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On Efficient Solution of Linear Systems Arising
in hp-FEM

Tomas Vejchodsky

Abstract This contribution studies thstatic condensation of internal degrees of
freedom which allows for efficient solution of linear algebraic syists arising in
higher-order finite element methods. On each element, #tie sbndensation elim-
inates the degrees of freedom corresponding to the intéonalubble) basis func-
tions. The elimination is local in elements and can be dompanallel. The resulting
Schur complement system is considerably smaller and, nmergbhas less nonzero
elements and better condition number in comparison witlotiggnal system. This
paper focuses on the numerical performace of the staticasmation and shows its
CPU time efficiency.

1 Introduction and Higher-Order Finite Elements

In the standard finite element method (FEM) or more preciseits h-version f-
FEM), the decrease of the discretization error is achieyesliccessive refinement
of the mesh. The method converges if the size of the elementstto zero, and
the rate of this convergence is proved to be algebraic. Inltanmnative approach
called thep-version p-FEM), the geometry of the mesh is fixed and the polyno-
mial degrees of the elements vary. The convergence is athigy increasing the
polynomial degrees and the convergence rate is expondntied exact solution
is C*-smooth. A combination of these two approaches is knownabhversion
(hp-FEM), see, e.g., [2, 4, 5, 7, 8]. To decrease the discratizarror in thehp-
FEM we either refine the elements or we increase their polyalahegrees or we
both refine the elements and redistribute the polynomialesesgon the subelements
in a suitable way. If thisip-refinement is done in a correct way, then thieFEM
converges exponentially fast even in the presence of sinigjek.
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The higher-order FEM leads to linear algebraic systems svgpecial structure.
This special structure can be utilized to design efficiegébfaic solvers. In partic-
ular, a characteristic feature of the higher-order FEM ésggtesence of the so-called
bubble (or internal) basis functions that are supportedsimgle element only. The
static condensation of internal degrees of freedom (DORs)raates these bubble
functions from the whole system by a local (element-by-eethprocedure. Af-
ter this elimination, we obtain a reduced system of linegehiaic equations — the
Schur complement system. From this system, we compute lieg @ton-internal)
DOFs which correspond to vertices, edges, and faces of ¢émeegits. The number
of the internal DOFs grows with the polynomial degrqedy an order of magni-
tude faster than the number of the non-internal DOFs. Tluuifher values o,
the number of the internal DOFs dominates and their statideonsation leads to a
significant decrease of the size of the linear algebraiesyst

The technique of the static condensation of the internal ®B8Fdescribed in
Section 2. The core of this paper lies in Section 3, where gr@opmance of the
static condensation is tested by various numerical exgmerisn Brief conclusions
are given in Section 4.

2 Static Condensation of Internal Degrees of Freedom

To simplify the exposition, we only consider 2D elliptic fplems discretized by
triangular finite elements of an arbitrary order. Howeuee, $tatic condensation of
the internal DOFs can be used in any dimension, for much vaides of problems,
and for various types of higher-order finite elements.
Let Q c R? be a polygon. We consider a problem whose weak formulatiase
find u € V such that
a(u,v) =.Z(v) Wev, 1)

whereV is a suitable Hilbert spaca, V xV — R is a continuou¥ -elliptic bilinear
form, and.# is a continuous linear functional dh Problem (1) possesses a unique
solution due to the Lax-Milgram lemma. For example, if

V =H}Q), a(u,v):/ Ou-COvdx, and 9(v):/ fvdx, (2)
Q Q

then (1) corresponds to the Poisson problem with homogexiewichlet boundary
conditions.

