
Modular Control of Discrete-Event Systems with Coalgebra

Jan Komenda
Institute of Mathematics

Czech Academy of Sciences, Brno Branch,
Zizkova 22, 616 62 Brno, Czech Republic

E-mail: komenda@ipm.cz
and

Jan H. van Schuppen
Centrum voor Wiskunde en Informatica (CWI)

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
E-mail: J.H.van.Schuppen@cwi.nl

Abstract

Modular supervisory control of discrete-event systems (DES), where the overall system is com-
posed of subsystems that are combined in synchronous (parallel) product, is considered. The
main results of this paper are formulations of sufficient conditions for the compatibility between
the synchronous product and various operations stemming from supervisory control as supervised
product and supremal controllable sublanguages. These results are generalized to the case of
modules with partial observations: e.g. modular computation of supremal normal sublanguages
is studied. Coalgebraic techniques: e.g. coinduction proof principle are used in our main results.
It is guaranteed that under the conditions derived in the paper control synthesis can be done lo-
cally without affecting safety or optimality of the solution. An algorithmic procedure for checking
the new conditions is proposed and the computational benefit of the modular approach is discussed
and illustrated by comparing the time complexity of modular and the monolithic computation.

1 Introduction

The purpose of this paper is to develop modular synthesis of discrete-event systems (DES) and
to show how coalgebra can be effectively used for its solution.

A short historical overview of modular supervisory control of DES follows. Modular approach
to the supervisory control of DES has been introduced by P.J. Ramadge and W.M. Wonham in [34].
The system is composed of local components (subsystems) that run concurrently (in parallel), i.e.
the global system is the synchronous product of the local components. In the first papers on the
topic, the input alphabets of the local components were identical ([46], [24]). The general case
of different local input alphabets has been studied in [43], where a very restrictive condition is
imposed on events shared by several local alphabets: they must be controllable for all subsystems.
This assumption has been generalized recently in [44] to the condition that the shared events
must have the same control status for all subsystems that share a particular event. All the above

Preprint, Institute of Mathematics, AS CR, Prague. 2007-12-12 IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic

mentioned references concern only modular control with full observations. Very little attention
has been payed so far to the modular control with partial observations. A special case of modular
supervisory control with partial observations is studied in [28]. Computational aspects of modular
control have been recently studied in [29].

The main problems of modular supervisory control are: Can the supervisor be synthesized at
the local level and then be combined to a global supervisor without affecting the optimality of
the solution? If the answer to this question is positive, then there is an exponential saving on
the computational complexity. In our coalgebraic framework this problem can be paraphrased as
follows: when does the supervised product commute with the synchronous product and when does
the supremal normal and/or controllable sublanguage commute with the synchronous product?
(recall that the synchronous product of partial languages has been defined by coinduction in [31],
see also Section 3 and Appendix A).

The modular control problem is formulated in a coalgebraic framework. This allows the use
of concepts and theorems of coalgebra thus simplifying proofs and leading to new algorithms.
Attention is restricted to modular control synthesis without blocking as the blocking issue requires
different concepts and methods. Blocking is regarded as important by the authors and it will
receive attention in a possible future publication. For monolithic DES with partial observations
(monolithic DES refers to DES without the modular structure to distinguish them from modular
DES) the conditions for the existence of nonblocking solutions are the same as in the case of full
observations. It is to be expected that for modular DES with partial observations the conditions
for nonblocking are also the same as for modular DES with full observations. Section 3 contains
preliminaries on coalgebra and coinduction. The reader interested in more details about these
concepts may read [31] and [32].

This paper is an extended version of [19], where our results are stated without proofs. The first
set of results includes Theorem 4.2 which states a sufficient condition for the property that in mod-
ular control with complete observations, the supervised product commutes with the parallel com-
position operation. Further, Theorem 4.5 states that mutual controllability and a second condition
imply the commutativity of the supremal controllable sublanguage with the parallel composition
operation. This second result is already known [44], but the proofs we propose rely on the uni-
form framework of universal coalgebra and in our opinion simplify those of Lee and Wong [44].
Nevertheless, in contrast to this reference our paper does not address the blocking issue, which
requires an additional condition, but also different concepts and methods. Thus nonblocking mod-
ular control synthesis with complete observations is possible without loss of global optimality if
the condition of mutual controllability and two additional conditions hold. Nonblocking modular
control is also studied in [12] and in [38], where the hierarchical approach is used.

The second set of results concern modular synthesis if at every local module only partial obser-
vations of the local events are available. For this the concept of mutual normality is formulated.
Theorem 5.13 establishes a sufficient condition for the commutativity of the supervised product
and the parallel composition operation. Theorem 5.21 states that an auxiliary algorithm for the
computation of the supremal normal sublanguage of a considered language is correct. Theorem
5.26 then states that if mutual normality and a second condition both hold then there is commuta-
tion of the supremal normal sublanguage with the parallel composition.

Section 5 presents two academic examples and an algorithm for checking mutual normality.

2

2 Problem formulation and approach

The presentation in this section is exclusively verbal, a mathematical framework is developed
from Section 3 onwards and the technical details are in the appendix. Readers not familiar with
the coalgebraic approach are invited to read section 3 and appendix slowly.

2.1 Modular discrete-event systems and supervisory control

Discrete-event systems (DES) are new types of dynamical systems whose evolution is event
triggered as opposed to timed triggered evolution of classical continuous and discrete time sys-
tems. Supervisory control developed by P. Ramadge and W.M. Wonham and coworkers is now a
well established theory for control of discrete-event systems modelled by automata or Petri Nets.
Control problems address the control objectives of safety and liveness [7]. A supervisor restricts
the behavior of a discrete-event system such that the control objectives (safety, liveness, . . .) are
met.

The supervisor affects the plant by disabling a subset of controllable events. The interconnec-
tion of the system and the supervisory is called the closed-loop system. The supervisory control
problem is then to synthesize a supervisor such that the closed-loop system meets the prespecified
control objectives.

In this paper we are interested in modular DES (also called concurrent DES), where the (global)
system is composed of local components (modules) that interact with each other. The global
system is then the parallel composition (i.e. synchronous product) of local components. The
methods used for monolithic DES have a very high complexity when applied to modular DES due
to the combinatorial state explosition. A typical modular DES is composed of a very large number
of relatively small components, small in size. The main goal is then to propose supervisory control
methods that avoid building (and manipulating with) the global system.

2.2 Supervisory control with partial observations

A DES with partial observations is a DES, where not all events are observed and hence not
all events are available to the controller (superviser). The events which are observed are called
the observable events. The events that are not observed are called unobservable events. Exam-
ples of such events are failures of a machine or operations in a communication network where the
local events are not communicated to a distant observer station. Supervisory control with partial
observations is then to synthesize a supervisor based on partial observations only such that the
closed-loop system meets the prespecified control objectives. Control with partial observations
is highly relevant to engineering because not all events are observed. In this paper we are inter-
ested in the DES with partial observations and modular structure, i.e. modular DES with partial
observations, where local modules are themselves partially observed DES.

2.3 Coalgebra

Coalgebra was introduced by S. Eilenberg in a 1965 paper [11]. Algebraists did not consider
the concept useful until the appearance of a proof on the existence of a final coalgebra, see [1].
The computer scientist R. Milner has used bisimulation for labelled transition systems since 1980
and this is a special case of coalgebra. Since then bisimulation and coalgebra are extensively used
in computer science. Coalgebra has been used on other parts of control and system theory since

3

about 1990, see the papers by R. Grossman, [13]. It is used implicitly in the thesis of E.D. Sontag
[39].

Briefly, an algebra can be considered, in terms of category theory, as a map from a functor of
a set to the corresponding set. A coalgebra is then defined as a map from a set to a functor of the
set. A coalgebra is called final if there exists a unique structure preserving map (homomorhism)
from every coalgebra to the final coalgebra.

A theorem of coalgebra is that if the coalgebra is final then any bisimulation on the product of
two sets implies equality of the sets. Another useful theorem is that one can prove existence of
an object via coinduction on final coalgebras. Coinduction corresponds to induction as coalgebra
corresponds to algebra.

In this paper coalgebra is used in coinductive definitions and proofs. To keep the paper ele-
mentary, no category theory is used at all. The reader need not have a background in coalgebra to
read the paper. The only results used are that the existence of a bisimulation on language subsets
implies equality of the subsets and that new objects (operations) on languages can be constructed
by coinduction, which is described in the appendix.

3 Automata, algebra, and coalgebra

In this section automata are first defined as is done classically. Then coalgebra is formally de-
fined and it is shown how automata can be formulated in coalgebraic terms. With every automaton
can be associated the partial language which it generates. The subset of partial languages is then
given the structure of an automaton. Finally the concept of coinduction is introduced.

3.1 Automata

Automata were used as models of computation from about the 1950’s on. Textbooks on au-
tomata theory include [14, 10]. System theory, the basis of control theory, has been inspired by
automata theory. Therefore control theory and automata theory have the same basis.

An automaton is a collection of sets and functions,

(Q,E, f, q0, Qm),

where Q is a finite set called the state set, E is a finite set called the event set, f : Q × E → Q
is a function called the transition function, q0 ∈ Q is the initial state, and Qm ⊆ Q is the subset
of marked states. An automaton operates on a string of events and produces a sequence of states,
also called a state trajectory:

(q0, q1, q2, . . .), qi+1 = f(qi, ei), ∀i ∈ N+ = {0, 1, 2, . . .}.

Instead of an automaton one also defines a generator. Recall that the transition function of
an automaton, f , is defined for all its arguments. It is therefore also called a total function. A
generator is a collection as an automaton above but the transition function is a partial function,
for every q ∈ Q there exists a subset E(q) ⊆ E, in general not equal to E, such that f(q, e) is
defined for all q ∈ Q and e ∈ E(q). Most examples of engineering systems are actually generators
rather than automata. In this paper a generator is also called a partial automaton in line with the
terminology used by J.J.M.M. Rutten in [31].

4

3.2 Algebra and coalgebra

An F -algebra is a tuple (U, c) consisting of,

U a set, called the carrier set,
c : F (U) → U the operation of the algebra.

A F -coalgebra is a tuple (U, c) consisting of,

U a set, called the carrier set,
c : U → F (U) the operation of the coalgebra.

Let us denote 1 = {∅} and 2 = {0, 1} the set of Booleans. As an example consider the functor
F = (f, h)

Q 7→ F (Q) = (Q + 1)E × 2.

Then a DES generator (Q,E, f, q0, Qm) can be viewed as (Q, (f, h)), i.e. as an F -coalgebra. Note
that h : Q → 2 can be identified with Qm and f : Q → (Q + 1)E is an equivalent formulation of
the (deterministic) partial transition function.

Consider functor F . (a) A homomorphism of F -coalgebras from a F -coalgebra (X1, c1) to a
F -coalgebra (X2, c2) is a function f : X1 → X2 such that c2 ◦ f = F (f) ◦ c1,
or commutativity holds in the diagram,

X1
f

- X2

F (X1)

c1

? F (f)
- F (X2)

c2

?

(b) A final F -coalgebra (Xf , cf) is a F -coalgebra such that for every F -coalgebra (X, c) there
exists an unique homomorphism f : X → Xf of F -coalgebras.

It is then a theorem that (a) The identity map of a F -coalgebra (X, c) is a homomorphism of
F -coalgebras. (b) Compositions of homomorphisms of F -coalgebras are homomorphisms of F -
coalgebras. (c) A final F -coalgebra is unique up to isomorphism. It is now also possible to define
a bisimulation between coalgebras but this concept will not be defined in this paper because it will
not be used directly.

3.3 Automata in terms of coalgebra

Below generators introduced above are formulated in a coalgebraic framework. This was first
done by J.J.M.M. Rutten, who called them partial automata, and his framework will be used in
this paper. The transition function can be viewed as a coalgebraic map together with the output
function that determines the subset of marked states.

Now we recall from [31] partial automata as coalgebras of a special functor in the category of
sets with functions as morphisms. Let A be an arbitrary set (usually finite and referred to as the
set of inputs or events). The free monoid of words (strings) over A is denoted by A∗. The empty
string will be denoted by ε.

5

A partial automaton is a pair S = (S, 〈o, t〉), where S is a set of states, and a pair of functions
〈o, t〉 : S → 2 × (1 + S)A, consists of an output function o : S → 2 and a transition function
S → (1+S)A. The output function o indicates whether a state s ∈ S is accepting (or terminating):
o(s) = 1, denoted also by s ↓, or not: o(s) = 0, denoted by s1. The transition function t associates
to each state s in S a function t(s) : A → (1 + S). The set 1 + S is the disjoint union of S
and 1. The meaning of the state transition function is that t(s)(a) = ∅ iff t(s)(a) is undefined,
which means that there is no a−transition from the state s ∈ S. t(s)(a) ∈ S means that the
a−transition from s is possible and we define in this case t(s)(a) = sa, which is denoted mostly
by s

a
→ sa. This notation can be extended by induction to arbitrary strings in A∗. Assuming

that s
w
→ sw has been defined, define s

wa
→ iff t(sw)(a) ∈ S, in which case swa = t(sw)(a),

also denoted by s
wa
→ swa. It is easy to see that partial automata are coalgebras of the set functor

F = 2 × (1 + (.))A.
A homomorphism between partial automata S = (S, 〈o, t〉) and S ′ = (S′, 〈o′, t′〉) is a function

f : S → S′ with, for all s ∈ S and a ∈ A:

o′(f(s)) = o(s) and s
a
→ sa iff f(s)

a
→ f(sa),

in which case: f(s)a = f(s.1a).

(1 + S)A �
t

S

2

o

-

(1 + S′)A
?

(1 + f)A

�
t′

S′

f

?

o
′ -

A partial automaton S ′ = (S′, 〈o′, t′〉) is a subautomaton of S = (S, 〈o, t〉) if S ′ ⊆ S and the
inclusion function i : S ′ → S is a homomorphism. It is important to notice that the coalgebraic
concept of subautomata corresponds to the notion of strict subautomaton in [8]. In the sequel we
use always subautomata in the coalgebraic sense defined above, i.e. strict subautomata are meant.

A simulation between two partial automata S = (S, 〈o, t〉) and S ′ = (S′, 〈o′, t′〉) is a relation
R ⊆ S × S′ with, for all s ∈ S and s′ ∈ S′:

if 〈s, s′〉 ∈ R then
{

(i) o(s) ≤ o(s′), i.e. s ↓ ⇒ s′ ↓, and
(ii) ∀a ∈ A : s

a
→ ⇒ (s′

a
→ and 〈sa, s

′
a〉 ∈ R),

A bisimulation between two partial automata S = (S, 〈o, t〉) and S ′ = (S′, 〈o′, t′〉) is a relation
R ⊆ S × S′ with, for all s ∈ S and s′ ∈ S′:

if 〈s, s′〉 ∈ R then

(i) o(s) = o(s′), i.e. s ↓ iff s′ ↓

(ii) ∀a ∈ A : s
a
→ ⇒ (s′

a
→ and 〈sa, s

′
a〉 ∈ R,) and

(iii) ∀a ∈ A : s′
a
→ ⇒ (s

a
→ and 〈sa, s

′
a〉 ∈ R).

We write s ∼ s′ whenever there exists a bisimulation R with 〈s, s′〉 ∈ R. This relation is the union
of all bisimulations, i.e. the greatest bisimulation also called bisimilarity. It is immediate from the
definition of bisimulation that two states are bisimilar iff they can make the same transitions and
they give rise to the same outputs:

6

Proposition 3.1. For any partial automaton S = (S, 〈o, t〉) and any s, s′ ∈ S:

s ∼ s′ iff ∀w ∈ A∗ : s
w
→ ⇐⇒ s′

w
→, in which case o(sw) = o′(s′w).

3.4 Final automaton of partial languages

In this subsection an automaton is defined which is the final automaton among all partial au-
tomata. For the remainder of the paper it is important that the automaton considered is final. This
makes then available the theorems of coinduction and of proofs of equality of partial languages by
existence of a bisimulation.

Below a partial automaton of partial languages is defined over an alphabet (input set) A, denoted
by L = (L, 〈oL, tL〉). More formally, L = {Φ : A∗ → (1 + 2) | dom(Φ) = {w ∈ A∗ |Φ(w) ∈
2} 6= ∅ is prefix-closed}. To each partial language Φ a pair 〈V,W 〉 can be assigned: W =
dom(Φ) and V = {w ∈ dom(Φ) | Φ(w) = 1(∈ 2)}. Conversely, to a pair 〈V,W 〉 ∈ L, a
function Φ can be assigned : Φ(w) = 1 if w ∈ V , Φ(w) = 0 if w ∈ W and w 6∈ V , and Φ(w) is
undefined if w 6∈ W. Therefore we can write :

L = {(V,W) | V ⊆ W ⊆ A∗, W 6= ∅, and W is prefix-closed}.

Now we define the partial automaton of partial languages (L, 〈oL, tL〉), where the transition func-
tion tL : L → (1 + L)A is defined using Brzozowski input derivatives and oL is also defined
below. Recall that for any partial language L = (L1, L2) ∈ L, La = (L1

a, L
2
a), where Li

a = {w ∈
A∗ | aw ∈ Li}, i = 1, 2. If a 6∈ L2 then La is undefined. Given any L = (L1, L2) ∈ L, the
partial automaton structure of L is given by:

oL(L) =

{

1 if ε ∈ L1

0 if ε 6∈ L1
and tL(L)(a) =

{

La if La is defined
∅ otherwise

.

