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Abstract

For any complex vector bundle Ek of rank k over a manifold Mm

with Chern classes ci ∈ H2i(Mm,Z) and any non-negative integers
l1, · · · , lk we show the existence of a positive number p(m, k) and the
existence of a complex vector bundle Êk over Mm whose Chern classes
are p(m, k) · li · ci ∈ H2i(Mm,Z). We also discuss a version of this
statement for holomorphic vector bundles over projective algebraic
manifolds.
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1 Introduction.

The study of complex vector bundles of rank k over a manifold Mm

can be reduced to the study of mappings from Mm to the classifying
space Grk(C∞) = BUk. Certain equivalence relations of complex
vector bundles lead us to study stable mappings of BUk to itself.

We call a map g : BUk → BUk stable, if the restriction of
g to any subspace Grk(CN ) sends Grk(CN ) to some Grassmannian
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Grk(Cf(N)), moreover g∗(ck) = λ · ck for some positive λ. Here ck
denotes the top Chern class of the universal bundle over BUk.

Two maps f1, f2 : Mm → BUk are said to be in one stable equiv-
alence class, if f1 = g ◦f2 for some stable map g : BUk → BUk. Two
complex vector bundles Ek1 and Ek2 are said to be in the same weak
equivalence class, if the corresponding homotopy classes of classi-
fying maps contain maps in the same stable equivalence class. Two
complex vector bundles Ek1 and Ek2 are called Chern weakly equiv-
alent, if their top Chern classes are differed by a positive constant.
Clearly vector bundles in the same weak equivalence class are Chern
weakly equivalent. Zero sections of Chern weakly equivalent vector
bundles realize the same homology classes up to a positive constant.

1.1. Theorem. For any complex vector bundle Ek of rank k
over a manifold Mm with the Chern classes ci ∈ H2i(Mm,Z) and any
non-negative integers l1, · · · , lk, lk > 0, there exists a vector bundle
Êk in the same weak equivalence class with Ek, and a positive num-
ber p(m, k) such that the Chern classes ci(Êk) are p(m, k) · li · ci ∈
H2i(M,Z).

As a corollary of Theorem 1.1 and Thom’s theorem [Thom1954,
Theorem II.25] (a detailed proof of this theorem is given in [Le2005b]
and in the Appendix below) we get

1.2. Corollary. [Le2005, Proposition 2.7] Suppose that Mm is
an orientable differentiable manifold. For any c ∈ H2k(Mm,Z) there
exists a number N > 0 such that there exists a complex vector bundle
Ek of rank k over M whose top Chern class is N ·c and all other lower
Chern classes are zero.

We can think of Theorem 1.1 together with the Thom theorem as a
version of the Atiyah-Hirzebruch theorem about isomorphism between
the two rings K(Mm)⊗Q and Heven(Mm,Q) via the Chern character
[A-H1961] which implies that giving an element of K(Mm) ⊗ Q is
the same as giving an element in Heven(Mm,Q). Our Theorem 1.1
concerns vector bundles with a given dimension on Mm. I did not
give enough details to the proof of Proposition 2.7 in [Le2005], so now
the proof of Theorem 1.1 should compensate that deficit.

For i ≤ k there is a projection map p from BUi to BUk with fiber
U(k)/U(i) such that p∗(ci) = ci. Here ci also denotes the i-th Chern
class of the universal bundle over BUk. Another consequence of the
proof of Theorem 1.1 is
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1.3. Corollary. There are maps gmk,i : Grk(Cm) → Gri(Cl) →
BUi → BUk such that gNk,i(cj) = p(k,

(
m
k

)
) · δij · cj for 1 ≤ i, j ≤ k.

In the third section of this note we discuss the problem of extending
the notion of weak equivalence to the category of holomorphic vector
bundles over projective algebraic manifolds.