We discretize problem (1) by thep-FEM. Let %, be a triangulation of2, let
pk stand for the polynomial degree assigned to the eleikent’,, and let

Vhp = {Vhp €V : Vpplk € P(K), K € Fp}

be the finite element space, whéte (K) denotes the space of polynomials of de-
gree at mospg on the trianglé<. Thehp-FEM solutionu, € Vi is defined by
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We consider a standafth-FEM basisgy, ¢2, ..., ¢n Of Vihp, whereN = dim(Vyp),
see, e.0., [2, 4, 5, 8]. These basis functions are constretéenent by element as

dilk :¢:K}gl(i)’ i=1,2...,N,

wheregX, m=1,2,...,NX, denote theshape functions that only are supported in
the single elemer andix : {1,2,...,NK} — {1,2,...,N} is the standard connec-
tivity mapping, see [8, 6] for more details and Fig. 1 for dnstration. Notice that
if i ¢ Dom(ik), i.e., if 1, (i) is not defined, therpl*él(i) is considered to be zero.
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Fig. 1 (a) Two edge shape functions on two neighbouring elements & edge basis function.
(b) The bubble shape function coincides with the bubblesifasiction.

Problem (3) is equivalent to the system of linear algebrgia¢ions
AY=F, Ajj=a(¢j,¢i), Fi=7(¢), i,j=12...,N, 4

whereA € RN*N andF € RN are the (global) stiffness matrix and the (global) load
vector, respectively. The vectdf ¢ RN contains the expansion coefficientsupf,
in the finite element basis.

The global stiffness matrix and the global load vector aseabled from the

local stiffness matriceaX € RN“*N“ and from the local load vectoi< e RN,
K € Jhp. These local matrices and vectors are defined by

A?m:aK((PlK(m)?(PlK(f)) and F?:‘g‘\K((PlK(f))? gamzlaza"'aNKv

where the local bilinear forrak (-, -) and the local linear functiona¥x satisfy

a(¢ja¢i): ; aK(q)Jaq)l) and y(d’l): yK(q)i)a i,j:1,2,...,N.
KEIhp

KEJhp

For example, ifa(-,-) and.# are given by (2), then the local bilinear foran (-, )
and the local linear functiona¥i are defined as

aK<¢j,¢i>='/K'D¢j-D¢idx and fK(¢i>:'/K'f¢idx.

With this notation, the standard finite element assemblioggdure can be written
as
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Ajj = All(—l

., and Fi= FK
KEThp K (')a’Kl(J) : it

iy’ i,j=1,2,...,N. (5)
KEIhp K

From now on we will consider a special enumeration of thesasiction. We
enumerate the bubbles first, and then the other basis fuisctidence ifM de-
notes the number of the bubble functions, thfan..., ¢m stand for the bubbles
anddy+1,...,¢n stand for the other basis functions. Similarly, we enuneetiag
shape functions in all elements. In each elentert 7, the firstMK shape func-
tions are the bubbles and the ot — MK shape functions are the non-bubbles.
This enumeration splits the global and local stiffness megrand the global and
local load vectors into natural blocks

- (33) - (E%). #-(5) (5. @

whereA € RMXM B e RIN-M)xM AK c RMSxMS BK o RINC-M )xM gic.

Since the bubble functions are supported in a single elentiemtcorrespond-
ing matrix A is block diagonal with the diagonal blocks beiddf, i.e., A =
blockdiag AX,K € Fhp}. Thus, the matrixA is easily invertible and this makes
the static condensation of the internal DOFs efficient.

The block structure (6) reshapes the global stiffness sy§4¢ as follows

ABT X F
(6%)()-(6) 2
where(x",y") = YT. The idea of the static condensation is to expresRM as

x=AYF-By)

and substitute this into the second block-row of (7) to abtae Schur complement
system fory ¢ RN-M

S =G, where S=D-BA BT and G=G-BA'F. (8)

It is shown in [6] that the Schur compleme®iand the right-hand sidé can be
obtained by the standard finite element assembling proeediur(5),

and Gj = Gk,

1
KEJhp K

Sj = g<—1 0,1 ; i) (9)
Ke%hp li (M), 1 (M) (M-+i)