Notice that if La is defined, then L1
a ⊆ L2

a, L2
a 6= ∅, and L2

a is prefix-closed. The following
notational conventions will be used: L ↓ iff ε ∈ L1, and L

w
→ Lw iff Lw is defined (iff w ∈ L2).

3.5 Induction and coinduction

Induction is taught to undergraduate students in courses of algebra. The student learns that
all elements of a sequence indexed by the natural numbers satisfy a specified property if (1) the
first element of the sequence satisfies it and (2) if element n ∈ N satisfies the property then so
does element n + 1. This can be put in a more abstract setting as the proper definition of a
function from the natural numbers to a set corresponding to the property concerned, and illustrated
by a commutative diagram. Most of mathematics students only remember the simple sufficient
condition and not the abstract setting.

Coinduction is a dual concept to induction. Many people use induction without bearing in mind
its abstract (categorical or universally algebraic) meaning. Coinduction in its full generality must
be put into a general framework of universal coalgebra that uses the category theory. Finality of
a coalgebra enables coinductive definitions and proofs in a similar way as initiality of an algebra
enables definitions and proofs by induction. In order to make the paper more accessible to a
reader not very familiar with category theory we have prefered to introduce the coinduction only
in its special form: on final coalgebra of partial languages. It is the same as with mathematical
induction that is by many people understood only on the initial algebra of natural numbers with

7

the (unary algebraic) structure given by the successor operation: ∀n ∈ N : succ(n) = n + 1.
Here definitions of functions by induction correspond to giving the successor on functions, hence
yielding recursive formulas. Proofs by induction correspond to the very well known two-steps
procedure, which amounts to verify that a relation is a congruence relation with respect to the
successor operation. This is possible because natural numbers with the successor operation is the
initial algebra in the category of all unary algebras, i.e. there is a unique morphism from the initial
algebra of natural numbers to any unary algebra.

Similarly, a definition by coinduction amounts to give the corresponding structure, here out-
put and derivatives on operations to be defined, and a proof by coinduction consists in verifying
the conditions of bisimulation relation. We believe that giving a general categorical definition of
coinduction would go far beyond the scope of the paper, the purpose of the paper is primarily con-
trol of discrete-event systems with coalgebra. Coinduction has been well covered by the existing
literature on universal coalgebra [32], [33].

Coinduction is used as a proof and definition principle throughout this paper. The use of coin-
duction is limited to final coalgebras. Behavior equivalence of two elements of final coalgebra
means that these are equal. Also notice that the elements of final coalgebras are equal to their
behaviors (the identity is the unique behavior homomorphism). This feature is sometimes para-
phrased as ’being is doing’, because these elements behave as they are.

Proofs by coinduction consist in constructing appropriate relations: for instance a proof of
equality of two elements of a final coalgebra consists in finding a bisimulation relation that relates
them. Definition by coinduction of an operation on elements of a final coalgebra consists in
defining the same coalgebraic structure on the operation (for instance we define binary operations
on partial languages by defining derivatives and output functions further in this paper). More
details about coinduction and finality can be found in [32] or [31].

3.6 Final automata and coinduction

Most of the rest of this subsection is recalled from [31].

Theorem 3.2. L = (L, 〈oL, tL〉) satisfies the principle of coinduction: for all K and L in L, if
K ∼ L then K = L.

Proof. It follows from Proposition 3.1. Indeed, if K ∼ L then for any w ∈ A∗ : K
w
→ ⇔ L

w
→,

i.e. w ∈ K2 iff w ∈ L2, in which case o(Kw) = o′(K ′
w), i.e. w ∈ K1 iff w ∈ L1. It follows that

K = L. The converse implication is also (trivially) true.

Theorem 3.3. The partial automaton L = (L, 〈oL, tL〉) is final among all partial automata: for
any partial automaton S = (S, 〈o, t〉) there exists a unique homomorphism l : S → L. This
homomorphism identifies bisimilar states: for s, s′ ∈ S: l(s) = l(s′) iff s ∼ s′.

Proof. For the existence part of the theorem, we define the homomorphism l by putting for s ∈ S:

dom(l(s)) = {w ∈ A∗ : s
w
→}

and
l(s) = ((l(s))1, (l(s))2) = ({w ∈ A∗ | s

w
→ and sw ↓}, {w ∈ A∗ | s

w
→}).

Uniqueness of l follows from the fact that for any two homomorphisms l, l ′ : S → L the relation

R = {〈l(s), l′(s)〉 ∈ L × L | s ∈ S}

8

is a bisimulation. Therefore l = l′ follows from theorem 3.2. The last statement is immediate
from the definition of l and Proposition 3.1.

We adopt the notation from [30], page 9, easily extended from automata to partial automata,
and denote the minimal (in size of the state set) representation of a partial language L by 〈L〉.
Hence, 〈L〉 = (DL, 〈o〈L〉, t〈L〉〉) is a subautomaton of L generated by L. This means that o〈L〉 and
t〈L〉 are uniquely determined by the corresponding structure of L. The carrier set of this minimal
representation of L is denoted by DL, where DL = {Lu | u ∈ L2}. Let us call this set the set of
derivatives of L. Inclusion of partial languages that corresponds to a simulation relation is meant
componentwise. The prefix closure of an (ordinary) language L is denoted by L̄. Some further
notation from [31] is used, e.g. ‘zero’ (partial) language is denoted by 0, i.e. 0 = (∅, {ε}).

There is yet another important concept that will be needed in this paper. Namely, given an (ordi-
nary) language L, the suffix closure of L is defined by suffix(L) = {s ∈ A∗ | ∃u ∈ A∗ with us ∈
L}. For partial languages, the suffix closure is defined in the same way as the prefix closure, i.e.
componentwise. There is the following relation between the transition structure of L and its suffix
closure operator.

Observation 3.4. For any (partial) language L: suffix(L) = ∪u∈L2Lu.

Proof. It is immediate from the fact that Lu = ({s ∈ A∗ | us ∈ L1}, {s ∈ A∗ | us ∈ L2}).

3.7 Weak transitions

Control with partial observations implies that the observed traces are different from those with
complete observations. This motivates the concept of weak transitions.

In the following definition we introduce the notion of weak derivative (transition). Roughly
speaking it disregards unobservable steps, which correspond to so called internal moves in the
framework of process algebras [26]. Let A = Ao ∪ Auo be a partition of A into observable
events (Ao) and unobservable (Auo) events with the natural projection P : A∗ → A∗

o. Recall that
P (a) = ε for any a ∈ Auo, P (a) = a for a ∈ Ao, and P is catenative.

Definition 3.5. (Nondeterministic weak transitions.) For a state s in partial automaton S =

(S, 〈o, t〉) and a ∈ A we put s
P (a)
⇒ s′ if there exists u ∈ A∗ such that P (u) = P (a) and

s
u
→ s′ = su. We denote in this case s

P (a)
⇒ su.

Remark 3.6. In accordance with this notation s
ε
⇒ s′ is an abbreviation for ∃τ ∈ A∗

uo such that
s

τ
→ sτ = s′. For a ∈ Ao our notation means that there exist τ, τ ′ ∈ A∗

uo such that s
τaτ ′

→ sτaτ ′ .
This definition can be extended to strings (words in A∗) in the obvious way:
s

P (w)
⇒ s′ iff ∃u ∈ A∗ : P (u) = P (w) and s

u
→ su. Denote in this case s

P (w)
⇒ su.

There may exist two or more u ∈ A∗ satisfying the condition in the definition of weak tran-
sition. Hence, the weak transition structure introduced above is not deterministic. We introduce
deterministic weak transitions in L, which are defined as unions of nondeteministic weak transi-
tions:

Definition 3.7. (Deterministic weak transitions.) Define for a ∈ Ao: L
a
⇒ Lâ if L

P (a)
⇒ and

Lâ := ∪{s∈L2 | P (s)=a} Ls.

9

4 Modular control with full observations.

Let us consider the concurrent behavior of local subplants G1, . . . , Gn. Assume that the local
alphabets of these subplants, Ai, not necessarily pairwise disjoint are such that Ai = Aiu ∪ Aic.
First we assume that Aiu ∩ Aj = Ai ∩ Aju ∀i, j ∈ Zn = {1, . . . , n}. At the end of the section
this assumption that does not fit in particular applications will be discarded. This assumption
originally introduced in [44] means that the events shared by two local subsystems must have the
same control status for both controllers associated to these subsystems. Denote Ac = ∪n

i=1Aic

and Au = A \ Ac. We then still have the disjoint union A = Ac ∪ Au and Au = ∪n
i=1Aiu due to

the assumption that Aiu ∩ Aj = Ai ∩ Aju.
Denote A = ∪n

i=1Ai the global alphabet and Pi : A → Ai the projections to the local alphabets.
The concept of inverse projection: P−1

i : Pwr(Ai) → Pwr(A) is also used.
Let us notice that

Proposition 4.1. Aiu ∩Aj = Ai ∩Aju is equivalent to the following inclusions: Aiu ∩Aj ⊆ Aju

and Aju ∩ Ai ⊆ Aiu.

Proof. The inclusions clearly follows from the equality. Let the inclusions hold and let us show
the equality: for a ∈ Aiu ∩ Aj we have a ∈ Aju, but also a ∈ Ai, because Aiu ⊆ Ai. The other
inclusion of the equality can be shown similarly.

In the rest of this section global control synthesis will be compared to the local (modular)
control synthesis. By global control synthesis we mean the construction of global supervisor
that acts on the global plant. The local control synthesis means that local supervisors act on
the local plants (modules) and the resulting controlled system is the parallel composition of the
supervised local plants. In terms of behaviors, i.e. partial languages, the global global control
synthesis is represented by the closed-loop language (‖n

i=1 Ki)/Au(‖n
i=1 Li) using the binary

operation K/AuL defined by coinduction in appendix. Similarly, modular control synthesis yields
in terms of behaviors the partial language ‖n

i=1 (Ki/Aiu
Li). We are interested whether or when

the closed-loop languages are preserved by parallel compositions of local components (plants),
i.e. the following languages are equal:

‖n
i=1 (Ki/Aiu

Li) = (‖n
i=1 Ki)/Au(‖n

i=1 Li).

The following theorem gives an answer. For simplicity we assume n = 2, the extension of our
results to general n being easy as discussed later. Notation Li, i = 1, 2 is reserved for the final
automaton of partial languages over alphabets Ai , i = 1, 2, respectively.

Theorem 4.2. (Modular synthesis equals global synthesis in case of modular control with com-
plete observations) If A2u ∩ A1 = A2 ∩ A1u, then

(K1/A1u
L1) ‖ (K2/A2u

L2) = (K1 ‖ K2)/Au(L1 ‖ L2).

Proof. The coinduction proof principle is used, i.e. it is sufficient to show that

R = {〈K1/A1u
L1) ‖ (K2/A2u

L2), (K1 ‖ K2)/Au(L1 ‖ L2)〉 ∈ L × L, Ki, Li ∈ Li, i = 1, 2}

is a bisimulation.

(i) From the corresponding coinductive definitions of the parallel and supervised products,
(K1/A1u

L1) ‖ (K2/A2u
L2) ↓ iff (K1 ‖ K2)/Au(L1 ‖ L2) ↓ iff (L1 ↓ and L2 ↓).

10

(ii) Let a ∈ A such that (K1/A1u
L1) ‖ (K2/A2u

L2)
a
→. According to the coinductive definition

of the synchronous product several cases must be distinguished. Consider first the case a ∈ A1 ∩
A2. Then we have (K1/A1u

L1)
a
→ and (K2/A2u

L2)
a
→. According to the definition of supervised

product, 4 subcases must be distinguished. If K1
a
→, K2

a
→, L1

a
→ and L2

a
→, then (K1 ‖ K2)

a
→

and (L1 ‖ L2)
a
→, i.e. (K1 ‖ K2)/Au(L1 ‖ L2)

a
→. In the second subcase we have K1

a
→,

L1
a
→, K2 6

a
→, L2

a
→, and a ∈ A2u. Hence (L1 ‖ L2)

a
→ and a ∈ A2u ⊆ Au, i.e. (K1 ‖

K2)/Au(L1 ‖ L2)
a
→. The subcase K1 6

a
→, L1

a
→, K2

a
→, L2

a
→, and a ∈ A1u is symmetric. The

last subcase is K1 6
a
→, L1

a
→, K2 6

a
→, L2

a
→, and a ∈ A1u ∩ A2u. Here again (L1 ‖ L2)

a
→ and

a ∈ Au, i.e. (K1 ‖ K2)/Au(L1 ‖ L2)
a
→. The second case is a ∈ A1 \ A2. Here we have only

(K1/A1u
L1)

a
→. There are two subcases: either K1

a
→ and L1

a
→, which imply (K1 ‖ K2)

a
→ and

(L1 ‖ L2)
a
→, i.e. (K1 ‖ K2)/Au(L1 ‖ L2)

a
→, or K1 6

a
→, L1

a
→, and a ∈ A1u. Since A1u ⊆ Au

and (L1 ‖ L2)
a
→, the conclusion in the second subcase is the same: (K1 ‖ K2)/Au(L1 ‖ L2)

a
→.

Finally, the third case a ∈ A2\A1 is completely symmetric to the second and therefore omitted. In
order to verify that the new pairs of languages after a− transition are included in R, it is sufficient
to notice that 0‖L = L for any partial language L. Owing to this property it is true that R is a
bisimulation relation.

(iii) Let (K1 ‖ K2)/Au(L1 ‖ L2)
a
→ for a ∈ A. Two cases must be distinguished according

to the definition of supervised product. First, let (K1 ‖ K2)
a
→ and (L1 ‖ L2)

a
→. Several

subcases are now treated separately. If a ∈ A1 ∩ A2, then K1
a
→, K2

a
→, L1

a
→ and L2

a
→,

then both (K1/A1u
L1)

a
→ and (K2/A2u

L2)
a
→, i.e. also (K1/A1u

L1) ‖ (K2/A2u
L2)

a
→. If

a ∈ A1 \A2, then K1
a
→ and L1

a
→, i.e. (K1/A1u

L1)
a
→ and also (K1/A1u

L1) ‖ (K2/A2u
L2)

a
→.

The subcase a ∈ A2 \ A1 is fully symmetric to the previous subcase. Now let us consider the
second case: (K1 ‖ K2) 6

a
→, (L1 ‖ L2)

a
→, and a ∈ Au. Recall that Au = A1u ∪ A2u. If it

happens that a ∈ A1u ∩ A2u ⊆ A1 ∩ A2, then L1
a
→, L2

a
→ and clearly both (K1/A1u

L1)
a
→ and

(K2/A2u
L2)

a
→, i.e also (K1/A1u

L1) ‖ (K2/A2u
L2)

a
→. Problematic cases occur when either

a ∈ A1u \ A2u or a ∈ A2u \ A1u and a ∈ A1 ∩ A2. But according to our assumption we have
in the latter case a ∈ A2u ∩ A1 ⊆ A1u ∩ A2 ⊆ A1u and similarly in the former case we obtain
a ∈ A2u. Therefore (K1/A1u

L1) ‖ (K2/A2u
L2)

a
→. If a ∈ A1 \ A2 or a ∈ A2 \ A1, then a ∈ Au

implies a ∈ A1u or a ∈ A2u, respectively, i.e. again (K1/A1u
L1) ‖ (K2/A2u

L2)
a
→. It can be

shown by checking once again all cases that the new pairs of languages after a− transition are
included in R (using 0‖L = L for any partial language L).

We recall that closed-loop languages defined by (local and global) supervised product corre-
spond to infimal controllable superlanguages. According to our knowledge the result of Theorem
4.2 is new. Preservation of supremal controllable sublanguages in a modular DES is considered
below. Notice that the inclusion (K1/A1u

L1) ‖ (K2/A2u
L2) ⊆ (K1 ‖ K2)/Au(L1 ‖ L2) holds

even without our assumption Aiu ∩ Aj = Ai ∩ Aju. However the opposite inclusion may fail if
the condition is not satisfied as is illustrated by the following example.

Example 4.3. Let A = {a1, a2, c, u, u1, u2}, A1 = {a1, u1, u, c}, A2 = {a2, u2, u, c}, Au =
{u1, u2, u}, A1u = {u1, u}, and A2u = {u2}. Consider the following local specification and

11

plant languages:

K1 L1 K2 L2

(K1)a1

�
a 1

(K1)c

c
-

(L1)a1

�
a 1

(L1)c

c
-

(K2)a2

�
a 2

(K2)c

c
-

(L2)a2

�
a 2

(L2)c
c

-

(K1)a1u

u
-

(L1)a1u

�
u 1u

-

(K2)cu2

�
u 2

(L2)cu2

�
u 2u

-

The notation U = (K1/A1u
L1) ‖ (K2/A2u

L2) and V = (K1 ‖ K2)/Au(L1 ‖ L2) is used. From
the definitions of the parallel and supervised products it follows that

U V

Ua1

�

a 1

Ua2

a2

?

Uc

c
-

Va1

�

a 1

Va2

a2

?