Two holomorphic vector bundles Ek and F k over a complex mani-
fold Mm are said to be Kähler weakly equivalent, if there there are
two holomorphic line bundles L1 and L2 over Mm such that Ek ⊗ L1

and F k ⊗ L2 are Chern weakly equivalent.
It is well-known that the Hodge conjecture is equivalent to the

statement that the Hodge groupHp,p(M,Q) := H2p(M,Q)∩Hp,p(M,C)
is generated by the top Chern classes of holomorphic vector bundle of
rank p on a projective algebraic manifold Mn (see e.g. [Voisin2002]).
A motivation for the notion of Kähler weakly equivalence is Lemma
3.1 below which states that any holomorphic vector bundle on a pro-
jective algebraic manifold is Kähler weak equivalent to a holomorphic
vector bundle such that the homotopy class of its classifying maps
contains a holomorphic map. With this on hand, we speculate about
reduction of the Hodge conjecture to the existence of certain holomor-
phic maps which may be obtained by using on the one hand Zucker
and Saito results on the existence of normal functions associated to
primitive Hodge cocycles in middle dimensions and on the other hand
Siu’s technique on harmonic maps.

For the convenience of the reader I include in this note an appendix
which re-exposes the detailed proof of Thom’s theorem in [Le2005b],
which now has a simpler form, since this proof is very close to our
proof of Theorem 1.1.

2 Proof of Theorem 1.1.

Proof of Theorem 1.1. Denote by γk the universal bundle over the
Grassmannian Grk(CN ) (we assume that N = ∞ or N is sufficiently
large as it shall be specified later). Since Ek is the pull-back of γ via
a classifying map f : Mm → Grk(CN ), it suffices to prove Theorem
1.1 for the case M = Grk(CN ), Ek = γk and N is sufficiently large,
and after that we use the classifying map f to take back the obtained
bundle to Mm.

Let us denote by K(Z, n) the Eilenberg-McLane space and by τn

the fundamental class of K(Z, n). Let fNk : Grk(CN ) → K(Z, 2k) be
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a classifying map for ck(γ) ∈ H2k(M,Z), i.e. (fNk )∗(τ2k) = ck(γ) ∈
H2i(M,Z).

Let FnN be a map from K(Z, n) → K(Z, n) such that FnN (τn) =
Nτn. The existence of a map FnN is ensured by the fact that K(Z, n)
is the classifying space for (Hn,Z). Clearly FnN is defined uniquely up
to homotopy.

2.1. Lemma. [Thom1954, Lemma II.22] For any finite abelian
group G of order N the endomorphism (FnN )∗ : H∗(K(Z, n), G) is
trivial.

(Lemma 2.1 follows directly from Cartan’s result which states that
the algebra H∗(K(Z, n),Zp) is generated by iteration of the Steenrod
squares of τn).

Denote by Y q the q-skeleton of a CW-complex Y . Clearly πk(Kq(Z, n)) =
πk(K(Z, n)) for any k < q.

2.2. Proposition. Suppose that Y is a simplicial space whose
q-skeleton Y q is compact for each q. Let the free component of πk(Y )
is isomorphic to Z with a generator t and let Q be an integer such
that Q ≥ k. If for all Q ≥ q ≥ k the group Hq+1(K(Z, k), πq(Y ))
is finite, then there exists a map GQ : KQ(Z, k) → Y such that
(GQ)∗(πk(KQ(Z, k))) =< N(Q, k)t >⊗Z⊂ πk(Y ).

Proposition 2.2 is a reformulation of Lemma II.24 in [Thom1954],
where Thom did not explicitly introduce the parameter Q. We quickly
recall his argument, adapted to this new reformulation. We prove
Proposition 2.2 by induction on the dimension Q ≥ k. Clearly Propo-
sition 2.2 for Q = k is trivial, since Kk(Z, k) = Sk.

Suppose that we have constructed a map GQ for Q ≥ k.
Now we put

G1
Q = F kN ◦GQ,

where F kN is the map in Lemma 2.1. By theorem of simplicial approx-
imation we can assume that F kN sends Kq(Z, k) to Kq(Z, k) for each
Q ≥ q ≥ k.

Since the obstruction to an extension of G1
Q to KQ+1(Z, k) lies in

the group F ∗N (Hq+1(K(Z, k), πq(Y )) which is trivial by Lemma 2.1, we
shall put GQ+1 as an extension of G1

q to KQ+1(Z, k). This completes
the induction step for the proof of Proposition 2.2.
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2.3. Lemma. Suppose that N ≥ 2l+ 1. Then the space Grl(CN )
satisfies the condition for Y with Q = N and for all k = 2r, if 1 ≤
r ≤ l, in Proposition 2.2.

