

This notion is a natural analogue of the operator reflexivity and is related to hyperreflexivity

of subspace lattices introduced by Davidson and Harrison.

1. Introduction

Let H be a complex Hilbert space. By B(H) we denote the algebra of all bounded linear
operators on H and by P(H) the lattice of all orthogonal projections in B(H). A subspace
lattice is a lattice which contains the trivial projections 0 and I, and is closed in the strong
operator topology. Note that every subspace lattice is complete, which means that it is closed
under taking arbitrary infima and suprema.

For a subspace lattice L ⊆ P(H), the reflexive hull of L is defined as

RefL = {P ∈ P(H); Px ∈ Lx, for all x ∈ H}.
A subspace lattice L is said to be operator reflexive if RefL = L (see [11]).

Recall that the classical notion of reflexivity of L means LatAlgL = L, which is strictly
stronger condition than operator reflexivity [11]. Note that not every subspace lattice is operator
reflexive [5]. Here, for a family of operators S ⊆ B(H), we let LatS = {P ∈ P(H); SP =
PSP ∀ S ∈ S} be collection of orthogonal projections onto the subspaces invariant for S.
For a subspace lattice L, we denote by AlgL the algebra of all operators A ∈ B(H) satisfying
L ⊆ LatA, i.e., operators that leave invariant the ranges of all projections in L.

Let L ⊆ P(H) be a subspace lattice, P ∈ P(H), and let

d(P,L) = inf{‖P −Q‖; Q ∈ L} = inf
Q∈L

sup
‖x‖≤1

‖Px−Qx‖

denote the usual distance between P and L. In [4], Davidson and Harrison introduce, in analogy
with the Arveson distance for algebras (see [1]), the following quantity for subspace lattices. Let
L be a subspace lattice and P ∈ P(H). They set

β(P,L) = sup{‖P⊥AP‖; A ∈ (AlgL)1},
where (AlgL)1 denotes the set of all contractions in AlgL. It is straightforward to see that
β(P,L) ≤ 2d(P,L) for every P (see [4, p. 310]). A subspace lattice L is said to be hyperreflexive
if there is a positive number κ such that

(1) d(P,L) ≤ κβ(P,L) for all P ∈ P(H).
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The infimum κ(L) of all positive numbers κ satisfying (1) is called the constant of hyperreflexivity
for L. Every hyperreflexive subspace lattice is reflexive, however the converse does not hold, in
general.

In this paper we introduce another quantity related to a subspace lattice which seems to be a
more natural analog of the Arveson distance. Our idea is based on the definition of the Arveson
distance for general spaces of operators.

Let L be a subspace lattice and P ∈ P(H). Then we set

α(P,L) = sup{d(Px,Lx); ‖x‖ ≤ 1} = sup
‖x‖≤1

inf
Q∈L

‖Px−Qx‖.

It is obvious from the definition that α(P,L) ≤ d(P,L). We say that a subspace lattice L is
operator hyperreflexive if there exists a constant c > 0 such that

(2) d(P, L) ≤ c α(P,L), for all P ∈ P(H).

The infimum c(L) of all positive numbers c satisfying (2) is called the constant of operator
hyperreflexivity for L. It is clear that every operator hyperreflexive lattice is operator reflexive.

The goal of this paper is to study operator hyperreflexivity for subspace lattices. In Section 2
we show that hyperreflexivity implies operator hyperreflexivity. The opposite implication is not
true. It is shown in Section 3 that every finite subspace lattice is operator hyperreflexive. We
also show some basic properties of operator hyperreflexive subspace lattices. In the last section
an example of a subspace lattice that is operator reflexive but not operator hyperreflexive is
given.

The following diagram summarizes the relations among these properties of a subspace lattice:

reflexivity =⇒ operator reflexivity
⇑ ⇑

hyperreflexivity =⇒ operator hyperreflexivity

All the implications are strict.

2. Hyperreflexivity vs. operator hyperreflexivity

In this section we compare operator hyperreflexivity with hyperreflexivity of subspace lattices.

Theorem 2.1. Every hyperreflexive subspace lattice is operator hyperreflexive. Moreover, if L
is a hyperreflexive subspace lattice with constant of hyperreflexivity κ(L), then the constant of
operator hyperreflexivity for L is at most 4κ(L).