Vc

c
-

Ua1a2

�

a 2

Ua2a1

�

a 1

Ucu1

�

u 1

Ucu2

u
2

-

Va1a2

�

a 2

Va2a1

�

a 1

Vcu1

�

u 1

Vcu2

u
2

-

Ucu1u2

�

u 1

u
2

-

Va1a2u

u
?

u
-

Vcu1u2

�

u 1

u
2

-

Notice that in this example (K1/A1u
L1) ‖ (K2/A2u

L2) 6⊇ (K1 ‖ K2)/Au(L1 ‖ L2), which is
caused by the shared event u ∈ A1 ∩ A2 with u ∈ A1u \ A2u.

In the rest of this section we study the question when the optimal solutions to supervisory con-
trol problems (i.e. supremal controllable sublanguages) are preserved by the parallel composition.
This problem has been studied algebraically in [44]. The concept of mutual controllability ([44])
plays the key role.

Definition 4.4. Given partial languages Li = (L1
i , L

2
i), Lj = (L1

j , L
2
j), Li and Lj are said to be

mutually controllable if

L2
i (Aju ∩ Ai) ∩ Pi(Pj)

−1(L2
j) ⊆ L2

i , and

L2
j(Aiu ∩ Aj) ∩ Pj(Pi)

−1(L2
i) ⊆ L2

j .

Mutual controllability can be viewed as local controllability of a local plant L2
i with respect to

shared uncontrollable events in (Aju ∩Ai) and the local view of the other module (Pi(Pj)
−1(L2

j))
as the new plant. This condition is important for modular computation of global supremal con-
trollable sublanguages, denoted by K/S

CL using the coinductive definition from appendix. Local
supremal controllable sublanguages, i.e. supremal sublanguages of Ki with respect to Li and Aiu,
are denoted by Ki/

S
CLi, i = 1, . . . , n, and defined by coinduction. For simplicity we assume that

n = 2. The following problem is addressed: under which conditions are supremal controllable
sublanguages preserved by parallel composition:

(K1/
S
CL1) ‖ (K2/

S
CL2) = (K1 ‖ K2)/

S
C(L1 ‖ L2)?

12

Theorem 4.5 below gives a coalgebraic version of the proof for commutativity of supremal con-
trollable sublanguages with synchronous product, which is however only a part of the problem
treated in [44], namely it ignores blocking issues. Note that the main contribution of this paper is
the extension of this result to the case of partial observations: commutativity of supremal normal
sublanguages with the synchronous product. We believe that the proof presented in this paper is
simpler than that of [44]. We believe that as in the monolithic supervisory control, partial observa-
tions do not bring themselves additional difficulty to handle the blocking issue. The blocking issue
requires a different approach and it is believed by the authors that most of the framework proposed
in this paper can be carried over to the framework which handles blocking though appropriately
modified.

i.e. that known results, e.g. those of [31], can be applied. This is why the blocking issues are
not treated in this paper.

Theorem 4.5. (Sufficiency for modular equals global control synthesis for the supremal control-
lable sublanguage.) If in the above setting A2u ∩ A1 = A2 ∩ A1u, and L1 and L2 are mutually
controllable, then (K1/

S
CL1) ‖ (K2/

S
CL2) = (K1 ‖ K2)/

S
C(L1 ‖ L2).

Proof. We use the coinduction proof principle, i.e. it is sufficient to show that

R = {〈(K1/
S
CL1) ‖ (K2/

S
CL2), (K1 ‖ K2)/

S
C(L1 ‖ L2)〉 ∈ L × L, K1,K2, L1, L2 ∈ L}

is a bisimulation.

(i) From the corresponding coinductive definitions of the parallel product and supremal con-
trollable sublanguage, (K1/

S
CL1) ‖ (K2/

S
CL2) ↓ iff (K1 ‖ K2)/

S
C(L1 ‖ L2) ↓.

(ii) Let a ∈ A such that (K1/
S
CL1) ‖ (K2/

S
CL2)

a
→. According to the coinductive definition of

the synchronous product several cases must be distinguished. Consider first the case a ∈ A1 ∩A2.
Then we have (K1/

S
CL1)

a
→ as well as (K2/

S
CL2)

a
→. According to the coinductive definition

of the supremal controllable sublanguage K1
a
→, L1

a
→, K2

a
→, L2

a
→ and for i = 1, 2 and

u ∈ A∗
iu : (Li)a

u
→ ⇒ (Ki)a

u
→. Therefore (K1 ‖ K2)

a
→ as well as (L1 ‖ L2)

a
→. It remains to

show that ∀u ∈ A∗
u : (L1 ‖ L2)a

u
→ ⇒ (K1 ‖ K2)a

u
→. It follows from the fact that according to

the coinductive definition of the synchronous product inductively applied there exist v1 ∈ A∗
1u and

v2 ∈ A∗
2u such that (L1 ‖ L2)au = (L1)av1

‖ (L2)av2
, where v1 ∈ A∗

1u and v2 ∈ A∗
2u. Indeed, in

fact v1 = P1(u) and v2 = P2(u). It follows that (Ki)a
vi→ for i=1,2. Hence also (K1 ‖ K2)a

u
→

(K1)av1
‖ (K2)av2

according to the coinductive definition of the synchronous product inductively
applied. Consider now the case a ∈ A1 \ A2. Then there must be (K1/

S
CL1)

a
→. This means that

K1
a
→, L1

a
→, and ∀u ∈ A∗

1u : (L1)a
u
→ ⇒ (K1)a

u
→. We conclude that (K1 ‖ K2)

a
→ as well

as (L1 ‖ L2)
a
→. It remains to show that ∀u ∈ A∗

u : (L1 ‖ L2)a
u
→ ⇒ (K1 ‖ K2)a

u
→. Let

(L1 ‖ L2)a
u
→ for some u ∈ A∗

u. There exist ui ∈ A∗
iu for i = 1, 2: namely ui = Pi(u) such

that (L1 ‖ L2)a
u
→ (L1)au1

‖ (L2)u2
, because a 6∈ A2. Since (L1)a

u1→, it follows from above
that (K1)a

u1→. However, we must still show that K2
u2→. Notice that from the controllability of

K2/
S
CL2 with respect to L2 and A2u and L2

u2→ we have (K2/
S
CL2)

u2→, i.e. in particular K2
u2→.

Hence, (K1 ‖ K2)a
u
→ (K1)au1

‖ (K2)u2
, which means that (K1 ‖ K2)/

S
C(L1 ‖ L2)

a
→. The

remaining case a ∈ A2 \ A1 is symmetric to the previous one.

(iii) Let (K1 ‖ K2)/
S
C(L1 ‖ L2)

a
→ for a ∈ A. Thus, according to the coinductive definition

of the supremal controllable sublanguage we have (K1 ‖ K2)
a
→, (L1 ‖ L2)

a
→, and ∀u ∈ A∗

u :

13

(L1 ‖ L2)a
u
→ ⇒ (K1 ‖ K2)a

u
→. Different cases as in (ii) must be distinguished. First, let

a ∈ A1∩A2. Then K1
a
→, L1

a
→, K2

a
→, L2

a
→. In order to prove that (K1/

S
CL1) ‖ (K2/

S
CL2)

a
→

it remains to show that for i = 1, 2 and u ∈ A∗
iu : (Li)a

u
→ ⇒ (Ki)a

u
→. Since A1 and A2

are in general overlapping, we have in general u ∈ (A1u ∪ A2u)∗ = A∗
u. We must show that

(L1 ‖ L2)a = (L1)a ‖ (L2)a
u
→. First, let u ∈ A∗

1u be such that (L1)a
u
→. Let us prove that

(L1 ‖ L2)a = ((L1)a ‖ (L2)a)
u
→ (L1)au ‖ (L2)au2

, where u2 = P2(u). It must be shown that
(L2)a

u2→, i.e. au2 ∈ L2
2. Since a ∈ L2

2, au ∈ L2
1, P1(au) = au, P2(au) = au2, and by our initial

assumption u2 ∈ A2u ∩ A1 = A2 ∩ A1u, the string au2 ∈ L2
2(A1u ∩ A2)

∗ ∩ P2(P1)
−1(L2

1), we
deduce au2 ∈ L2

2 using the mutual controllability condition. Hence, (L2)a
u2→, and (L1 ‖ L2)a

u
→

(L1)au ‖ (L2)au2
. Recall from above that ∀u ∈ A∗

u : (L1 ‖ L2)a
u
→ ⇒ (K1 ‖ K2)a

u
→.

Therefore we have (K1 ‖ K2)a
u
→ (K1)au ‖ (K2)au2

. This means in particular that (K1)a
u
→.

In the symmetric way it can be shown using the mutual controllability condition that for any
u ∈ A∗

2u : (L2)a
u
→ ⇒ (K2)a

u
→. Let us consider the case a ∈ A1 \ A2. Then K1

a
→, and

L1
a
→. In order to prove that (K1/

S
CL1) ‖ (K2/

S
CL2)

a
→ it must be shown that (K1/

S
CL1)

a
→. It

remains to show that for all u ∈ A∗
1u : (L1)a

u
→ ⇒ (K1)a

u
→. Let (L1)a

u
→ for a u ∈ A∗

1u.
We show first that (L1 ‖ L2)a

u
→ (L1)au ‖ (L2)u2

, where u2 = P2(u). In order to see that
L2

u2→, mutual controllability is applied: u2 = εu2 ∈ L2
2(A1u ∩ A2)

∗ ∩ P2(P1)
−1(L2

1) ⊆ L2
2,

because u2 ∈ (A1u ∩ A2)
∗, P1(au) = au, P2(au) = u2, and au ∈ L2

1. Therefore (K1 ‖ K2)a
u
→

(K1)au ‖ (K2)u2
. This means in particular that (K1)a

u
→. The conclusion is (K1/

S
CL1)

a
→, i.e.

also (K1/
S
CL1) ‖ (K2/

S
CL2)

a
→. The remaining case a ∈ A2 \ A1 is again symmetric to the

previous one.

The following question naturally appears: do supervised product and parallel product com-
mute under more general structural conditions? We have already pointed out that the inclusion
(K1/A1u

L1) ‖ (K2/A2u
L2) ⊆ (K1 ‖ K2)/Au(L1 ‖ L2) always holds true for Au = A1u ∪ A2u.

Some special cases, where the condition A2u ∩ A1 = A2 ∩ A1u does not hold might still be
of interest. For instance, in the DES model of the IEEE 802.11 protocol for wireless local area
networks the condition A1c ∩ A2c = ∅ holds instead. In the case A1c ∩ A2c = ∅ we have also
Au = A1u ∪ A2u, i.e. in particular Aiu ⊆ Au for i = 1, 2. Therefore we have:

Corollary 4.6. If A1c ∩ A2c = ∅, then

(K1/A1u
L1) ‖ (K2/A2u

L2) ⊆ (K1 ‖ K2)/Au(L1 ‖ L2).

This means that the synchronized local control synthesis gives a smaller language than the
global control synthesis. Roughly speaking, it can be useful when the safety is the main issue: local
control synthesis is safe. However, the language achieved in the modular synthesis is in general
smaller and the equality in Corollary 4.6 does not hold. The same inclusion as in Corollary 4.6
holds for the supremal controllable sublanguage: although modular (local) synthesis is safe (under
shared event assumption), it is not in general optimal!

5 Modular control with partial observations

In this section we assume that each module Gi has only partial observation of its events, i.e.
Ai = Ao,i ∪ Auo,i is the decomposition of local events into locally observable and locally un-
observable. The global system has observation set Ao = ∪n

i=1Ao,i ⊆ A = ∪n
i=1Ai. Some ad-

ditional notation is needed to set up our framework. Globally unobservable events are denoted

14

by Auo = A \ Ao and locally unobservable events by Auo,i = Ai \ Ao,i. The projections of the
global alphabet into the local ones are denoted by Pi : A∗ → A∗

i , i = 1, 2. Partial observations in
individual modules are expressed via local projections P loc

i : A∗
i → A∗

o,i, while global projection
is denoted by P : A∗ → A∗

o. Local plant languages will be denoted by Li, i ∈ Zn = {1, . . . , n}
and local specification languages by Ki, i ∈ Zn. We assume from now on that n = 2 and that the
global plant L and specification K languages are decomposable into local plant and local specifi-
cation languages: L = L1 ‖ L2 and K = K1 ‖ K2. Note that this concept of decomposability is a
special instance of decomposability studied in decentralized control and is also called separability,
cf. [43].

Similarly as for completely observed modular DES we assume that the local modules agree on
the observational status of the shared events, i.e. that Ao,2 ∩ A1 = A2 ∩ Ao,1.

It is easy to show that this concept of decomposability corresponds exactly to the decompos-
ability from e.g. [28]:

Definition 5.1. We say that L ⊆ A∗ is decomposable with respect to P1 and P2 if L = P−1
1 P1(L)∩

P−1
2 P2(L).

Indeed, we have as a special case of Lemma 1 in [15].

Proposition 5.2. L ⊆ A∗ is decomposable with respect to P1 and P2 iff there exists L1 ⊆ A∗
1 and

L2 ⊆ A∗
2 such that L = L1 ‖ L2 = P−1

1 (L1) ∩ P−1
2 (L2).

A pioneer study in modular supervisory control with partial observations has been done in [28],
where special cases that occur in broadcast networks are studied. The setting and problems studied
in this paper are more general. In order to study closed-loop languages of supervisory control we
need the following auxiliary concept. It reflects the fact that due to partial observations it is not
possible to distinguish between states:

Definition 5.3. (Observational indistinguishability relation on S.) A binary relation Aux(S) on
S, called the observational indistinguishability relation is the smallest relation satisfying:

(i) 〈s0, s0〉 ∈ Aux(S)

(ii) If 〈s, t〉 ∈ Aux(S) then ∀a ∈ A : (s
P (a)
⇒ s′ for some s′ and t

P (a)
⇒ t′ for some t′) ⇒

〈s′, t′〉 ∈ Aux(S)

From the definition of weak transitions it follows that (ii) is equivalent to (ii)’ and (iii)’ below:
(ii)’ If 〈s, t〉 ∈ Aux(S) then : (s ε

⇒ s′ for some s′ and t
ε
⇒ t′ for some t′) ⇒ 〈s′, t′〉 ∈ Aux(S)

(iii)’ If 〈s, t〉 ∈ Aux(S) then ∀a ∈ Ao : (s
a
→ sa and t

a
→ ta) ⇒ 〈sa, ta〉 ∈ Aux(S).

The notation bscAux(S) = {s′ ∈ S : 〈s, s′〉 ∈ Aux(S)} from [20] is useful. Aux(S1) can be
characterized by the following lemma.

Lemma 5.4. For any s, s′ ∈ S: 〈s, s′〉 ∈ Aux(S1) iff there exist two strings w,w′ ∈ K2 such that
P (w) = P (w′), s = (s0)w and s′ = (s0)w′ .

In order to define the partial observation countrepart of (K/AuL) (supervised product with par-
tial observations), we need auxiliary relations Aux(S) (introduced in definition 5.3) for the special
case of minimal partial automaton S = 〈K〉. We will write Aux(K) instead of Aux(〈K〉). Notice
that it is possible to extend the definition of Aux(S) to Aux(Pwr(S)) with the only difference,
that the propagation of this relation is realized by deterministic weak transitions introduced in defi-
nition 3.7. In the case of the final automaton of partial languages the same construction of extended

15

observational indistinguishability relation is to be realized on Pwr(suffix(K)). Now we prepare
the coinductive definition of the supervised product with partial observations. This definition will
consider arguments from Pwr(suffix(K)) and Pwr(suffix(L)) rather than from DK and DL.
According to Observation 3.4 we will work with unions of the form ∪k

i=1Ksi
∈ Pwr(suffix(K)),

where P (s1) = · · · = P (sk). In order to keep the notation simple, we denote the extension of
Aux(K) to such unions of derivatives by Aux(K).

Now we give a formal definition of Aux(K) extended to Pwr(suffix(K)).

Definition 5.5. (Extension of Aux(K) from DK to Pwr(suffix(K))). A binary relation Aux(K) ⊆
(Pwr(suffix(K)))2, called observational indistinguishability relation is the smallest relation sat-
isfying:
(i) 〈(K,K) ∈ Aux(K)

(ii) If 〈M,N〉 ∈ Aux(K) then ∀a ∈ A : M
a
→ Ma and N

a
→ Na ⇒ 〈Ma, Na〉 ∈ Aux(K)

(iii) If 〈M,N〉 ∈ Aux(K) then ∀m,n ∈ Z+: if M
ε
⇒ M1,M

ε
⇒ M2, . . . ,M

ε
⇒ Mn, and N

ε
⇒

N1, . . . , N
ε
⇒ Nm, then 〈∪n

i=1Mi,∪
m
j=1Nj〉 ∈ Aux(K).

Clearly, a natural extension of Lemma 5.4 holds. Namely, 〈∪k
i=1Ksi

,∪l
j=1Ltj 〉 ∈ Aux(K),

where P (s1) = · · · = P (sk) and P (t1) = · · · = P (tl) iff P (s1) = P (t1), which implies
naturally P (si) = P (tj) ∀i, j. The notation ∪k

i=1Ksi
≈K

Aux ∪l
j=1Ltj is also used.