Proof. To prove Lemma 2.3 it suffices to verify the following three
identities

(2.3.1) π2r(Grl(CN ))⊗Q = Q, for all 1 ≤ r ≤ l

(2.3.2) πq(Grl(CN ))⊗Q = 0, for all other q ≤ N

(2.3.3) Hq+1(K(Z, 2l), πq(Grl(CN ))⊗Q = 0, ∀q.

To prove (2.3.1) we consider the following exact sequence

(2.3.4) πq(Ul×UN−l)→ πq(UN )→ πq(Grl(CN ))→ πq−1(Ul×UN−l)

which also remains exact after tensoring with Q. To save the notation
we shall consider this exact sequence as of that of rational homotopy
groups.

For 2 ≤ q = 2r ≤ 2l the exact sequence (2.3.4) implies the equality
(2.3.1), since π2r(UN ) ⊗ Q = 0, π2r−1(Um) × Q = Q for r ≤ m, and
taking into account that the kernel of the map

i : Q⊕Q = π2r−1(Ul × UN−l)⊗Q→ π2r−1(UN )×Q = Q

is equal to Q.

To prove (2.3.2) we have to consider several cases for q. First let
us consider the exact sequence (2.3.4) for 2l + 1 ≤ q ≤ N . We know
[Spanier1966, 9.7] that πq(Ul⊗UN−l)⊗Q = πq(UN−l)⊗Q and taking
into account the fact that the map

i : Q = πq(Ul × UN−l)⊗Q→ πq(UN )⊗Q

is isomorphism. Taking into account the fact that πq(UN−l)⊗Q van-
ishes if q is even, we get

πq(Grl(CN )) = ker(πq−1(Ul × UN )→ πq−1(UN )) = 0

which implies (2.3.2) for 2l + 1 ≤ q ≤ N .
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Finally to verify (2.3.2) for q odd and less than 2l we notice that
the map πq(Ul ×UN−l)→ πq(UN ) is surjective, hence πq(Grl(CN )) =
πq−1(Ul × UN−l) = 0.

The last statement (2.3.3) follows from (2.3.1) for q = 2l, and it
follows from (2.3.2) for all other and taking into account the fact that
H∗(K(Z, 2l),Q) = Q[x], dimx = 2l. The last fact is obtained by Serre
and Cartan (see e.g.[F-F, 3.25] for an exposition. In fact this compu-
tation of H∗(K(Z, 2l),Q) can be easily obtained by using induction
method and by using the cohomology spectral sequence associated
with the fibration K(Z, n− 1) ∼= ΩK(Z, n)→ K(Z, n), whose fiber is
contractible.) 2

Continuation of the proof of Theorem 1.1.
For N ≥ 2k + 1 and for all 2 ≤ i ≤ k Proposition 2.2 and Lemma

2.3 give us a map

GNk,i : KN (Z, 2i)→ Grk(CN )

such that (GNk,i)∗(wi) = α(N, k, i)ti, where wi is a generator of π2k(KN (Z, 2i)) =
Z and ti is a generator of πi(Grk(CN ))⊗Q. Since H∗(Grk(CN ),Z) is
generated by ci(γ), i = 1, k, [Borel1953], we have

(2.4) < ci, ti >= Ai 6= 0

because ti is the generator of the free part of π2i(Grk(CN )). (To show
that Ai 6= 0 we consider the exact sequence (2.3.4). We see easily
that the image of ρ(ti) via embedding Gk(CN ) → Gk(C∞) is also a
generator of πi(Grk(C∞)). Applying the C-version of the Whitehead
theorem [Serre1953, Theorem III.3] to BUk and the product K(Z, 2)×
· · · ×K(Z, 2k) we notice that

< ci, i(ti) >= Ai 6= 0

which pull back to Gk(CN ) must also hold.
Thus

(2.5) (GNk,i)
∗(ci) = α(N, k, i) ·Ai · τ2i.

We can assume that Ai is positive by choosing appropriate orien-
tation of the generator ti.