Proof. Let L be a subspace lattice and P ∈ P(H) be arbitrary. We claim that β(P,L) ≤
4α(P,L). To see this, let A ∈ (AlgL)1 and x ∈ H, ‖x‖ ≤ 1, be arbitrary. Then, for every Q ∈ L,
one has

|〈P⊥APx, x〉| = |〈(P⊥AP −Q⊥AQ)x, x〉| ≤ |〈(P⊥ −Q⊥)APx, x〉|+ |〈Q⊥A(P −Q)x, x〉|
= |〈APx, (P −Q)x〉|+ |〈(P −Q)x,A∗Q⊥x〉| ≤ 2‖(P −Q)x‖.

It follows |〈P⊥APx, x〉| ≤ 2 inf{‖(P −Q)x‖; Q ∈ L} and consequently

sup{|〈P⊥APx, x〉|; ‖x‖ = 1} ≤ 2 sup{inf{‖(P −Q)x‖; Q ∈ L}; ‖x‖ = 1}.
Note that the number on the left side of the last inequality is the numerical radius w(P⊥AP )
of the operator P⊥AP and that the number on the right hand side is 2α(P,L). By the Lumer’s
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formula, one has ‖P⊥AP‖ ≤ 2w(P⊥AP ), which gives ‖P⊥AP‖ ≤ 4α(P,L), and we may con-
clude that β(P,L) ≤ 4α(P,L). It is obvious now that for a hyperreflexive subspace lattice L
one has c(L) ≤ 4κ(L), which in particular means that every hyperreflexive subspace lattice is
operator hyperreflexive. ¤

In [4], several classes of subspace lattices were proved to be hyperreflexive. So we have the
following immediate corollary of Theorem 2.1.

Corollary 2.2. (i) Every nest N is operator hyperreflexive with constant of operator hyper-
reflexivity not exceeding 4.

(ii) Let A be a hyperreflexive von Neumann algebra with hyperreflexivity constant a. Then the
projection lattice L of A is operator hyperreflexive with operator hyperreflexivity constant not
exceeding 4a.

(iii) If L is a commutative subspace lattice, then it is operator hyperreflexive with operator
hyperreflexivity constant not exceeding 20.

Proof. By [4, Theorem 3.1], every nest is hyperreflexive with hyperreflexivity constant 1. Hence,
by Theorem 2.1, (i) follows. Clauses (ii) and (iii) follow similarly by Theorem 4.1, respectively
by Theorem 5.1, in [4]. ¤

As the following example shows, hyperreflexivity is a condition strictly stronger than operator
hyperreflexivity.

Example 2.3. Let H be a two-dimensional Hilbert space. Assume that P1, P2, P3 ∈ P(H) are
of rank one and that (PiH)∩(PjH) = {0} and (PiH)∨(PiH) = H hold for all i, j = 1, 2, 3, i 6= j.
Denote by L the lattice {0, P1, P2, P3, I}. It is easy to see that AlgL is trivial, i.e., it consists
only of scalar multiples of the identity operator. Thus, β(P,L) = 0 for every P ∈ P(H) which
means that L is not hyperreflexive. On the other hand, it will be shown later, see Theorem 3.2,
that every finite subspace lattice is operator hyperreflexive.

3. Basic results

We start this section by showing that every finite subspace lattice is operator hyperreflexive
which is not the case for hyperreflexivity, see Example 2.3. We need the following lemma, cf.
[9, Theorem 37.17].

Lemma 3.1. Let T1, . . . , Tn ∈ B(H) be arbitrary operators and assume that α1, . . . , αn are
positive numbers such that

∑n
i=1 α2

i < 1. Then there exists x ∈ H, ‖x‖ = 1, such that ‖Tix‖ ≥
αi‖Ti‖, for every i = 1, . . . , n.