Definition 5.6. (Supervised product under partial observations.) Define the following binary
operation on (partial) languages called supervised product under partial observations for all
M ∈ Pwr(suffix(K)) and N ∈ Pwr(suffix(L)):

(M/Ao

Au
N)a =

(1) Ma/
Ao

Au
Na if M

a
→ and N

a
→;

(2) (∪{M ′:〈M ′,M〉∈Aux(K)} M ′
a)/

Ao

Au
Na if M 6

a
→ and ∃M ′ ∈ DK : M ′ ≈K

Aux M

such that M ′ a
→ and N

a
→ and a ∈ Ac ∪ Ao;

(3) 0/Ao

Au
Na if M 6

a
→ and (∀M ′ ∈ DK : M ′ ≈K

Aux M) M ′ 6
a
→ and N

a
→ and a ∈ Au ∩ Ao;

(4) M/Ao

Au
Na if M 6

a
→ and N

a
→ and a ∈ Au ∩ Auo;

(5) ∅ otherwise

and (M/Ao

Au
N) ↓ iff N ↓ .

Remark 5.7. We consider from now on an order relation on partial languages induced by their
second components only, i.e. we write K ⊆ L iff K 2 ⊆ L2. The same applies for infimum and
supremum operations. Note that only the second condition (ii) of simulation relations must be
checked to prove such defined inclusion of partial languages.

Let us recall from [20] that

Theorem 5.8. (K/Ao

Au
L) = inf{M ⊇ K : M is controllable with respect to L and Auc and

observable with respect to L and P}. (K/O
U L) equals the infimal controllable and observable

superlanguage of K .

16

Problem 5.9. (Modular control synthesis equals global control synthesis for modular DES with
partial observations) The local supervised products (under partial observations) are denoted by
Ki/

Ao,i

Aiu
Li, i = 1, 2 and the global supervised product (under partial observations) by K/Ao

Au
L.

We are interested, whether/when it is true that

(K1/
Ao,1

A1u
L1) ‖ (K2/

Ao,2

A2u
L2) = (K1 ‖ K2)/

Ao

Au
(L1 ‖ L2).

The following lemmas are needed.

Lemma 5.10. If Ao,2 ∩ A1 = A2 ∩ Ao,1 then for any s, s′ ∈ K = K1 ‖ K2 we have:
if P (s) = P (s′) then for i = 1, 2: P loc

i Pi(s) = P loc
i Pi(s

′).

Proof. The claim will be proven by structural induction on P (s) = P (s′) ∈ A∗
o. For P (s) =

P (s′) = ε it is easy to see that for i = 1, 2: P loc
i Pi(s) = ε = P loc

i Pi(s
′), because s, s′ ∈ A∗

uo

implies that Pi(s), Pi(s
′) ∈ A∗

uo,i, whence the above equality holds. The induction step follows.
Let for P (s) = P (s′) = w ∈ A∗

o the implication holds true and let us show that for s, s′ : P (s) =
P (s′) = wa ∈ A∗

o, P (s) = P (s′) implies for i = 1, 2: P loc
i Pi(s) = P loc

i Pi(s
′). It should be clear

that s and s′ are of the following form: s = tτaτ ′ and s′ = t′σaσ′, where τ, τ ′, σ, σ′ ∈ A∗
uo. For

i = 1, 2: P loc
i Pi(s) = P loc

i Pi(tτ)P loc
i Pi(aτ ′) and P loc

i Pi(s
′) = P loc

i Pi(t
′σ)P loc

i Pi(aσ′), because
P is catenative. Notice that P (tτ) = P (t′σ) = w, i.e. according to the induction hypothesis
P loc

i Pi(tτ) = P loc
i Pi(t

′σ) and it is sufficient to show that: P loc
i Pi(aτ ′) = P loc

i Pi(aσ′), which
amounts to show that P loc

i Pi(τ
′) = P loc

i Pi(σ
′). Different cases must be considered. If both

τ ′, σ′ ∈ A1 ∩ A2, then it follows from our assumption that Ao,2 ∩ A1 = A2 ∩ Ao,1 that both
τ ′, σ′ ∈ Auo,1 ∩ Auo,2, i.e. P loc

i Pi(τ
′) = P loc

i Pi(σ
′) = ε for i = 1, 2. If τ ′ ∈ A1 \ A2 and

σ′ ∈ A2 \ A1, then it must be that τ ′ ∈ Auo,1, because τ ′ ∈ Auo . Therefore P loc
1 P1(τ

′) =
P loc

1 P1(σ
′) = ε and similarly P loc

2 P2(τ
′) = P loc

2 P2(σ
′) = ε. Other cases can be treated similarly.

For instance, if τ ′ ∈ A1 ∩A2 and σ′ ∈ A1 \A2, then we have τ ′ ∈ Auo,1 ∩Auo,2 and σ′ ∈ Auo,1,
hence P loc

1 P1(τ
′) = P loc

1 P1(σ
′) = ε and P loc

2 P2(τ
′) = P loc

2 P2(σ
′) = ε.

Lemma 5.11. If Ao,2 ∩ A1 = A2 ∩ Ao,1 then PP−1
1 (P loc

1)−1P loc
1 = PP−1

1 and
PP−1

2 (P loc
2)−1P loc

2 = PP−1
2 .

Remark 5.12. Remark that the claim of the lemma is not trivial, because unlike P loc
1 (P loc

1)−1 = I ,
in general (P loc

1)−1P loc
1 6= I , I being the identity function.

Proof. We prove the first statement of the lemma by structural induction on string s ∈ A∗
1 (the

other equality being symmetric). For s = ε clearly PP −1
1 (P loc

1)−1P loc
1 (ε) = PP−1

1 (A∗
uo,1) =

P ((A2 \A1)
∗), because of our assumption that Ao,2 ∩A1 = A2 ∩Ao,1 and Auo,1 ⊆ Auo. But we

have also PP−1
1 (ε) = P ((A2 \ A1)

∗), i.e. for s = ε, PP−1
1 (P loc

1)−1P loc
1 (s) = PP−1

1 (s).
The induction step follows: let PP−1

1 (P loc
1)−1P loc

1 (s) = PP−1
1 (s). Then PP−1

1 (P loc
1)−1P loc

1 (sa)
= PP−1

1 (P loc
1)−1P loc

1 (s)PP−1
1 (P loc

1)−1P loc
1 (a) = PP−1

1 (s)PP−1
1 (P loc

1)−1P loc
1 (a) using the

induction hypothesis. Therefore it is sufficient to show that for a ∈ A∗
1: PP−1

1 (P loc
1)−1P loc

1 (a) =
PP−1

1 (a). Notice that for a ∈ Auo,1 ⊆ Auo we have PP−1
1 (P loc

1)−1P loc
1 (a) = PP−1

1 (P loc
1)−1(ε)

= P ((A2 \ A1)
∗) as it has already been computed above. On the other hand, PP −1

1 (a) =
P ((A2 \ A1)

∗a(A2 \ A1)
∗) = P ((A2 \ A1)

∗) by taking into account the facts that P (a) = ε,
P is catenative, and the star operation is idempotent with respect to concatenation. For a ∈ Ao,1

we obtain: PP−1
1 (P loc

1)−1P loc
1 (a) = PP−1

1 (P loc
1)−1(a) = PP−1

1 (A∗
uo,1aA∗

uo,1) = P ((A2 \

A1)
∗a(A2 \ A1)

∗) = PP−1
1 (a) using the same arguments as above: especially Auo,1 ⊆ Auo,

which means that P (A∗
uo,1) = ε.

17

We have the following result concerning the infimal controllable and observable superlan-
guages.

Theorem 5.13. (Modular equals global control synthesis for closed-loop languages under partial
observations) If Ac ⊆ Ao, A2u ∩ A1 = A2 ∩ A1u, and Ao,2 ∩ A1 = A2 ∩ Ao,1 then

(K1/
Ao,1

A1u
L1) ‖ (K2/

Ao,2

A2u
L2) = (K1 ‖ K2)/

Ao

Au
(L1 ‖ L2).

Remark 5.14. Notice that the condition Ac ⊆ Ao means that global observability is equivalent
to global normality. As a consequence globally optimal solutions to supervisory control problems
always exist.

Proof. The coinductive proof principle is used, i.e. we will show that the relation below is a
bisimulation.

R = {〈[(K1/
Ao,1

A1u
L1) ‖ (K2/

Ao,2

A2u
L2)]s, [(K1 ‖ K2)/

Ao

Au
(L1 ‖ L2)]s〉 |

s ∈ [(K1/
Ao,1

A1u
L1) ‖ (K2/

Ao,2

A2u
L2)]

2}.

(i) It is clear from the coinductive definitions of the synchronized and supervised products that
both sides have the same logical outputs.

(ii) Let [(K1/
Ao,1

A1u
L1) ‖ (K2/

Ao,2

A2u
L2)]s

a
→ for a ∈ A. According to the coinductive definition

of parallel product [(K1/
Ao,1

A1u
L1) ‖ (K2/

Ao,2

A2u
L2)]s = [(K1/

Ao,1

A1u
L1)]s1

‖ [(K2/
Ao,2

A2u
L2)]s2

with
P1(s) = s1 and P2(s) = s2. Using the definition of parallel product three cases must be distin-
guished.
(A): a ∈ A1 ∩ A2. Then [(K1/

Ao,1

A1u
L1)]s1

a
→ and [(K2/

Ao,2

A2u
L2)]s2

a
→. According to the coin-

ductive definition of the supervised product with partial observations repeatedly applied the three
cases below can occur for both i = 1, 2:

[(Ki/
Ao,i

Aiu
Li)]sia =

(1) (Ki)sia/
Ao,i

Aiu
(Li)sa

(2) [∪{s′i: P loc
i (s′i)=P loc

i (si)}
(Ki)s′ia]/

Ao,i

Aiu
(Li)sia

(3) 0/
Ao,i

Aiu
(Li)sia and a ∈ Au

In case that for both i = 1 and i = 2 case (1) occurs, the situation is easy: K1
s1a
→ , L1

s1a
→ , K2

s2a
→ ,

L2
s2a
→ , i.e. (K1 ‖ K2)s

a
→ and (L1 ‖ L2)s

a
→. Therefore [(K1 ‖ K2)/

Ao

Au
(L1 ‖ L2)]s

a
→. The

most difficult is the situation when for both i = 1 and i = 2 case (2) occurs. Situations, when
for i = 1 case (1) occurs and for i = 2 case (2) occurs or for i = 1 case (2) occurs and for
i = 2 case (1) occurs, can be covered by the situation where for both i case (2) occurs. It must be
shown that from (∃s′1 ∈ A∗

1 and s′′2 ∈ A∗
2 such that s′1a ∈ K2

1 , s′′2a ∈ K2
2 , P loc

1 (s′1) = P loc
1 (s1),

and P loc
2 (s′′2) = P loc

2 (s2)) follows that there exists s′ ∈ A∗ such that P (s′) = P (s) and s′a ∈

K2 = (K1 ‖ K2)
2. Then we will have [(K1 ‖ K2)/

Ao

Au
(L1 ‖ L2)]s

a
→, because we have always

(L1 ‖ L2)s
a
→. We obtain: P loc

1 P1(sa) ∈ P loc
1 (K2

1) and similarly, P loc
2 P2(sa) ∈ P loc

2 (K2
2). Thus,

sa ∈ P−1
1 (P loc

1)−1P loc
1 (K2

1) ∩ P−1
2 (P loc

2)−1P loc
2 (K2

2), i.e. P (sa) ∈ PP−1
1 (P loc

1)−1P loc
1 (K2

1) ∩
PP−1

2 (P loc
2)−1P loc

2 (K2
2) We need to show that P (sa) ∈ P (K2) = PP−1

1 (K2
1) ∩ PP−1

2 (K2
2).

It follows from Lemma 5.11 that for i = 1, 2 : PP −1
i (P loc

i)−1P loc
i (Ki) = PP−1

i (Ki), hence
P (sa) ∈ P (K2), i.e. ∃t ∈ A∗ such that P (t) = P (sa) and t ∈ K2 = (K1 ‖ K2)

2. Since
a ∈ Ac ⊆ Ao (the case a ∈ Au being trivial), we have also ∃s′ ∈ A∗ such that P (s) = P (s′) and

18

s′a ∈ K2. The remaining cases are when for i = 1 and/or i = 2 case (3) occurs. But then a ∈ Au.
Therefore [(L1 ‖ L2)]s

a
→ implies [(K1 ‖ K2)/

Ao

Au
(L1 ‖ L2)]s

a
→ according to the definition of

supervised product.
Consider now the case (B): a ∈ A1 \ A2. This case is easier. Indeed, [(K1/

Ao,1

A1u
L1)]s1

‖

[(K2/
Ao,2

A2u
L2)]s2

a
→ means that [(K1/

Ao,1

A1u
L1)]s1

a
→. We have three possibilities according to

the definition of supervised product. The first case is (K1)s1

a
→. This implies [(K1 ‖ K2)]s =

{(K1)s1
‖ (K2)s2

}
a
→. The second possibility is ∃s′1 ∈ K∗

1 such that P loc
1 (s′1) = P loc

1 (s1) and
(K1)s′

1

a
→. Thus, we have s′1a ∈ K2

1 , i.e. Since [K2/
Ao,2

A2u
L2]

s2→, we deduce that there exists s′2 ∈

(K2)
2 such that P loc

2 (s′2) = P loc
2 (s2). Otherwise a ∈ Au, which case is easy. Thus, P loc

2 P2(s) ∈
(P loc

2 (K2))
2. Since a 6∈ A2: P loc

2 P2(sa) = P loc
2 P2(s) ∈ (P loc

2 (K2))
2. The continuation is now

the same as in the case a ∈ A1 ∩ A2: sa ∈ P−1
1 (P loc

1)−1P loc
1 (K1) ∩ P−1

2 (P loc
2)−1P loc

2 (K2), i.e.
P (sa) ∈ PP−1

1 (P loc
1)−1P loc

1 (K2
1) ∩ PP−1

2 (P loc
2)−1P loc

2 (K2
2) = P (K2). The last possibility is

a ∈ A1u ⊆ Au, which implies together with [(L1 ‖ L2)]s
a
→ that [(K1 ‖ K2)/

Ao

Au
(L1 ‖ L2)]s

a
→.

Finally the third case (C): a ∈ A2 \ A1 is fully symmetric to (B) .

(iii) Let [(K1 ‖ K2)/
Ao

Au
(L1 ‖ L2)]s

a
→ for a ∈ A. According to the coinductive definition of

the supervised product with partial observations repeatedly applied one of the three cases below
occurs:

[(K1 ‖ K2)/
Ao

Au
(L1 ‖ L2)]sa =

(1) (K1 ‖ K2)sa/
Ao

Au
(L1 ‖ L2)sa

(2) ∪{s′: P (s′)=P (s)}(K1 ‖ K2)s′a/
Ao

Au
(L1 ‖ L2)sa

(3) 0/Ao

Au
(L1 ‖ L2)sa

Now we treat the different cases separately. Case (1) is very easy. Consider the subcases
(1A) : a ∈ A1 ∩ A2 and (1B) : a ∈ A1 \ A2. The subcase (1C) : a ∈ A2 \ A1 is
symmetric to the subcase (1B) and is therefore omitted. For (1A) we have K1

s1a
→ , L1

s1a
→ ,

K2
s2a
→ , L2

s2a
→ with P1(s) = s1 and P2(s) = s2, i.e. (K1/

Ao,1

A1u
L1)

s1a
→ and (K2/

Ao,2

A2u
L2)

s2a
→ .

Thus (K1/
Ao,1

A1u
L1) ‖ (K2/

Ao,2

A2u
L2)

sa
→ and from the definition of R trivially 〈[(K1/

Ao,1

A1u
L1) ‖

(K2/
Ao,2

A2u
L2)]sa, [(K1 ‖ K2)/

Ao

Au
(L1 ‖ L2)]sa〉 ∈ R.

For (1B) we have K1
s1a
→ , L1

s1a
→, i.e. (K1/

Ao,1

A1u
L1)

s1a
→ and therefore

[(K1/
Ao,1

A1u
L1) ‖ (K2/

Ao,2

A2u
L2)]s

a
→ [(K1/

Ao,1

A1u
L1)]s1a ‖ [(K2/

Ao,2

A2u
L2)]s2

.
In case (2) we again distinguish subcases (2A), (2B), (2C). For (2A) we have ∃s ′ ∈ K2 = (K1 ‖

K2)
2 such that P (s′) = P (s), K1

s′
1
a

→ , K2
s′
2
a

→ , L1
s1a
→ , and L2

s2a
→ with P1(s

′) = s′1 and
P2(s

′) = s′2. Notice that P (s) = P (s′) implies by Lemma 5.10 that P loc
1 P1(s) = P loc

1 P1(s
′)

and P loc
2 P2(s) = P loc

2 P2(s
′). But this means that (K1/

Ao,1

A1u
L1)

s1a
→ and (K2/

Ao,2

A2u
L2)

s2a
→ . Thus

(K1/
Ao,1

A1u
L1) ‖ (K2/

Ao,2

A2u
L2)

sa
→. The subcase (2B) is even easier. It is sufficient to show that

(K1/
Ao,1

A1u
L1)

s1a
→ , but this follows in the same way as in (2A). (2C) is symmetric to the subcase

(2B).
For case (3): a ∈ Au, we have again three obvious subcases. In subcase (3A): a ∈ A1∩A2 accord-
ing to our assumption A2u ∩A1 = A2 ∩A1u we have a ∈ A1u ∩A2u, which together with L1

s1a
→

and L2
s2a
→ gives (K1/

Ao,1

A1u
L1)

s1a
→ and (K2/

Ao,2

A2u
L2)

s2a
→ . Thus (K1/

Ao,1

A1u
L1) ‖ (K2/

Ao,2

A2u
L2)

sa
→.