i,j=1,2,...,N—M, whereS¢ = DX — BK(AX)~1(BK)T are the local Schur com-
plements anGK = GK — BX(AK)~1FK are the corresponding local right-hand sides.
The static condensation of the internal DOFs can also bepirgted as an or-
thogonalization of the non-bubble basis functions witlpees to the bubbles. It can
be shown that the static condensation and the partial ocotredzation of the basis
are just two interpretations of the same arithmetic prooeddoreover, if the Schur
complement system (8) is solved by the ILU-PCG, then thihiamétic procedure is
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equivalent to the ILU-PCG applied to the original system Hwever, the usage of
ILU-PCG for (4) is less efficient than the static condensabecause in ILU-PCG
we eliminate the internal DOFs superfluously in every iieratvhile it suffices to
do it once. Furthermore, it can be shown that the sparsitgipest of the Schur com-
plementSand of the original bloclo are identical. Hence, no fill-in appears during
the construction o8. Finally, notice that the Schur complem&nly depends on
the space of the bubbles and not on the particular basishégdit facts are proven in
[6], where more technical details can be found.

Another interesting fact, see [3], is that the conditiorofi§cannot be worse than
the conditioning ofA. In practice, however, the condition numberit observed
to be much smaller than the condition numbehof

3 Numerical Performance

This section presents several numerical experiments tpaoerthe performance of
the ILU-PCG with and without the static condensation. Morecjsely, we com-
pare two approaches. First, we use the static condensatiboanstruct the Schur
complement system (8), where we explicitely invert the Idtacks AX. The Schur
complement system (8) is then solved by ILU-PCG. In the séagproach we
directly apply the ILU-PCG to system (4). We show in [6] thlése approaches
are two different implementations of the same arithmetacpdure and hence the
number of ILU-PCG iterationBli is the same in both cases.

For the following tests, we consider the Possion problem

—Au=f inQ=(-1,12 u=0 ondQ.

The right-hand sidé = ur?/2 is chosen in agreement with the exact solutiea
cogxrt/2) cogym/2).

We stress that the static condensation can easily be implechavith the same
memory requirements as the standard approach. The memuaormgre®in Tables 1-4
below show the total number of entries in the local stiffnesdricesA.

The first two experiments illustrate the standardndp-version. For thé-FEM
we start with the four element mesh with polynomial degreg47, see Fig. 2(a).
Then in every refinement step, we split each triangular efeime four similar sub-
triangles with the same polynomial degree as the parenteglehas. In Table 1 we
presentN, the total number of DOFs (the size &J; M — N, the number of DOFs
after the elimination of the internal DOFs (the sizeSpfthe memory requirements
(specified above); the relative discretization erffar up||/||up|| measured in the
energy norm; the number of ILU-PCG iteratidig; and the CPU times needed to
solve the stiffness system with and without the static cosdgon.

Similarly, Table 2 shows the same quantities for ;REEM. Here we start with
the first order elements and increase this order by one iryestep. The initial
mesh was uniform with 256 elements, see Fig. 2(b). We rentatkthe values of
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the relative discretization error fqu = 8 andp = 9 are already polluted by the
round-off errors and by the precission of the used numegigatirature because the
discretization error is already close to the machine psémis

The results in Tables 1 and 2 show that for the presented raihgelynomial
degrees the static condensation of the internal DOFs dezsdhe solver CPU time
up to ten times. We remark that the polynomial degrees hititear ten are rarely
used in practice.

Notice the exponential decrease of the error forphesrsion in Table 2 and in
Fig. 3. This is due to th€*-smoothness of the exact solution. However, the number
of DOFs grows very rapidly with increasing The question is whether the error
would decrease if we fix the number of DOFs and incrgasaly. The answer is
given in Table 3. Practically, for a given value pfve construct a uniform triangu-
lation of Q such that the number of DOFs is more-less fixed. Clearly, timeber of
elements decreases with growipglin Table 3 we can observe the decrease of the
discretization error as well as the speed-up obtained bgtHie condensation.

Nevertheless, the memory requirements grow widven if the number of DOFs
is fixed. This is due to the fact that the stiffness matkiis more dense for higher
polynomial degrees. Hence, we can modify the previous éxyet in order to keep
the memory requirements fixed. For a giyewe construct a uniform triangulation
of Q such that the resulting memory requirements are constable # summarizes
the results. Interestingly, see also Fig. 3, the number df®decreases quite rapidly
but the discretization error decreases as well. Howevergte of the error decrease
is not as fast as in the previous cases, which is not surgrisin

Fig. 2 (a) The initial mesh (a) (b)
for theh-FEM. (b) The initial p2=5

mesh for thep-FEM consits

of linear elementsg= 1). pr=4Xpz=6

There are eight elements

along each edge of the square. ps=7

Table 1 The standard-FEM.

ref. N N—M memory rel. err. solver CPU time [s]
step (sized) (sizeS) [x10°] [%0] Niter Stat. con. no conden.