Proof. Without loss of the generality we can assume that every operator Ti is non-zero. Choose
ε > 0 such that

∑
α2

i < 1− ε. For i = 1, . . . , n, set α′i = αi√
1−ε

. Then
∑

(α′i)
2 < 1. For every i

choose yi ∈ H, ‖yi‖ = 1, such that ‖T ∗i yi‖ >
√

1− ε ‖T ∗i ‖ =
√

1− ε ‖Ti‖. Set ui = ‖T ∗i yi‖−1T ∗i yi,

so that ‖ui‖ = 1. By [2], there exists a vector x ∈ H of norm 1 such that |〈x, ui〉| ≥ α′i,
for all i = 1, . . . , n. Hence ‖Tix‖ ≥ |〈Tix, yi〉| = |〈x, T ∗i yi〉| = |〈x, ‖T ∗i yi‖ui〉| ≥ α′i‖T ∗i yi‖ ≥√

1− ε α′i‖Ti‖ = αi‖Ti‖. ¤

Theorem 3.2. Let L = {L1, . . . , Ln} ⊂ P(H) be a finite subspace lattice. Then L is operator
hyperreflexive and c(L) ≤ √

n.
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Proof. Let P ∈ P(H) and ε > 0. Consider the operators P − L1, . . . , P − Ln. By Lemma 3.1,
there exists x ∈ H with ‖x‖ = 1 and

‖(P − Lj)x‖ ≥
(

1√
n
− ε

)
‖P − Lj‖

for all j = 1, . . . , n. So

α(P,L) = sup
‖y‖=1

min
1≤j≤n

‖(P − Lj)y‖ ≥ ( 1√
n
− ε) min

1≤j≤n
‖P − Lj‖ = (n−1/2 − ε) d(P,L).

Since ε > 0 was arbitrary we have d(P,L) ≤ √
n · α(P,L). ¤

Proposition 3.3. Let M and L be subspace lattices with L ⊆M. Suppose that M is operator
hyperreflexive with constant a and that d(M,L) ≤ b α(M,L) holds for all M ∈ M. Then L is
operator hyperreflexive with constant at most a + b + ab.

Proof. Let P ∈ P(H). Then for every ε > 0 there is M0 ∈M such that ‖P−M0‖ ≤ d(P,M)+ε.

Since L ⊂ M one has d(Px,Mx) ≤ d(Px,Lx), for every x ∈ H. Hence α(P,M) ≤ α(P,L).
Note that for every L ∈ L and x ∈ H one has ‖M0x− Lx‖ ≤ ‖M0x− Px‖+ ‖Px− Lx‖, which
means that α(M0,L) ≤ sup‖x‖=1 ‖M0x− Px‖+ α(P,L) = ‖M0 − P‖+ α(P,L). Therefore

d(P,L) ≤ ‖P −M0‖+ d(M0,L) ≤ d(P,M) + ε + d(M0,L)

≤ aα(P,M) + ε + b α(M0,L) ≤ aα(P,L) + ε + b (‖M0 − P‖+ α(P,L))

≤ aα(P,L) + ε + b (d(P,M) + ε) + b α(P,L) ≤ (a + b)α(P,L) + ε + b (aα(P,M) + ε)

≤ (a + b + ab)α(P,L) + ε + bε.

Hence L is operator hyperreflexive with constant at most a + b + ab. ¤

Proposition 3.4. For each i ∈ N, let Li ⊆ P(Hi) be an operator hyperreflexive subspace lattice
with constant ai. If a = supi∈N ai < ∞, then L = ⊕Li is operator hyperreflexive with constant
at most 16 + 17a. Conversely, if L = ⊕Li is operator hyperreflexive with constant a, then all Li

are operator hyperreflexive with constant at most a.

Proof. If P = ⊕Pi ∈ P(⊕Hi), then d(P,L) = supi∈N d(Pi,Li) ≤ a supi∈N α(Pi,Li). Let x̃i =
(0, . . . , 0, xi, 0 . . . ) ∈ ⊕Hi. Then

sup
i∈N

α(Pi,Li) = sup
i∈N

sup
‖xi‖≤1

d(Pixi,Lixi) = sup
i∈N

sup
‖x̃i‖≤1

d(Px̃i,Lx̃i) ≤ α(P,L).

On the other hand, ⊕P(Hi) is the projection lattice of the injective von Neumann algebra
⊕B(Hi), which is hyperreflexive with constant at most 4, by [3] and [10]. By Corollary 2.2 (ii),
⊕P(Hi) is operator hyperreflexive with constant at most 16. Now Proposition 3.3 gives that L
is operator hyperreflexive with constant at most 16 + 17a.