In the subcase (3B) (a ∈ A1 \ A2) a ∈ Au implies a ∈ A1u, i.e. (K1/
Ao,1

A1u
L1)

s1a
→ and

(K1/
Ao,1

A1u
L1) ‖ (K2/

Ao,2

A2u
L2)

sa
→. The same conclusion is drawn by symmetry in the subcase

(3C).

19

Remark 5.15. Condition Ac ⊆ Ao in the last theorem means that at the global level we have
always optimal solutions (supremal normal and controllable sublanguages) to the supervisory
control and observations problem, while in general this is not the case at the local levels, where
local observability and local normality might differ. Notice that for the first inclusion correspond-
ing to (ii) in the proof of bisimilarity A2u ∩ A1 = A2 ∩ A1u is not needed, while for the other
inclusion it is needed and the condition Ac ⊆ Ao is not needed.

We have the following consequence:

Corollary 5.16. If Ac ⊆ Ao, A2u ∩ A1 = A2 ∩ A1u, and Ao,2 ∩ A1 = A2 ∩ Ao,1 then Ki

controllable and observable with respect to Li, i = 1, 2 implies that (K1 ‖ K2) controllable and
observable with respect to (L1 ‖ L2).

Proof. It is sufficient to notice that local supervised products are equal to Ki, i = 1, 2, i.e. by
commutativity we obtain that the global supervised product is equal to K = K1 ‖ K2, which
means that K is controllable and observable with respect to L.

We have shown in the previous sections a sufficient condition, called mutual controllability, for
preserving optimality in the full observation modular control (i.e. commutativity of the supremal
controllable sublanguage and the synchronous product of partial languages). A natural question
arises: with respect to which conditions this can be generalized to modular control with partial ob-
servations. Since there is no local optimality in general, we assume Ac,i ⊆ Ao,i and the problem
is when does the supremal normal and controllable sublanguage commute with the synchronous
product of languages. Unfortunately, it is not possible to the best of our knowledge to define the
supremal normal sublanguage by coinduction. The argument is similar as for the antipermissive
control policy (see [20]). Nevertheless, using suitable automata representations (state partition
automata [48]) there is the following algorithm for the computation of the supremal normal sub-
language. This algorithm will be used in the coinductive proof of our main theorem.

We use the representations of languages K and L by automata S1 and S, where S1 is a sub-
automaton of S such that Aux(S1) is an equivalence relation. We have proven in [17] that the
condition of S1 being state-partition automaton [47] is stronger, i.e. it guarantees that Aux(S1)
is an equivalence relation. But it is known how to construct such representations [9] or [47]. Let
s0 denote the common initial state of S1 and S. The transition structure of S1 and S is denoted
by →1 and →, respectively. In the following algorithm we compute a supremal (L,P)−normal
sublanguage of K .

Recall that A = Ao ∪ Auo is a partition of A into observable events (Ao) and unobservable
(Auo) events with the natural projection P : A∗ → A∗

o that erases unobservable events. In this
paper we deal with supremal normal sublanguages. Let us recall from [23] the basic definition.

Definition 5.17. (Normality.) Let K,L ∈ L: K ⊆ L. K is said to be (L,P)-normal if K 2 =
L2 ∩ P−1(P (K2)).

Now normal relations are recalled from [18].

Definition 5.18. (Normal relation.) Given two (partial) automata S1 = (S1, 〈o1, t1〉) and S =
(S, 〈o, t〉) as above with common initial state s0 ∈ S, a binary relation N(S1, S) on S1 × S is
called a normal relation if for any 〈s, t〉 ∈ N(S1, S) the following items hold:
(i) ∀a ∈ A : s

a
→1 sa ⇒ t

a
→ ta and 〈sa, ta〉 ∈ N(S1, S)

20

(ii) ∀u ∈ Auo : t
u
→ tu ⇒ s

u
→1 su.

(iii) ∀a ∈ Ao : t
a
→ ta and (∃s′ : 〈s, s′〉 ∈ Aux(S1) : s′

a
→1 s′a) ⇒ s

a
→1 sa.

Remark 5.19. Recall that (ii) can also be expressed using the set bscAux(S1). The condition
∃s′ : 〈s, s′〉 ∈ Aux(S1) and s′

a
→1 s′a can be replaced by the simpler one bscAux(S1)

a
→1.

For s ∈ S1 and t ∈ S we write s ≈N(S1,S) t whenever there exists a normal relation N(S1, S)
on S1 × S such that 〈s, t〉 ∈ N(S1, S). It was proven in [18] that

Theorem 5.20. A (partial) language K is (L,P)−normal iff s0 ≈N(S1,S) s0.

Now we are ready to formulate the algorithm for computation of supremal (L,P)−normal
sublanguages.

Algorithm 1. Let automata S1 and S representing K and L, respectively, be such that S1 is a
subautomaton of S and S1 is a state-partition automaton. Let us construct partial automaton
S̃ = 〈õ, t̃〉, subautomaton of S1, with t̃ denoted by →′ .
Define the auxiliary condition (*) consisting of (*a) and (*b) as follows:
(*a) if a ∈ Auo then ∀u ∈ A∗

uo: sa
u
→ ⇒ sa

u
→1;

(*b) if a ∈ Ao then ∀s′ ≈Aux(S1) s : s′
a
→ ⇒ s′

a
→1, in which case also ∀u ∈ A∗

uo:
s′a

u
→ ⇒ s′a

u
→1.

Below are the steps of the algorithm.
1. Put S̃ := {s0}.
2. For any s ∈ S̃ and a ∈ A we put s

a
→′ sa if s

a
→1 and condition (*) is satisfied and we put in

the case s
a
→′ also S̃ := S̃ ∪ {sa}.

3. For any s ∈ S̃ we put õ(s) = o(s).

Let us denote by l̃ : S̃ → L the unique (behavior) homomorphism given by finality of L.

Theorem 5.21. l̃(s0) is the supremal (L,P)−normal sublanguage of K .

Proof. To prove the normality of l̃(s0) we show that the following relation is a normal relation on
S̃ × S.

N = {〈(s0)u, (s0)u〉 | u ∈ l̃(s0)
2 }.

Then l̃(s0) is normal with respect to L and P according to Theorem 5.20. Take a pair 〈(s0)v, (s0)v〉 ∈
N for some v ∈ l̃(s0)

2.

(i) If (s0)v
a
→′ for a ∈ A, then clearly by construction of Algorithm 1 (s0)v

a
→. It is clear from

the definition of N that 〈(s0)va, (s0)va〉 ∈ N .

(ii) Let a ∈ Auo be such that (s0)v
a
→. We must show that (s0)v

a
→′ , i.e. ∀u ∈ A∗

uo: (s0)va
u
→

⇒ (s0)va
u
→1. It follows from (s0)

v
→′ and Algorithm 1 that ∀u ∈ A∗

uo: (s0)v
u
→ ⇒ (s0)v

u
→1.

Indeed, if we assume v = v1 . . . vk, for some k ∈ Z , then either vk ∈ Auo, i.e. (s0)v1 ...vk−1

vk→′

means directly that ∀u ∈ A∗
uo: (s0)v

u
→ ⇒ (s0)v

u
→1 or vk ∈ Ao, but then the condition (*) is

even stronger: by putting s′ = s we obtain the same conclusion. Since in both cases au ∈ A∗
uo,

the required implication holds as well for (s0)va as required for (s0)v
a
→′ .

(iii) Let a ∈ Ao be such that (s0)v
a
→ and let there exist s′ ∈ S̃: s′ ≈Aux(S̃) (s0)v with s′

a
→′ .

By Lemma 5.4 there exist two strings w,w′ ∈ A∗ such that P (w) = P (w′), (s0)v = (s0)w, and
s′ = (s0)w′

a
→. According to the construction of Algorithm 1 for any s ≈Aux(S1) (s0)w′ there

21

must be s
a
→ ⇒ s

a
→1, in which case also ∀u ∈ A∗

uo: sa
u
→ ⇒ sa

u
→1. In order to show

that (s0)v
a
→′ it must be that for any q ≈Aux(S1) (s0)v there must be q

a
→ ⇒ q

a
→1, in which

case also ∀u ∈ A∗
uo: qa

u
→ ⇒ qa

u
→1. Now we use two facts. Firstly the fact that Aux(S1) is

transitive (because S1 is a state-partition automaton, a stronger condition), and secondly the fact
that s′ ≈Aux(S̃) (s0)v implies that s′ ≈Aux(S1) (s0)v . We obtain that 〈s′, q〉 ∈ Aux(S1). But this
just means that for any q ≈Aux(S1) (s0)v we have q

a
→ ⇒ q

a
→1, in which case also ∀u ∈ A∗

uo:
qa

u
→ ⇒ qa

u
→1, i.e. (s0)v

a
→′ . Therefore N is a normality relation.

We show finally that the supremal (L,P)−normal sublanguage of K is contained in l̃(s0). Let
N be a (L,P)−normal sublanguage of K . Then it is sufficient to show that

R = {〈Nu, l̃(s0)u〉 | u ∈ N2}

satisfies (ii) of simulation relation in order to prove that N 2 ⊆ l̃(s0)
2. Take an arbitrary pair

〈Nw, l̃(s0)w〉 ∈ R for some w ∈ N 2. Let Nw
a
→ for a ∈ A. Then also Kw

a
→, since N ⊆ K ,

and Lw
a
→ as well. This means that (s0)w

a
→1 and (s0)w

a
→. In order to show that l̃(s0)w

a
→, i.e.

(s0)w
a
→′ , it must be shown that the condition (*) is satisfied.

For a ∈ Auo we need to show that ∀u ∈ A∗
uo: (s0)wa

u
→ ⇒ (s0)wa

u
→1. But this is easy:

(s0)wa
u
→ means wau ∈ L2. Since N is (L,P)−normal, wa ∈ N 2 and P (wa) = P (wau), we

deduce wau ∈ N 2 ⊆ K2. But this just means that (s0)wa
u
→1.

For a ∈ Ao it must be checked that for any q ≈Aux(S1) (s0)w: q
a
→ ⇒ q

a
→1, in which

case also ∀u ∈ A∗
uo: qa

u
→ ⇒ qa

u
→1. There exist v, v′ : P (v) = P (v′) such that q = (so)v′

and (s0)w = (s0)v . Since S1 is a state-partition automaton and (s0)w = (s0)v is in two states
of the observer automaton, we conclude by the property of state-partition automaton that these
two states of the observer automaton coincide. But this means that there exists w ′ ∈ A∗ such
that P (w) = P (w′) and q = (s0)w′ . Now q

a
→ means that w′a ∈ L2. By normality of N it

follows from wa ∈ N 2 and w′a ∈ L2 that w′a ∈ N2. Therefore w′a ∈ K2 (because N ⊆ K),
which means that q

a
→1. The rest is similar as for a ∈ Auo: if for u ∈ A∗

uo: qa = (so)w′a
u
→,

then w′au ∈ L2, by normality of N and using wa ∈ N 2, where P (w′au) = P (wa) we have
w′au ∈ N2 ⊆ K2. But this just means that (s0)w′a = qa

u
→1.

We conclude that l̃(s0)w
a
→ and R satisfies (ii) of simulation relation, i.e. we have the inclusion

N2 ⊆ l̃(s0)
2. Note that since N was arbitrary (L,P)−normal sublanguage of K , and l̃(s0)

has been shown to be a (L,P)− normal sublanguage of K , it follows that l̃(s0) is the supremal
(L,P)−normal sublanguage of K .

In our main theorem a condition similar to mutual controllability (see [44]) is needed. We call
it by analogy also mutual normality.

Definition 5.22. Given partial languages Li = (L1
i , L

2
i) and Lj = (L1

j , L
2
j), Li and Lj are said

to be mutually normal if

(P loc
i)−1P loc

i (L2
i) ∩ Pi(Pj)

−1(L2
j) ⊆ L2

i and

(P loc
j)−1P loc

j (L2
j) ∩ Pj(Pi)

−1(L2
i) ⊆ L2

j .

Mutual normality can be viewed as normality of the local plant languages with respect to the
local views of the other plant languages. In order to ensure the full compatibility of the global
and local observations, a property called decomposability, similar but slightly stronger that the
one known from the decentralized control ([36]), is needed. Section 5 contains an example, where
mutual normality does not hold and a procedure for verification of this property.

22

The following lemma provides an insight into the relationship between local and global obser-
vations in our setting.

Lemma 5.23. If Ao,2 ∩ A1 = A2 ∩ Ao,1 then the following diagram commutes, i.e. ∀s ∈ A∗ :

P1P (s) = P loc
1 P1(s) and P2P (s) = P loc

2 P2(s).

A∗

A∗
1

�

P1

A∗
2

P
2

-

A∗
o

P

?

A∗
o,1

P loc
1

?
�

P1

A∗
o,2

P loc
2

?

P
2

-

Proof. We will show by induction that P loc
1 P1 = P1P , i.e. ∀s ∈ A∗ : P loc

1 P1(s) = P1P (s).
For s = ε it is easy: P loc

1 P1(ε) = ε = P1P (ε). Assume now that the equality holds for s ∈ A∗.
We must show that it holds also for sa with a ∈ A arbitrary. Since all projections involved are
catenative, it is sufficient to prove the lemma for s = a ∈ A arbitrary. For s = a several cases
must be distinguished. If a ∈ A1 ∩ A2 then P1 and P2 are identity on a and according to the
assumption on the structure of (locally) observable event sets P loc

1 (a) = P (a) = P loc
2 (a), whence

P loc
1 P1(a) = P1P (a). For a ∈ A1 \ A2 we have P loc

1 (a) = P (a), whence P loc
1 P1(a) = P1P (a).

Finally for a ∈ A2 \ A1 clearly P loc
1 P1(a) = P1P (a) = ε. In the same way it can be shown that

P loc
2 P2 = P2P .

The property of decomposability has been introduced in Definition 5.1. For instance, P (L) ⊆
A∗

o is decomposable with respect to P1 and P2 if P (L) = P−1
1 P1P (L) ∩ P−1

2 P2P (L). Using the
property of decomposability applied to projected language we obtain:

Lemma 5.24. Let Ao,2 ∩ A1 = A2 ∩ Ao,1, L = L1 ‖ L2, and let PL = P (L1 ‖ L2) be decom-
posable with respect to P1 and P2, s, s′ ∈ L. Then P (s) = P (s′) iff P loc

1 P1(s) = P loc
1 P1(s

′) and
P loc

2 P2(s) = P loc
2 P2(s

′).

Proof. Under the assumption that PL = P (L1 ‖ L2) is decomposable with respect to P1 and
P2 the statement is an easy consequence of Lemma 5.23. Indeed, P (L) = P −1

1 P1P (L) ∩
P−1

2 P2P (L) = P−1
1 P loc

1 P1(L) ∩ P−1
2 P loc

2 P2(L). Thus, for s ∈ L:
P (s) = P−1

1 P loc
1 P1(s) ∩ P−1

2 P loc
2 P2(s). It is now easy to see that (P loc

1 P1(s) = P loc
1 P1(s

′)
and P loc

2 P2(s) = P loc
2 P2(s

′)) iff P (s) = P (s′). Since Ao,2 ∩ A1 = A2 ∩ Ao,1, the backward
implication follows from Lemma 5.10. The forward implication follows from the formula above.
Thus P loc

1 P1(s) = P loc
1 P1(s

′) and P loc
2 P2(s) = P loc

2 P2(s
′) iff P (s) = P (s′).

The last Lemma can be viewed as a weak version of the converse implication to Lemma 5.10.
Note however that Lemma 5.24 is not needed in our main theorem. The following lemma will be
used in the proof of the main theorem.

Lemma 5.25. Assume that Ao,2 ∩ A1 = A2 ∩ Ao,1. Let v ∈ A∗ with P1(v) = v1 ∈ A∗
1 and

P2(v) = v2 ∈ A∗
2. Let v′1 ∈ A∗

1 be such that P loc
1 (v1) = P loc

1 (v′1). Then there exists v′ ∈ A∗ such
that P1(v

′) = v′1, P loc
2 P2(v

′) = P loc
2 (v2), and P (v) = P (v′).

23

Proof. It can be proven by structural induction with respect to v ∈ A∗. For v = ε we have
v1 = P1(v) = ε. Therefore there must be v′

1 ∈ A∗
uo,1. Without loss of generality we take an

arbitrary, but fixed v′1 = u1 . . . uk with u1, . . . , uk ∈ Auo,1. Since we require P (v) = P (v′),
the choice for v is v ∈ A∗

uo. Furthermore, we require v′ ∈ P−1
1 (v′1), hence v′ is of the form:

(A2 \ A1)
∗u1(A2 \ A1)

∗ . . . (A2 \ A1)
∗uk(A2 \ A1)

∗ ∩ A∗
uo =

(A2,uo \ A1)
∗u1(A2,uo \ A1)

∗ . . . (A2,uo \ A1)
∗uk(A2,uo \ A1)

∗.
Finally we need to ensure that P loc

2 P2(v
′) = P loc

2 (v2). Since v2 = P2(v) = ε, it amounts to
ensure that P2(v

′) ∈ A∗
uo,2. Clearly Auo,2 \ A1 ⊆ A∗

uo,2, but we need also P2(ui) ∈ Auo,2

for all i ∈ {1, . . . , k}. This is satisfied due to our assumption that shared events have the same
observation status for both modules: if ∃i : ui ∈ A1 ∩ A2, then ui ∈ Auo,2, because ui ∈ Auo,1.
Therefore we have the following set for the choice of v ′ :
(A2,uo \ A1)

∗u1(A2,uo \ A1)
∗ . . . (A2,uo \ A1)

∗uk(A2,uo \ A1)
∗.