0 50 16 27 12 3 0004 Q005

1 225 89 11.0 ®x102 5 0012 0017

2 953 409 439 3Ax10°3 7 0049 Q0130

3 3921 1745 175.7 2x10* 11 0389 1665

4 15905 7201 703.0 .2x10°°> 21 4697 2610

5 64065 29249 2811.9 .Bx107 40 7110 4155
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Table 2 The standarg-FEM.

N N—M memory rel. err. solver CPU time [s]
(sized) (sizeS) [x10°%] [%0] Nier Stat. con. no conden.

p

1 113 113 2.3 Dx10*! 8 — 0.007
2 481 481 9.2 8x10*? 10 — 0049
3 1105 849 25.6 ¥x10°2 12 0102 Q0105
4 1985 1217 57.6 4x107* 13 0171 Q0350
5 3121 1585 112.9 .7x10°® 14 0302 Q987
6
7
8
9

4513 1953 200.7 .3x10°7 14 0504 2333
6161 2321  331.8 .Ix10° 15 0808 4933
8065 2689 518.4 3x10°11 16 1218 9582
10225 3057 7744 1x10°1 16 1773 17407

Table 3 The p-FEM with fixed number of DOFs.

N N—M memory rel. err. solver CPU time [s]
p (sized) (sizeS) [x10%] [%] Nier Stat. con. no conden.
1 28561 28561 518 Bx10! 82 — 169
2 28561 28561 518 9x10% 83 — 281
3 28561 22161 640 .3x10% 53 267 444
4 28561 17761 810 .2x10°® 41 212 5938
5 28561 14737 1016 .3x10°% 34 176 747
6 28561 12561 1254 8x10°10 29 150 894
7 28085 11221 1498 8x10712 26 128 1012
8 28561 9661 1823 2x10°12 24 117 1185
9 27145 9663 2045 3x10°1 22 96 1214

Table 4 The p-FEM with fixed memory requirements.

N N—M memory rel. err. solver CPU time [s]
p (sized) (sizeS) [x10%] [%] Nier Stat. con. no conden.
1 28561 28561 518 .8x10°1 65 — 150
2 28561 28561 518 9x102% 62 — 268
3 23113 17929 518 .8x10~% 40 178 285
4 18241 11329 518 5x10® 28 88 239
5 14281 7345 510 B8x107 22 45 185
6 12013 5253 530 .Ix10°° 19 28 156
7 9661 3661 518 Bx10710 17 17 120
8 8065 2689 518 3x10711 16 12 96
9 7813 2325 593 Px1011 15 11 103

4 Conclusions

The presented experiments show that the static condens#tibe internal DOFs
can lead to a considerable speed-up of the solver. Asyroptiytihowever, if the

polynomial degrees tend to the infinity and the number of elasistays fixed, then
the algorithm of the static condensation is close to the adatjpn of the inverse of
the (almost) fully populated matrix, which is not efficie@n the other hand, high
polynomial degrees are rare in practical computations.



8 Tomas Vejchodsky

_10° | 1
£

2107 1
>

2

S 10"} i
L

S10°t 1
(]

Q-8

£ 10 r[——h-FEM ]
© ol |~ p-FEM 6

10 "r | ——fixed DOFs
—Oo—fixed memory

10" 10° 10° 10 10

number of DOFs

Fig. 3 The error plot in the log-log scale. The numbers indicatepthignomial degrees.

Finally we mention that more elaborate preconditioners th& are available
for higher-order FEM, see, e.g., [1], where almost optintakpnditioners for the
p-FEM are derived. However, even these preconditioners eamplemented either
with or without the static condensation. For these predamirs the static conden-
sation would lead to the same speed-up per iteration asddt_th preconditioner.
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