Assume now that L = ⊕Li is operator hyperreflexive with constant a and take a projection
P = 0 ⊕ 0 · · · ⊕ Pi ⊕ · · · ⊕ 0, where Pi ∈ P(Hi). It is easy to see that d(P,L) = d(Pi,Li) and
α(P,L) = α(Pi,Li). Hence by hyperreflexivity of L we have d(Pi,Li) = d(P,L) ≤ aα(P,L) =
aα(Pi,Li). ¤
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4. Non operator hyperreflexive lattice which is operator reflexive

Let H be an infinite dimensional separable Hilbert space with an orthonormal basis e1, e2, . . . .
For k ∈ N, let Hk =

∨{e1, . . . , ek}. Denote by SH the unit sphere of H. Let 0 < ε < 1
64 and fix

a sequence (xn)∞n=1 which is an ε-net in SH. Moreover, we may assume that all the vectors xn

have finite support in the sense that xn ∈
⋃

k∈N
Hk for each n ∈ N. Fix a sequence (tn)∞n=1 ⊂ (0, 1)

consisting of mutually distinct numbers.

Lemma 4.1. There exist subspaces Mn ⊂ H (n ∈ N) such that:
(i) Mn ∩Mm = {0} (m,n ∈ N,m 6= n);
(ii) Mn ∨Mm = H (m,n ∈ N,m 6= n);
(iii) ‖PMnxn − (1− ε)〈xn, e1〉e1‖ < 3

√
ε, ‖PMnej‖ < 1

n , for j = 2, . . . , n, and
‖PMne1 − PMse1‖ >

√
ε

4 (s 6= n), where PM denotes the orthogonal projection on a subspace
M ⊆ H;

(iv) there is an increasing sequence (kn)∞n=1 ⊆ N such that kn > max{2kn−1, (n+1)2} and Mn

can be written as Mn = Fn⊕∨{e2j+1+tne2j+2; j ≥ kn}, where Fn ⊂ H2kn is a kn-dimensional
subspace.

Proof. We construct the numbers kn and subspaces Mn by induction on n. Let n ∈ N and
suppose that the numbers k1, . . . , kn−1 and subspaces M1, . . . ,Mn−1 satisfying (i)–(iv) have
already been constructed. Choose kn > max{2kn−1, (n + 1)2} such that xn ∈ Hkn . Let Es =
Ms ∩ H2kn for s = 1, . . . , n − 1. By assumptions (i) and (iv), we have dimEs = kn and
Es ∩ Es′ = {0} for all s 6= s′, 1 ≤ s, s′ ≤ n− 1.

Let un = (1 − ε)e1 +
∑kn

j=2

√
2ε−ε2

kn−1 ej . Then ‖un‖ = 1. Let Ln ⊂ H2kn be the subspace
spanned by the vectors un, ekn+2, ekn+3, . . . , e2kn . Clearly, dimLn = kn.

By [5, Lemma 2], there exists a subspace L′n ⊂ H2kn such that ‖PLn − PL′n‖ < ε/n and
L′n ∩ Es = {0} for s = 1, . . . , n− 1. Define Mn = L′n ⊕

∨{e2j+1 + tne2j+2; j ≥ kn}.
Suppose that the subspaces Mn (n ∈ N) have been constructed in the above described way.

As in [5], conditions (i), (ii) and (iv) are satisfied. So it is sufficient to show (iii).
For j ∈ {2, . . . , n}, one has

‖PMnej‖ = ‖PL′nej‖ ≤ ‖PLnej‖+ ‖PLn − PL′n‖ ≤ ‖〈ej , un〉un‖+
ε

n

≤
√

2ε− ε2

kn − 1
+

ε

n
≤ 1

2
√

kn − 1
+

1
2n

<
1
n

.
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It follows

‖PMnxn − (1− ε)〈xn, e1〉e1‖ = ‖PL′nxn − (1− ε)〈xn, e1〉e1‖
≤ ‖PLnxn − (1− ε)〈xn, e1〉e1‖+ ‖PLn − PL′n‖
≤ ε

n
+ ‖〈xn, un〉un − (1− ε)〈xn, e1〉e1‖

≤ ε

n
+ ‖〈xn, un〉un − 〈xn, un〉e1‖+ ‖〈xn, un〉e1 − (1− ε)〈xn, e1〉e1‖

≤ ε

n
+ ‖un − e1‖+ ‖un − (1− ε)e1‖

≤ ε

n
+

√√√√ε2 +
kn∑

j=2

2ε− ε2

kn − 1
+

√√√√
kn∑

j=2

2ε− ε2

kn − 1

=
ε

n
+
√

2ε +
√

2ε− ε2 ≤ √
ε(
√

ε

n
+ 2

√
2) ≤ 3

√
ε.