The induction step follows: we assume that the lemma holds for v ∈ A∗ and we will show
that it holds also for v′a. More precisely we suppose that for v ∈ A∗ and any v′1 ∈ A∗

1 such that
P loc

1 (v1) = P loc
1 (v′1) there exists v′ ∈ A∗ such that P1(v

′) = v′1 and P loc
2 P2(v

′) = P loc
2 (v2). It is

sufficient to take for va ∈ A∗ and v′′1 simply v′′ := v′a with v′ corresponding to v according to the
induction hypothesis, because all projections involved are catenative. This completes the proof of
the lemma.

Let us introduce the notation supN(K,L, P) for the supremal (L,P)− normal sublanguage
of K . Our main theorem follows.

Theorem 5.26. (Sufficiency for modular equals global synthesis for supremal normal sublan-
guages) If Ao,2 ∩ A1 = A2 ∩ Ao,1, and L1 and L2 are mutually normal, then

supN(K1, L1, P
loc
1) ‖ supN(K2, L2, P

loc
2) = supN(K1 ‖ K2, L1 ‖ L2, P).

Proof. The coinductive proof principle will be used. We will work with the behaviors (languages)
generated by the automata representations of the globally and locally supremal normal sublan-
guages resulting from their computations according to Algorithm 1. The notation is as follows:
let S representing K and T representing L are such that S is a subautomaton of T and S is a
state-partition automaton. Algorithm 1 yields partial automaton S̃ = 〈õ, t̃〉 with t̃ denoted by →′

and its behavior by l̃ : S̃ → L.
Similarly, for i ∈ {1, 2}, Si and Ti representing Ki and Li, respectively, are such that Si is a sub-
automaton of Ti and Si is a state-partition automaton. Construction of Algorithm 1 yields partial
automaton S̃i = (S̃i, 〈õi, t̃i〉) with t̃i denoted by →i′ and its behavior by l̃i : S̃ → L. It will
be clear from the context whether local or global automaton is meant, i.e. this simplification of
notation should not lead to any confusion.
The (common) initial state of S and T is denoted by s0 and for i = 1, 2 the (common) initial
states of Si and Ti are denoted by si

0. The transition function of Si and S is denoted by →1 and
the transition function of Ti and T is denoted by →. Therefore, l̃(s0) = supN(K,L, P) and
l̃i(s

i
0) = supN(Ki, Li, P

loc
i), where K = K1 ‖ K2 and L = L1 ‖ L2.

We show that
R = {〈[l̃(s0)]v , [l̃1(s

1
0) ‖ l̃2(s

2
0)]v〉 | v ∈ (l̃(s0))

2}

is a bisimulation relation, from which the claim of the theorem follows by coinduction. Take a
v ∈ (l̃(s0))

2 arbitrary, but fixed.

(i) is trivial, Algorithm 1 does not consider marking components.

24

(ii) Let [l̃(s0)]v
a
→, i.e. condition (*) of Algorithm 1 is satisfied. It must be shown that [l̃1(s

1
0) ‖

l̃2(s
2
0)]v

a
→.

First we assume that a ∈ A1 ∩ A2. Then [l̃1(s
1
0) ‖ l̃2(s

2
0)]v = [l̃1(s

1
0)]v1

‖ [l̃2(s
2
0)]v2

with
P1(v) = v1 and P2(v) = v2. We show that [l̃1(s

1
0)]v1

a
→, i.e. (s1

0)v1

a
→′ . According to Algorithm

1 applied to S1 and T1 we must show that condition (*) holds. First of all note that (s1
0)v1

a
→1.

Indeed, [l̃(s0)]v
a
→ implies that (s0)v

a
→1, i.e. va ∈ K2 = (K1 ‖ K2)

2. Therefore v1a =
P1(va) ∈ K2

1 ⊆ L2
1, i.e. (s1

0)v1

a
→1. Similarly v2a = P2(va) ∈ K2

2 ⊆ L2
2.

If a ∈ Auo,1 ⊆ Auo then it must be shown that ∀u1 ∈ A∗
uo,1: (s1

0)v1a
u1→ ⇒ (s1

0)v1a
u1→1. Let

(s1
0)v1a

u1→, i.e. v1au1 ∈ L2
1. We know that condition (*) holds for S̃, i.e. ∀u ∈ A∗

uo: (s0)va
u
→

⇒ (s0)va
u
→1. We have u1 ∈ A∗

uo,1 ⊆ A∗
uo. It is sufficient to consider u = u1 and notice that

vau ∈ P−1
1 (v1au1) (recall that v1 = P1(v)). We show that vau ∈ L2 = (L1 ‖ L2)

2. Since vau ∈
P−1

1 (v1au1), it follows that vau ∈ P−1
1 (L2

1). It remains to show that vau ∈ P−1
2 (L2

2). Mutual
normality is used: P2(vau) = P2(vau1) = v2aP2(u1) ∈ (P loc

2)−1P loc
2 (L2

2) ∩ P2(P1)
−1(L2

1) ⊆
L2

2, where v2aP2(u1) ∈ (P loc
2)−1P loc

2 (L2
2), because v2a ∈ K2

2 ⊆ L2
2 and P2(u1) ∈ A∗

uo,2 due
to our assumption that Ao,2 ∩ A1 = A2 ∩ Ao,1, i.e. P loc

2 (v2aP2(u1)) = P loc
2 (v2a). Note that

it can be that P2(u1) = ε in the case u1 ∈ (A1 \ A2)
∗. Now, vau ∈ L2, i.e. (s0)va

u
→, and

from condition (*) holds for S̃ we obtain (s0)va
u
→1. But this means that vau = vau1 ∈ K2,

i.e. v1au1 = P1(vau) ∈ K2
1 , because P1(u1) = u1 ∈ A∗

uo,1. Hence (s1
0)v1a

u1→1 as required by
condition (*) of Algorithm 1.

If a ∈ Ao,1 ⊆ Ao then we know that ∀s′ ≈Aux(S) (s0)v : s′
a
→ ⇒ s′

a
→1, in which case also

∀u ∈ A∗
uo: s′a

u
→ ⇒ s′a

u
→1. It must be shown that (s1

0)v1

a
→′ , i.e. ∀q1 ≈Aux(S1) (s1

0)v1
: q1 a

→

⇒ q1 a
→1, in which case also ∀u1 ∈ A∗

uo,1: q1
a

u1→ ⇒ q1
a

u1→1. Let q1 ≈Aux(S1) (s1
0)v : q1 a

→.
Since S1 is a state-partition automaton, there exists v ′

1 ∈ A∗
1 such that P loc

1 (v′1) = P loc
1 (v1) and

q1 = (s1
0)v′1 . For this v′1 ∈ A∗

1 and v ∈ A∗ above there exists according to Lemma 5.25 a v ′ ∈ A∗

such that P1(v
′) = v′1 satisfying moreover P loc

2 P2(v
′) = P loc

2 (v2) and P (v) = P (v′). Since
q1 a

→1 we have v′1a ∈ K2
1 ⊆ L2

1. Then v′a ∈ P−1
1 (v′1a). Therefore v′a ∈ P−1

1 (L2
1). We show

that v′a ∈ P−1
2 (L2

2) using mutual normality. Indeed, P2(v
′a) = v′2a ∈ (P loc

2)−1P loc
2 (L2

2) ∩
P2(P1)

−1(L2
1) ⊆ L2

2, where v′2a ∈ (P loc
2)−1P loc

2 (L2
2), because v2a ∈ K2

2 ⊆ L2
2 and P loc

2 (v′2a) =
P loc

2 (v2a) by Lemma 5.25. Therefore v′
2a ∈ L2

2 by applying mutual normality. Also v ′
2a ∈

P2(P1)
−1(L2

1), because v′1a ∈ L2
1. Thus, v′a ∈ P−1

1 (L2
1)∩P−1

2 (L2
2) = L2. Since P (v′) = P (v),

we have (s0)v′ ≈Aux(S) (s0)v . From (s0)v
a
→′ and condition (*) of Algorithm 1, it follows that

(s0)v′
a
→ ⇒ (s0)v′

a
→1, and also ∀u ∈ A∗

uo: (s0)v′a
u
→ ⇒ (s0)v′a

u
→1. But this implies that

(s1
0)v′1 = q1 a

→1, because v′a ∈ K2 = (K1 ‖ K2)
2 implies that v′1a = P1(v

′a) ∈ K2
1 . We show

also that ∀u1 ∈ A∗
uo,1: q1

a
u1→ ⇒ q1

a
u1→1. Indeed, q1

a
u1→ means v′1au1 ∈ L2

1. Similarly as for
a ∈ Auo, by considering u = u1 ∈ A∗

uo we obtain using mutual normality that v ′au ∈ L2, i.e.
(s0)v′a

u
→ whence (s0)v′a

u
→1. But this means that v′au ∈ K2, i.e. v′1au1 = P1(v

′au) ∈ K2
1 and

q1
a

u1→1.
In a symmetric way [l̃2(s

2
0)]v2

a
→, i.e. [l̃1(s

1
0) ‖ l̃2(s

2
0)]v

a
→. The cases a ∈ A1 \ A2 and

a ∈ A2 \ A1 are simpler. We need to show that [l̃1(s
1
0)]v1

a
→. The proof for this case follows

the same lines as above, but it is much simpler due to P2(a) = ε, i.e. in order to show e.g
vau ∈ P−1

2 (L2
2) for a ∈ Auo it is sufficient to show P2(vu) = v2P2(u) ∈ L2

2. Also the case
a ∈ Ao is simpler than for a ∈ A1 ∩ A2.

(iii) Let [l̃1(s
1
0) ‖ l̃2(s

2
0)]v

a
→. It must be shown that [l̃(s0)]v

a
→, i.e. condition (*) of Algorithm

1 is satisfied. According to the coinductive definition of synchronized product inductively applied

25

we have: [l̃1(s
1
0) ‖ l̃2(s

2
0)]v = l̃1(s

1
0)v1

‖ l̃2(s
2
0)v2

with P1(v) = v1 and P2(v) = v2. It follows
that l̃1(s

1
0)v1

a
→ and l̃2(s

2
0)v2

a
→, i.e. (s1

0)v1

a
→′ and (s2

0)v2

a
→′ . It must be shown that [l̃(s0)]v

a
→ ,

which is equivalent to (s0)v
a
→′ , i.e. condition (*) of Algorithm 1 applied to (global) automata S

and T is satisfied.
We know that

if a ∈ Auo,1 then ∀u ∈ A∗
uo,1: (s1

0)v1a
u
→ ⇒ (s1

0)v1a
u
→1;

if a ∈ Ao,1 then ∀s′ ≈Aux(S1) (s1
0)v1

: s′
a
→ ⇒ s′

a
→1, in which case also ∀u ∈ A∗

uo,1:
s′a

u
→ ⇒ s′a

u
→1.

We know also that
if a ∈ Auo,2 then ∀u ∈ A∗

uo,2: (s2
0)v2a

u
→ ⇒ (s2

0)v2a
u
→1;

if a ∈ Ao,2 then ∀s′ ≈Aux(S2) (s2
0)v2

: s′
a
→ ⇒ s′

a
→1, in which case also ∀u ∈ A∗

uo,2:
s′a

u
→ ⇒ s′a

u
→1.

We need to show that
if a ∈ Auo then ∀u ∈ A∗

uo: (s0)va
u
→ ⇒ (s0)va

u
→1;

if a ∈ Ao then ∀s′ ≈Aux(S) (s0)v : s′
a
→ ⇒ s′

a
→1, in which case also ∀u ∈ A∗

uo: s′a
u
→ ⇒

s′a
u
→1.
First we assume that a ∈ A1 ∩ A2 and a ∈ Auo. Let u ∈ A∗

uo: (s0)va
u
→. This means

that vau ∈ L2. Therefore if vi := Pi(v), then viaPi(u) ∈ L2
i , i = 1, 2. But this means that

(si
0)via

Pi(u)
→ for i = 1, 2. Since P1(u) ∈ A∗

uo,1 we obtain (s1
0)v1a

P1(u)
→1 . Similarly we obtain

(s2
0)v2a

P2(u)
→1 . Thus, Pi(vau) ∈ K2

i for i = 1, 2, i.e. vau ∈ P−1
1 (K2

1) ∩ P−1
2 (K2

2) = K2, which
means that (s0)va

u
→1.

Let a ∈ Ao and s′ ≈Aux(S) (s0)v : s′
a
→. Since S is a state-partition automaton, there

exists v′ ∈ K2 ⊆ L2 : P (v′) = P (v) and s′ = (s0)v′ . Thus s′
a
→ is equivalent to v′a ∈ L2.

Therefore Pi(v
′a) := v′ia ∈ L2

i . Using Lemma 5.10 we have P loc
i (v′i) = P loc

i (vi), i = 1, 2,
i.e. s′i := (si

0)v′i ≈Aux(Si) (si
0)vi

, where s′i
a
→, i = 1, 2. Hence according to our assumption

s′i
a

→1 i = 1, 2, and moreover ∀ui ∈ A∗
uo,i: (s′i)a

u
→ ⇒ (s′i)a

u
→1. This means that Pi(v

′a) =

v′ia ∈ K2
i , i = 1, 2, hence v′a ∈ P−1

1 (K2
1) ∩ P−1

2 (K2
2) = K2, which is equivalent to s′

a
→1.

Moreover, in this case we obtain for u ∈ A∗
uo : s′a

u
→ and for i = 1, 2: v′au ∈ L2, v′iaPi(u) ∈ L2

i ,
i.e. (s′i)a

Pi(u)
→ , which implies according to our assumption that (s′i)a

Pi(u)
→1 for i = 1, 2. But this

means that v′iaPi(u) ∈ K2
i for i = 1, 2, i.e. v′au ∈ P−1

1 (K2
1) ∩ P−1

2 (K2
2) = K2, which is

equivalent to s′a
u
→1. This proves that [l̃(s0)]v

a
→ for a ∈ A1 ∩ A2.

If a ∈ A1 \ A2, then we only have l̃1(s
1
0)v1

a
→, i.e. the condition (*) of Algorithm 1 is satisfied

for S1 subautomaton of T1:
if a ∈ Auo,1 then ∀u ∈ A∗

uo,1: (s1
0)v1a

u
→ ⇒ (s1

0)v1a
u
→1;

if a ∈ Ao,1 then ∀s′ ≈Aux(S1) (s1
0)v1

: s′
a
→ ⇒ s′

a
→1, in which case also ∀u ∈ A∗

uo,1: s′a
u
→ ⇒

s′a
u
→1. Nevertheless, this is still sufficient to prove that the condition (*) of Algorithm 1 is satisfied

for S subautomaton of T , because a 6∈ A2. The proof is in this case very similar. For instance, if
a ∈ Auo then we must show that ∀u ∈ A∗

uo: (s0)va
u
→ ⇒ (s0)va

u
→1. Let u ∈ A∗

uo: (s0)va
u
→.

This means that vau ∈ L2, i.e. v1aP1(u) = P1(vau) ∈ L2
1 and v2P2(u) = P2(vau) ∈ L2

2.
We obtain (s1

0)v1a
P1(u)
→ . It follows that (s1

0)v1a
P1(u)
→1 , which amounts to v1aP1(u) = P1(vau) ∈

K2
1 . It remains to show that P2(vau) = v2P2(u) ∈ K2

2 . It follows from [l̃2(s
2
0)]

v2→ and from
v2P2(u) ∈ L2

2 that v2P2(u) = P2(vau) ∈ K2
2 , i.e. (s0)va

u
→1. Similar arguments are used for

verification of condition (*) from Algorithm 1 in the case a ∈ Ao.

26

Remark 5.27. Notice also that for (iii) in the above proof no assumption is used (except Ao,2 ∩
A1 = A2 ∩ Ao,1 that is needed for Lemma 5.10). This means that under very general conditions
we have one inclusion:

Corollary 5.28. If Ao,2 ∩ A1 = A2 ∩ Ao,1, then we have

supN(K1, L1, P
loc
1) ‖ supN(K2, L2, P

loc
2) ⊆ supN(K1 ‖ K2, L1 ‖ L2, P).

Note that Theorem 5.26 is useful for the computation of (global) supremal normal sublanguages
of large distributed plants. If the conditions of the theorem are satisfied, then it is sufficient to
compute local supremal normal sublanguages and synchronize them.

The interest of this theorem should be clear: under the conditions that are stated it is possible to
do the optimal (less restrictive) control synthesis with partial observations locally, which represents
an exponential saving on the computational complexity and makes in fact the optimal control
synthesis of some large distributed plants feasible.

Note that an extension of our results from n = 2 to an arbitrary number n ∈ N of local modules
is quite straightforward and thus omitted in this paper. The condition of mutual normality between
any pair of local plants is required. The corresponding theorem is:

Theorem 5.29. If for any pairs i, j ∈ {1, . . . , n} : i 6= j, Ao,j ∩ Ai = Aj ∩ Ao,i, and Li and Lj

are mutually normal, then ‖n
i=1 supN(Ki, Li, P

loc
i) = supN(‖n

i=1 Ki, ‖
n
i=1 Li, P).

In [44] there is a procedure to change a plant which does not satisfy the mutual controllability
condition into another one that satisfies it. It may be that a similar procedure can be found in the
future for mutual normality. Nevertheless one cannot hope to find a universal procedure how to
make a set of local plant languages mutually normal. Indeed, in the shuffle case mutual normality
cannot hold as we show in the next section. However, in this case mutual normality is not needed.

Theorem 5.30. Shuffle case in distributed DES. Assume that the local alphabets are pairwise
disjoint, i.e. Ai ∩ Aj = ∅ for any i, j ∈ Zn with i 6= j. Then

‖n
i=1 supN(Ki, Li, P

loc
i , Aiu) = supN(‖n

i=1 Ki, ‖
n
i=1 Li, P,Au). (1)

Proof. Note that in the shuffle case mutual controllability is trivially satisfied and mutual normal-
ity is not needed. The proof relies on Algorithm 1 specialized to the case Ac = A, i.e. Au = ∅.
We work with the behaviors (languages) generated by the automata representations of the globally
and locally supremal normal sublanguages resulting from their computations according to Algo-
rithm 1. The notation is as follows: let S representing K and T representing L are such that S
is a subautomaton of T and S is a state-partition automaton. The transition functions of S and T
are denoted by → and →1, respectively. Algorithm 1 yields partial automaton S̃ = 〈õ, t̃〉 with t̃
denoted by →′ and its behavior by l̃ : S̃ → L.
Similarly, for i ∈ Zn, Si and Ti representing Ki and Li, respectively, are such that Si is a subau-
tomaton of Ti and Si is a state-partition automaton. The transition functions of Si and Ti are
denoted by →1i and →i, respectively. Construction of Algorithm 1 yields partial automaton
S̃i = (S̃i, 〈õi, t̃i〉) with t̃i denoted by →i′ and its behavior by l̃i : S̃ → L. The (common)
initial state of S and T is denoted by s0 and for i ∈ Zn the (common) initial states of Si and
Ti are denoted by si

0. The transition function of Si and S is denoted by →1 and the transition

27

function of Ti and T is denoted by →. Therefore, l̃(s0) = supN(K,L, P) and for any i ∈ Zn:
l̃i(s

i
0) = supN(Ki, Li, P

loc
i). It is sufficient to show that

R = {〈[l̃(s0)]v, [‖
n
i=1 l̃i(s

i
0)]v〉 | v ∈ (l̃(s0))

2}

is a bisimulation relation, from which the claim of the theorem follows by coinduction. Recall that
only one simulation (inclusion) is to be shown. Let [l̃(s0)]v

a
→, i.e. condition (*) of Algorithm

1 is satisfied. Note that [‖n
i=1 l̃i(s

i
0)]v =‖n

i=1 [l̃i(s
i
0)]vi

, where vi := Pi(v). We show that ∀i ∈

Zn : [l̃i(s
i
0)]vi

a
→, i.e. li(s

i
0)vi

a
→. According to Algorithm 1 applied to Si and Ti we must

show that condition (*) holds. Let a ∈ A. Then there exists one and only one i ∈ Zn such that
a ∈ Ai. We have two possibilities: either a ∈ Auo,i or a ∈ Ao,i. We first take a ∈ Auo,i ⊆ Auo.
According to Algorithm 1 it is sufficient to show that then it must be shown that ∀ui ∈ A∗

uo,i :

(si
0)via

ui→i ⇒ (si
0)via

ui→1i. In the shuffle case for a ∈ Auo,i ⊆ Auowe have ∀j 6= i : Pj(a) = ε.
Let ui ∈ A∗

uo,i: (si
0)via

ui→i. Hence, viaui ∈ Li . We know that condition (*) holds for S̃, i.e.
∀u ∈ A∗

uo: (s0)va
u
→ ⇒ (s0)va

u
→1. In order to use this assumption it must be shown that

(s0)va
u
→ for a u ∈ A∗

uo, i.e. vau ∈ L =‖n
i=1 Li. Let us take u := ui. Then using once

more the property of the shuffle case Pi(u) = ui, while ∀j 6= i : Pj(u) = ε. We already
know that vau ∈ P−1

i Li, because viaui = Pi(vau) ∈ Li. For any j 6= i we get trivially :
Pj(vau) = vj ∈ Lj , because v ∈ L. Therefore vau ∈ L and (s0)va

u
→. Thus, (s0)va

u
→1,

which means that vau ∈ K , i.e. viaui = Pi(vau) ∈ Ki. Equivalently, (s1
0)via

ui→1i, which
was to be shown. Now let a ∈ Ao,i ⊆ Ao then we know that ∀s′ ≈Aux(S) (s0)v : s′

a
→ ⇒

s′
a

→1, in which case also ∀u ∈ A∗
uo: s′a

u
→ ⇒ s′a

u
→1. It must be shown that (si

0)vi

a
→′ , i.e.

∀qi ≈Aux(Si) (si
0)vi

: qi a
→i ⇒ qi a

→1i, in which case also ∀ui ∈ A∗
uo,i: qi

a
ui→i ⇒ qi

a
ui→1i. Let

qi ≈Aux(Si) (si
0)v : qi a

→i. Since Si is a state-partition automaton, there exists v ′
i ∈ A∗

i such that
P loc

i (v′i) = P loc
i (vi) and qi = (si

0)v′i . Since qi a
→i we have v′ia ∈ Ki ⊆ Li. Then v′a ∈ P−1

1 (v′1a).
Therefore v′a ∈ P−1

i (Li). We show that v′a ∈ P−1
j (Lj) for all j 6= i. Indeed, Pj(v

′a) = v′j ∈ Lj ,
because v′ ∈ L. Therefore v′a ∈ P−1

j (Lj). Thus, v′a ∈ L = ∩n
i=1P

−1
i (Li). Since P (v′) = P (v),

we have (s0)v′ ≈Aux(S) (s0)v . From (s0)v
a
→′ and condition (*) of Algorithm 1, it follows that

(s0)v′
a
→ ⇒ (s0)v′

a
→1, and also ∀u ∈ A∗

uo: (s0)v′a
u
→ ⇒ (s0)v′a

u
→1. But this implies that

(si
0)v′i = qi a

→1i, because v′a ∈ K =‖n
i=1 Ki implies that v′ia = Pi(v

′a) ∈ Ki. We show also
that ∀ui ∈ A∗

uo,i: qi
a

ui→i ⇒ qi
a

ui→1i. Indeed, qi
a

ui→ means v′iau1 ∈ Li. Similarly as for a ∈ Auo,
by considering u = ui ∈ A∗

uo we obtain using shuffle property that v ′au ∈ L, i.e. (s0)v′a
u
→

whence (s0)v′a
u
→1. But this means that v′au ∈ K , i.e. v′iaui = Pi(v

′au) ∈ Ki, or equivalently
qi
a

ui→1i.

In supervisory control of partially observed DES one is interested in computation of supre-
mal controllable and normal sublanguages. The question is whether the results of Theorems 4.5
and 5.26 can be combined. We have shown it in [21] using a single step algorithm for com-
putation of supremal controllable and normal sublanguages and the following result holds. The
notation supCN(K,L, P,Au) is chosen for the supremal controllable with respect to L and Au

and (L,P)−normal sublanguage of K .

Theorem 5.31. Modular control synthesis equals global control synthesis for supremal control-
lable and normal sublanguage in case of a distributed DES. Assume that the local plants agree on
the controllability of their common events and on the observability of their common events.

28

If the local plant languages {Li ⊆ A∗
i , i ∈ Zn} are mutually controllable and mutually normal

then
‖n

i=1 supCN(Ki, Li, P
loc
i , Aiu) = supCN(‖n

i=1 Ki, ‖
n
i=1 Li, P,Au). (2)

6 Examples and Verification of Mutual Normality

The purpose of this section is mainly to illustrate our results with examples. Before starting
with concrete examples we consider several extreme cases of distributed DES. First of all, if
all event alphabets are disjoint, the so called shuffle case, we notice that Pi(Pj)

−1(L2
j) = A∗

i

for any L2
j ⊆ A∗

j . This means that the condition of mutual normality cannot be satisfied. The
intuitive reason is that there is no interconnection between local subsystems in this case. This is
not surprising, because the observations of local agents are in this case completely independent
and therefore there is a huge gap between local and global observations.

On the other hand, it is obvious from the definition of mutual normality that in the case of
full local observations (all P loc

i ’s become identity mappings), mutual normality is trivialy satified.
Another extreme case occurs when all subsystems have the same event alphabets. Then all the Pi’s
are identity mappings, i.e. the mutual normality becomes usual normality between two languages
in a slightly more general sense (the assumption is lifted that one of the languages is a sublanguage
of the other). This might justify why we call our condition mutual normality, it is a symmetric
notion of normality.

6.1 Examples

First we show an example of a plant composed of two modules, where the commutativity be-
tween the supremal normal sublaguages and parallel product does not hold. Therefore mutual
normality does not hold either.

Example 6.1. Let A = {a, a1, a2, τ, τ1, τ2}, A1 = {a1, τ1, a, τ}, A2 = {a2, τ2, a, τ}, Ao =
{a1, a2, a}, Ao,1 = {a1, a}, and Ao,2 = {a2, a}. Consider the following local specification and
plant languages, where only second (prefix-closed) components are considered:

K1 = L1 K2 L2

(K1)τ

�
τ

(K1)τ1

τ
1

-

(K2)τ

�
τ

(K2)τ2

τ
2

-

(L2)τ

�
τ

(L2)τ2

τ
2

-

(K1)τa

a
?

(K1)τ1a1

a1
?

(K2)τa

a
?

(L2)τa

a
?

(L2)τ2a

a
?

We use the notation U1 = supN(K1, L1, P
loc
1), U2 = supN(K2, L2, P

loc
2),

U = supN(K1, L1, P
loc
1) ‖ supN(K2, L2, P

loc
2), and V = supN(K1 ‖ K2, L1 ‖ L2, P). We

have trivially that U1 = K1 = L1. It is easy to see that U 2
2 = supN(K2, L2, P

loc
2)2 = {ε, τ, τ2}.

Computing the parallel products K = K1 ‖ K2 and L = L1 ‖ L2 yields K = L, i.e. we obtain

29

trivially K = L = V as is shown in the diagram below, where U = U1 ‖ U2 is also computed:

U2 U K = L = V

(U2)τ

�
τ

(U2)τ2

τ
2

-

Uτ

�
τ

Uτ1

τ1
?

Uτ2

τ
2

-

Kτ

�

τ

Kτ1

τ1
?

Kτ2

τ
2

-

Uτ1a1

a1
?

Uτ1τ2

τ
2

-

Uτ2τ1

τ
1

-

Kτa

a
?

Kτ1a1

a1
?

Kτ1τ2

τ
2
-

Kτ2τ1
τ
1

-

Uτ1a1τ2

τ2
?

Uτ1τ2a1

a1
?

Uτ2τ1a1

a1
?

Kτ1a1τ2

τ2
?

Kτ1τ2a1

a1
?

Kτ2τ1a1

a1
?

Thus, U 6= V , because Uτ 6
a
→, while Vτ

a
→. Therefore we only have the strict inclusion U ⊂ V

and the commutativity studied in this paper does not hold for this example. According to theorem
5.26 the mutual normality cannot hold. Indeed, we have (P loc

1)−1P loc
1 (L2

1) ∩ P1(P2)
−1(L2

2) =
τ∗
1 (ττ∗

1 a1 + a1τ
∗
1 τ)τ∗

1 , but we have e.g. (τ1)
n 6∈ L2

1 for n ≥ 2!

Next an example is given, where the commutativity between the supremal normal sublanguages
and the parallel product holds without the mutual normality condition. Therefore mutual normal-
ity is not a necessary condition for the commutativity. This should not be surprising, because
mutual normality as a structural condition concerns only local open-loop languages and not local
specification languages.

Example 6.2. Consider the same event alphabets as in the preceding example and the following
local specification and plant languages:

K1 L1 K2 L2

(K1)a

�
a

(K1)a1

a
1

-

(L1)a

�
a

(L1)a1

a
1

-

(K2)a

�
a

(K2)a2

a
2

-

(L2)a
�

a
(L2)a2

a
2

-

(L1)aτ

τ
?

(L1)a1τ1

τ1
?

(K2)aτ

τ
?

(L2)aτ

τ
?

(L2)a2τ2

τ2
?

Computing parallel products K = K1 ‖ K2 and L = L1 ‖ L2 yields:

30

K L

Ka

�
a

Ka1

a1
?

Ka2

a
2

-

La

�
a

La1

a1
?

La2

τ2
-

a
2

-

La2τ2

a1
- La2τ2a1

Ka1a2

a
2

-

Ka2a1

a
1

-

Laτ

τ
?

La1τ1

τ1
?

La1a2

a
2

-

La2a1

τ2
-

a
1

-

La2a1τ2 La2τ2a1τ1

τ
1

-

La1τ1a2

a2
?

La1a2τ1

τ1
?

La1a2τ2

τ
2

-

La2a1τ1

τ
1

-

La2a1τ2τ1

τ
1

-

La1τ1a2τ2

τ2
?

La1a2τ1τ2

τ2
?

La1a2τ2τ1

τ1
?

La2a1τ1τ2

τ2
?

In this example we have

supN(K1, L1, P
loc
1)2 = {ε} = supN(K,L, P)2,

and supN(K2, L2, P
loc
2)2 = {ε, a, aτ}, i.e. the commutativity holds true. On the other hand,

mutual normality does not hold for the same reason as above:

(P loc
1)−1P loc

1 (L2
1) ∩ P1(P2)

−1(L2
2) = τ∗

1 (a1 + aτ∗
1 τ)τ∗

1

We have e.g.
τ1 ∈ (P loc

1)−1P loc
1 (L2

1) ∩ P1(P2)
−1(L2

2) \ L2
1.

In the second example we have seen that the mutual normality is not a necessary condition for
commutativity between the supremal normal sublanguage and the synchronous product.

6.2 Verification of Mutual Normality

In this subsection we suggest a test for mutual normality. The algorithm for the test we propose
will be based on similar algorithms for normality in supervisory control of (monolithic) discrete-
event systems. Indeed, it is sufficient to notice that L1 and L2 are mutually normal iff L1 is
normal with respect to P1(P2)

−1(L2) and P loc
1 ; and L2 is normal with respect to P2(P1)

−1(L1)
and P loc

2 . Thus the verification of mutual normality is reduced to the verification of normality
of L1 and L2 with respect to the plant languages P1(P2)

−1(L2) and P2(P1)
−1(L1), respectively.

There are several tests for checking normality in the DES literature. For example, algorithms in
[5], [8] or [9] can be used. Notice that these new plant languages are regular provided L1 and
L2 are regular. A procedure for construction of recognizers for projected languages and inverse
projections of regular languages are known and are discussed in [36]. Let G1 and G2 denote the
automata recognizing the new plants P1(P2)

−1(L2) and P2(P1)
−1(L1), respectively, S1 denotes

a recognizer of L1 and S2 denotes a recognizer of L2. We propose the following procedure for
checking the mutual normality of L1 and L2. The only subtlety is that since Li are not in general
sublanguages of Pi(Pj)

−1(Lj), i, j = 1, 2, Si cannot be subautomata of Gi, i = 1, 2. Therefore,
a generalisation of our concept of normal relation is needed.

31

Definition 6.3. (Normal relation.) Let two (partial) automata S = (S, 〈o1, t1〉) and G = (G, 〈o, t〉)
with initial states s0 ∈ S and q0 ∈ G, t1 denoted by →1 ,and t denoted by → are given. A binary
relation N(S,G) on S × G is called a normal relation if for any 〈s, t〉 ∈ N(S,G) the following
items hold:
(i) ∀a ∈ A : s

a
→1 sa and t

a
→ ta ⇒ 〈sa, ta〉 ∈ N(S,G)

(ii) ∀u ∈ Auo : t
u
→ tu ⇒ s

u
→1 su.

(iii) ∀a ∈ Ao : t
a
→ ta and (∃s′ : 〈s, s′〉 ∈ Aux(S1) : s′

a
→1 s′a) ⇒ s

a
→1 sa.

An easy modification of the proof of the corresponding theorem in [17] cited below (Theorem
6.4) shows that

Theorem 6.4. A (partial) language K is (L,P)−normal iff there exists a normal relation N(S,G)
on S × G such that 〈s0, q0〉 ∈ N(S,G).

Denote by lS2 (.) the second components of the behavior homomorphisms, i.e. for a partial
automaton S the behavior of s0 ∈ S is given by lS(s0) = (lS1 (s0), l

S
2 (s0)).

Algorithm 2. (Checking of mutual normality.)
1. Construct recognizers of L2

1 ⊆ A∗
1 and L2

2 ⊆ A∗
2: partial automata S1 and S2 with initial

states s1
0 and s2

0 such that lSi

2 (si
0) = L2

i , i = 1, 2. Their transition functions are denoted by
→Si

, i = 1, 2.
2. Construct recognizers of P1(P2)

−1(L2) and P2(P1)
−1(L1): partial automata G1 and G2 with

initial states q1
0 and q2

0 such that lG1

2 (q1
0) = P1(P2)

−1(L2
2) and lG2

2 (q2
0) = P2(P1)

−1(L2
1). Their

transition functions are denoted by →Gi
, i = 1, 2.