Finally, for s < n, we have

‖PMne1 − PMse1‖ = ‖PL′ne1 − PL′se1‖
≥ ‖PLne1 − PLse1‖ − ‖PLn − PL′n‖ − ‖PLs − PL′s‖
≥ ‖〈e1, un〉un − 〈e1, us〉us‖ − ε

n
− ε

s

= (1− ε)‖un − us‖ − ε

n
− ε

s
≥ (1− ε)‖(PHkn

− PHks
)un‖ − 2ε

≥ (1− ε)

√√√√
kn∑

j=ks+1

2ε− ε2

kn − 1
− 2ε ≥

√
ε

2
− 2ε >

√
ε

4
. ¤

Corollary 4.2. Let 0 < ε < 1
64 . Then there exists an operator reflexive lattice such that the

operator hyperreflexivity constant is greater than 1
4
√

ε
.

Proof. Fix ε > 0 and let Mn be the subspaces constructed in Lemma 4.1. Let L = {0, I, PMn ; n =
1, 2, . . . }. By conditions (i) and (ii) in Lemma 4.1, L is a lattice.

Claim. For each x ∈ H the set {Lx; L ∈ L} is closed.
Proof. For j ≥ 2 we have limn→∞ ‖PMnej‖ = 0. Consequently, limn→∞ ‖PMny‖ = 0 for each

y ∈ ∨{ej ; j ≥ 2}.
Let x ∈ H, x = αe1+y for some α ∈ C, y ∈ ∨{ej ; j ≥ 2}. For α = 0 the statement was shown

above, so assume that α 6= 0. By property (iii), we have ‖PMn(αe1)−PMs(αe1)‖ ≥ |α| ·
√

ε
4 , for

all n 6= s. So ‖PMnx− PMsx‖ ≥ |α|√ε
8 for all n 6= s large enough. Hence the set {Lx; L ∈ L} is

closed. It follows from [11] that L is operator reflexive; in particular, it is strongly closed.
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Consider now the orthogonal projection Q ∈ P(H) onto the 1-dimensional subspace Ce1.
Clearly d(Q,L) = 1. Let x ∈ H, ‖x‖ = 1. Then there exists n ∈ N with ‖x− xn‖ ≤ ε. We have

‖Qx− PMnx‖ ≤ ‖Qx−Qxn‖+ ‖Qxn − PMnxn‖+ ‖PMnxn − PMnx‖
≤ 2ε + ‖Qxn − PL′nxn‖ ≤ 2ε + ‖Qxn − PLnxn‖+ ‖PLn − PL′n‖
≤ 2ε + ‖〈xn, e1〉e1 − 〈xn, un〉un‖+

ε

n
≤ 3ε + ‖〈xn, e1〉e1 − 〈xn, e1〉un‖+ ‖〈xn, e1〉un − 〈xn, un〉un‖
≤ 3ε + 2‖e1 − un‖ ≤ 3ε + 2

√
2ε ≤ 4

√
ε.

Hence α(Q,L) ≤ 4
√

ε and the operator hyperreflexivity constant of L is greater or equal to
1

4
√

ε
. ¤

Corollary 4.3. There exists an operator reflexive subspace lattice which is not operator hyper-
reflexive.

Proof. Let (cn)∞n=1 be a sequence of positive numbers tending to ∞. For each n find a Hilbert
space Hn and an operator reflexive subspace lattice Ln in P(Hn) such that the operator hyper-
reflexivity constant of Ln is greater than cn. Let H =

⊕∞
n=1 Hn and L =

⊕∞
n=1 Ln. Then L is

operator reflexive subspace lattice that is not operator hyperreflexive, by Proposition 3.4. ¤
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