3. Construct the relations Aux(S1) and Aux(S2).
4. Construct and check relations Ni ⊆ Si × Gi for i = 1, 2 using (a) and (b) below:
For i=1 to 2 do
begin
(a) 〈si

0, q
i
0〉 ∈ Ni; si := si

0; ti := qi
0; Abort := 0;

Construct Ni := {〈(si
0)w, (qi

0)w〉 | w ∈ lSi

2 (si
0) ∩ lGi

2 (qi
0)}

by ’browsing through Si and Gi’ using ’a-transitions’ for all a ∈ A:
Add iteratively new 〈(si), (ti)〉 ∈ Ni

(b) If (ii) or (iii) of Definition 6.3 is violated for s = si and t = ti then Abort := 1
If Abort = 1 then return ”L1 and L2 are not mutually normal” and goto 6.
end (of For)
5. If Abort = 0 then return ”L1 and L2 are mutually normal”
6. The end (of algorithm)

The algorithm terminates, because it browses through the transition structure of the automata
representations that are finite. We notice that our algorithm for checking mutual normality is of
an exponential worst-case complexity, but in the sizes of local automata, which are much smaller
than the global automaton, especially if there is a large number of small local components, which
case is very frequent in applications.

Roughly speaking, mutual normality means that the closure under taking derivatives of the
pairs of initial states must verify conditions (ii)-(iii) of Definition 6.3. There is a canonical way
to verify this: whenever a new pair of derivatives is added to the relation, conditions (ii)-(iii) of
Definition 6.3 are checked at step 4(b) and either one of them is violated and the procedure aborts
(Abort = 1) meaning that the mutual normality does not hold or a new pair is added to the relation

32

and we eventualy end up by constructing 2 normal relations proving the mutual normality of L1

and L2. In the second case the termination is due to exhaustion of transitions leading from related
states in their automata representations and not by violation of conditions of the (generalised)
normal relation.

6.3 Computational complexity of monolithic vs. modular computation

In this subsection the computational complexities of monolithic and modular computation of
supremal normal sublanguages is discussed. The following symbols will be used.

nm ∈ N number of modules,
ni size of the minimal state set of a recognizer of module i ∈ Znm ,

n∗ = max
i∈Znm

ni ∈ N,

nL = size of the minimal state set of the recognizer
of the global plant,

ki size of the minimal state set of a recognizer i ∈ Znm ,

of the local specification Ki ⊆ A∗
i ,

k∗ = max
i∈Znm

ki ∈ N,

nK size of the minimal state set of the recognizer
of the specification.

We have the following simple inequalities and bounds:

nL ≤
nm
∏

i=1

ni ≤ (n∗)nm , nK ≤
nm
∏

i=1

ki ≤ (k∗)nm

The time complexity of the computation of the supremal normal sublanguage is stated in [5] as
being exponential in the size of a minimal recognizer and of the size of the minimal recognizer of
the specification language. The same expression in used the paper [16]. The formulas need to be
used to derive an explicit expression for the time complexity. Below is used the following formula

O(2nL·nK). (3)

It follows that the complexity of the monolithic (global) computation is double exponential:

O(2(n∗)nm ·(k∗)nm)).

On the other hand, modular computation is only single exponential in the size of local plants
and specifications. The main step: computation of local supremal normal sublanguage takes
O(2n∗·k∗

)for local specifications. According to [42] there exists a polynomial time algorithm for
checking observability. Its minor modification provides a polynomial time algorithm for check-
ing normality. The verification of mutual normality of local plant anguages is then polynomial in
terms of n∗ and 2n∗ . Note that the term 2n∗ appears, because PiP

−1
j (Lj) must be computed and

the natural projections are computed with exponential worst case complexity, although in most
cases these can be calculated much faster (cf. [49]). Still the resulting complexity of modular
computation with checking of sufficient conditions is clearly only single exponential in terms of
n∗.

33

7 Conclusion

We have studied modular supervisory control with both fully and partially observed modules
in the coalgebraic framework. The conditions for preserving the closed-loop languages have been
found for both fully and partially observed modular DES. Moreover conditions for commutativity
between supremal controllable sublanguages and the synchronous product have been obtained co-
agebraicly and similar conditions have been obtained for commutativity between supremal normal
sublanguages and the synchronous product. Using a similar single-step auxiliary algorithm for
computation of supremal normal and controllable sublanguages, it is possible to obtain similar
result for commutativity between supremal normal and controllable sublanguages and the syn-
chronous product. These results are important for feasibility of the optimal supervisory control
of large distributed plants, because under the derived conditions control synthesis can be exerted
locally.

There are many open problems left for future investigations. For instance, all conditions we
have obtained are only sufficient conditions. The question is whether they can be weakened, at
least in some special cases that occur in some relevant applications to be found. Another direction
of future research is to study the conditions for commutativity between the synchronous product
and the closed-loop languages using antipermissive control policy. In this paper the blocking issues
have not been considered. It is to be expected that for modular DES with partial observations the
conditions for nonblocking are also the same as for modular DES with full observations, however
it must still be proven.

An effective procedure for verification of mutual normality has been found. Mutual controlla-
bility and mutual normality are likely to be much easier to verify than controllability and normality,
because the corresponding plant and specification languages involved are local, thus much smaller.

Acknowledgment
A major part of this research has been carried out at CWI Amsterdam, The Netherlands. Finan-

cial support of the EU Esprit LTR Project Control and Computation, ISO-2001-33520 and partial
financial support of the Grant GA AV No. B100190609 is gratefully acknowledged. This research
was also supported by the Academy of Sciences of the Czech Republic, Institutional Research
Plan No. AV0Z10190503.

References

[1] P. Aczel and N. Mendler. A final coalgebra theorem. In D.H. Pitt, D.E. Ryeheard, P. Dybjer, A.M.
Pitts, A. Poigne (Eds.), Proc. Category theory and Computer Science, Lecture Notes in Computer
Science, Volume 389, 1989, 357-365.

[2] G. Barrett and S. Lafortune. Bisimulation, the Supervisory Control Problem and Strong Model Match-
ing for Finite State Machines. Journal of Discrete Event Dynamical Systems: Theory and Applica-
tions, 8:377-429, 1998.

[3] G. Barrett and S. Lafortune. Decentralized Supervisory Control with Communicating Controllers.
IEEE Trans. on Automatic Control, 45:1620-1638, 2000.

[4] A. Bergeron. On the Rational Behaviors of Concurrent Timers. Theoretical Computer Science ,
189:229-237, 1995.

[5] R.D. Brandt, V. Garg, R. Kumar, F. Lin, S.I. Marcus, W.M. Wonham. Formulas for Calculating Supre-
mal Controllable and Normal Sublanguages, Systems & Control Letters 15:111-117, 1990.

34

[6] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varayia. Supervisory Control of a Class of Discrete Event
Processes. IEEE Trans. Automatic Control, 33:249-260, 1988.

[7] S.G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems, Kluwer Academic Pub-
lishers, Dordrecht 1999.

[8] H. Cho and S. I. Marcus. On Supremal Languages of Classes of Sublanguages that Arise in Super-
visor Synthesis Problems with Partial Observations.JKumar 00 Mathematics of Control, Signal, and
Systems, 2:47-69, 1989.

[9] H. Cho and S. I. Marcus. Supremal and Maximal Sublanguages Arising in Supervisor Synthesis
Problems with Partial Observations. Math. Systems Theory, 22:171-211, 1989.

[10] S. Eilenberg. Automata, Languages, and Machines. Academic Press, New York and London, 1974.

[11] S. Eilenberg and J.C. Moore. Adjoint functors and triples. Illinois J. Math., Vol. 9, pp. 381-398, 1965.

[12] M. Fabian and R. Kumar. Mutually Nonblocking Supervisory Control of Discrete Event Systems .
Automatica, pp. 1863-1869, vol. 36, 2000.

[13] R. Grossman and R. G. Larson. The realization map of input-output maps using bialgebras. Forum
Math. 4 (1992), 109–121.

[14] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, Reading, MA, 1979.

[15] S. Jiang and R. Kumar. Decentralized Control of Discrete Event Systems with Specialization to Lo-
cal Control and Concurrent Systems. IEEE Transactions on Systems, Man, and Cybertetics- Part B:
Cybernetics, Vol. 30, No. 5, pp. 653-660, October 2000.

[16] R. Kumar, V. K. Garg, S.I. Marcus. On controllability and normality of discrete event dynamical
systems. Systems & Control Letters (17), 157-168, 1991.

[17] J.Komenda. Computation of Supremal Sublanguages of Supervisory Control Using Coalgebra. Pro-
ceedings WODES’02, Workshop on Discrete-Event Systems, Zaragoza, p. 26-33, October 2-4, 2002.

[18] J. Komenda. Coalgebra and Supervisory Control of Discrete-Event Systems with Partial Observations.
Proceedings of MTNS 2002, Notre Dame (IN), August 2002.

[19] Supremal normal sublanguages of large distributed discrete event systems . In Proceedings of
WODES 2004, Reims, France, September 2004.

[20] J. Komenda and and J.H. van Schuppen. Control of Discrete-Event Systems with Partial Observations
Using Coalgebra and Coinduction. Discrete Event Dynamical Systems: Theory and Applications
15(3), 257-315, 2005.

[21] J. Komenda. Modular Control of Large Distributed Discrete-Event Systems with Partial Observa-
tions. In Proceedings of the 15th International Conference on Systems Science, Vol. II, pp. 175-184,
Wroclaw, Poland, September 2004.

[22] S. Lafortune and E. Chen. The Infimal Closed and Controllable Superlanguage and its Applications
in Supervisory Control, IEEE Trans. on Automatic Control, 35:398-405, 1990.

[23] F. Lin and W.M. Wonham. Decentralized Supervisory Control of Discrete-Event Systems, Informa-
tion Sciences 44:199-224, 1988.

[24] F. Lin and W.M. Wonham, Decentralized Control and Coordination of Discrete-Event Systems with
Partial Observations, IEEE Trans. Automatic Control, 35:1330-1337, 1990.

35

[25] F. Lin and W.M. Wonham. Verification of Nonblocking in Decentralized Supervision. Control-Theory
and Advanced Technology, 7:223-232, March 1991.

[26] R. Milner. Communication and Concurrency. Prentice Hall International Series in Computer Science.
Prentice Hall International, New York, 1989.

[27] A. Overkamp and J.H. van Schuppen. Maximal Solutions in Decentralized Supervisory Control, SIAM
Journal on Control and Optimization, 39:492-511, 2000.

[28] K. Rohloff and S. Lafortune. The Control and Verification of Similar Agents Operating in a Broadcast
Network Environment. In Proceedings CDC 2003, Hawaii, USA.

[29] K. Rohloff and S. Lafortune. On the Computational Complexity of the Verification of Modular
Discrete-Event Systems. In Proc. 41 st IEEE Conference on Decision and Control, Las Vegas, Nevada,
USA, December 2002.

[30] J.J.M.M. Rutten. Automata and Coinduction (an Exercise in Coalgebra). Research Report CWI, SEN-
R9803, Amsterdam, May 1998. Available also at http://www.cwi.nl/˜janr.

[31] J.J.M.M. Rutten. Coalgebra, Concurrency, and Control. Research Report CWI, SEN-R9921, Amster-
dam, November 1999. Available also at http://www.cwi.nl/˜janr.

[32] J.J.M.M. Rutten. Universal Coalgebra: A Theory of Systems. Theoretical Computer Science 249:3-
80, 2000.

[33] J.J.M.M. Rutten. Fundamental Study. Behavioural Differential Equations: a Coinductive Calculus of
Streams, Automata, and Power Series. Theoretical Computer Science 308(1):1-53, 2003.

[34] P.J. Ramadge and W.M. Wonham. The Control of Discrete-Event Systems. Proc. IEEE, 77:81-98,
1989.

[35] K. Rudie and W.M. Wonham. The Infimal Prefix-Closed and Observable Superlanguage of a Given
Language. Systems & Control Letters 15:361-371, 1990.

[36] K. Rudie and W.M. Wonham. Think Globally, Act Locally: Decentralized Supervisory Control, IEEE
Trans. on Automatic Control, 37:1692-1708, 1992.

[37] K. Rudie and J. Willems. The Computational Complexity of Decentralized Discrete-Event Control
Problems, IEEE Trans. on Automatic Control, 40:313-1319, 1995.

[38] K. Schmidt, J. Reger, and T. Moor. Hierarchical control of structural decentralized DES. In Proceed-
ings of WODES 2004, Reims, France, September 2004.

[39] E.D. Sontag. Polynomial response maps. Lecture Notes in Control and Information Sciences, volume
13, Springer-Verlag, Berlin, 1979.

[40] J.G. Thistle. Supervisory Control of Discrete-Event Systems. Mathematical and Computer Modeling,
11/12:25-53, 1996.

[41] J.G. Thistle and W.M. Wonham. Supervision of Infinite Behavior of Discrete-Event Systems, SIAM
Journal on Control and Optimization 32:1098-1113, 1994.

[42] J.N. Tsitsiklis. On the Control of Discrete-Event Dynamical Systems. Mathematics of Control, Signal,
and Systems, 95-107, 1989.

[43] Y. Willner and M. Heymann. Supervisory Control of Concurrent Discrete-Event Systems. Interna-
tional Journal of Control, 54:1143-1166, 1991.

36

[44] K.C. Wong and S. Lee. Structural Decentralized Control of Concurrent Discrete-Event Systems. Eu-
ropean Journal of Control, 8:477-491, 2002.

[45] K.C. Wong and W.M. Wonham. Modular Control and Coordination of Discrete-Event Systems. Dis-
crete Event Dynamical Systems: Theory and Applications, 8:247-297, 1998.

[46] W.M. Wonham and P.J. Ramadge. Modular Supervisory Control of Discrete-Event Processes, Math-
ematics of Control, Signal and Systems, 1:13-30, 1988.

[47] T.S. Yoo, S. Lafortune, and F. Lin. A Uniform Approach for Computing Supremal Sublanguages Aris-
ing in Supervisory Control theory. Preprint, Dept. of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor 2001.

[48] T.S. Yoo, S. Lafortune. General Architecture for Decentralized Supervisory Control of Discrete-Event
Systems. Discrete Event Dynamic Systems: Theory and Applications, 12:335-377, 2002.

[49] K.C. Wong. On the complexity of projections of discrete-event systems, in Proc. 4th Int. Workshop
Discrete Event Syst. (WODES’98), Cagliari, Italy, 1998, pp. 201-206.

A Coalgebra and Coinduction

Final coalgebras give rise to coinductive definition and proof principle. These are heavily used
throughout the paper. In this appendix several concepts for control of DES are defined which are
used in the paper.

A.1. Coinductive definitions

Recall from [31] the following coinductive definitions of the synchronous and the supervised
products with full observations. Large scale DES are frequently formed as parallel compositions
of concurrently running components. For the synchronous product we assume that K is defined
over the alphabet A1 and L over A2. Then the synchronous product K ‖ L is a language over
A1 ∪ A2 with the following coinductive definition:

Definition A.1. (Synchronous product)

(K ‖ L)a =

Ka ‖ La if a ∈ A1 ∩ A2

Ka ‖ L if a ∈ A1 \ A2

K ‖ La if a ∈ A2 \ A1

and (K ‖ L) ↓ iff K ↓ and L ↓.

Now we recall from [31] the operation of supervised product that represents the closed-loop
laguage, where the first language (K) acts as a supervisor (or specification language) and the
second language (L) is the open-loop (plant) language. In the following definition Au ⊆ A
denotes the subset of uncontrollable events (those that cannot be prevented from happening by any
supervisor).

Definition A.2. (Supervised product with full observations)

(K/AuL)a =

Ka/AuLa if K
a
→ and L

a
→

0/AuLa if K 6
a
→ and L

a
→ and a ∈ Au

∅ otherwise

and (K/AuL) ↓ iff L ↓.

37

It is proven in [20] that (K/AuL) equals the infimal controllable superlanguage of K . However,
in a typical situation of supervisory control problem safety is the main issue. Therefore supremal
controllable sublanguages are more interesting than infimal controllable superlanguages. Now we
recall from [20] the following binary operation on partial languages:

Definition A.3. (Supremal controllable sublanguage) Define the following binary operation on
(partial) languages for all K,L ∈ L and ∀a ∈ A:

(K/S
CL)a =

Ka/
S
CLa if K

a
→ and L

a
→

and ∀u ∈ A∗
u : La

u
→ ⇒ Ka

u
→

∅ otherwise

and (K/S
CL) ↓ iff L ↓ .

One can easily see a very simple intuition behind the Definition A.3. It is nothing but a language
formulation of safe (under control) subset of states (i.e. the complement of weakly forbidden set
of states). This correspond to subset of states from which it is possible to evolve into forbiden
states (equivalent to strings not in K)in an uncontrollable fashion. We have shown in [20] that for
a partial order that considers only second (prefix-closed) componets of the languages involved:

Theorem A.4. (K/S
CL) = sup{M ⊆ K : M is controllable with respect to L and Au}, i.e.

K/S
CL equals the supremal controllable sublanguage of K .

38