Completion of the proof of Theorem 1.1.
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Denote by λNk,i the classifying map from Gk(CN ) to K(Z, 2i) for
ci ∈ H2i(Gl(CN ),Z), i.e.

λNk,i(τ
2i) = ci.

We can assume that λNk,i(Gk(CN )) ⊂ K2k(N−k)(Z, 2i). For each i
denote by s(2i) the smallest positive number such that for any j ≤ i−1
and any c ∈ H2j(K(Z, 2i),Z) we have s(2i) · z = 0. By a theorem of
Serre and Cartan mentioned above (see [F-F3.25]) there exists such a
number s(2i) for all i. Let p(N, k) be the smallest integer, such that
for all 1 ≤ i ≤ k we have

p(N, k) = α(N, k, i) ·Ai · s(2i) · β(N, k, i)

for some positive integer β(N, k, i). We shall construct a map T :
Grk(CN )→ Grk(C2k(N−k)) such that

(2.6) T ∗(ck) = p(N, k) · lk · ck.

Then, taking into account of the functoriality of the Chern classes,
the bundle Êk defined by Êk = (f ◦ T )∗γk satisfies the condition of
Theorem 1.1. Our map T is the composition of

(fNk,1, f
N
k,2, · · · , fNk,k)

where
fNk,i = GNk,i ◦ F 2i

li·β(N,k,i) ◦ λ
N
k,i,

where F 2i
li·s(2i)·β(N,k,i) denotes the restriction of the map F 2i

li·s(2i)·β(N,k,i)

to K2k(N−k)(Z, 2i) (see Lemma 2.1). Because of our choice of s(2i) and
taking into account of Lemma 2.1, the map T satisfies the condition
(2.6). 2

3 Kähler weak equivalence

In this section we discuss some problems which arise in extending the
results in the previous section to the category of holomorphic bundles
over complex or projective algebraic manifolds.

We would like to show another necessity for the notion of Kähler
weak equivalence notion. Let Ek be a complex vector bundle over a
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complex manifold Mn and [fEk ] be the homotopy class of a classify-
ing map M → Grk(CN ) for Ek. Clearly if [fEk ] contains a holomor-
phic map, then Ek has a holomorphic structure. But the converse
statement is not true, because the pull back of of any positive (1, 1)-
cohomology classes via holomorphic map is also a non-negative (1, 1)-
cohomology class. On the other hand there are many holomorphic
vector bundles whose first Chern class is a negative (1, 1)-class. We
shall say that a holomorphic vector bundle is positive, if its classifying
class contains a holomorphic map.

3.1. Lemma. Suppose that Mm is a projective algebraic manifold
and Ek is a holomorphic vector bundle over Mm. Then Ek is Kähler
weakly equivalent to a positive holomorphic vector bundle.

Proof. This Lemma is a consequence of an well-known fact (see e.g.
[G-H1978, Chapter 1, §5]) that a tensor of Ek with a some power L⊗l

of a Kähler line bundle L admits enough holomorphic sections which
serve as a holomorphic map from Mm to Grk(CN ), where CN is a
subspace in H0(Mm,O(Ek ⊗ L⊗l)). Furthermore, this holomorphic
map is a classifying map for the holomorphic bundle Ek ⊗ L⊗l, see
e.g. [G-H1978, Chapter 3, §3]. 2

We are lead by Lemma 3.1 to study the space Hol(Mm, BUk) of
holomorphic maps from Mm → BUk. Denote by Hodge(M) the group
Hp,p(M,Q) and by [Hodge(M)] the quotient class Hodge(M)/Q by
multiplication. This quotient space is provided with induced topology
by embedding Hodge(M)/Q into the projecive space H∗(M,C)/C.
We define then a map C : Hol(Mm, BUk)→ [Hodgek(M)] by C(f) =
[f∗(ck)]. Then the Hodge conjecture in dimension p is true, if and
only if the image of map C contains some neighborhood of a point
[P ] ∈ [Hodgek(M)] where P is the p-th power of a Kähler class. The
problem in this naive thinking is that, C maps a connected component
of Hol(Mm, BUk) onto one point. It seems that we need to work
every thing (including the Hodge theory) from the beginning in the
field of rationals. Another possible way to do with is mentioned in the
introduction.
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4 Appendix: A proof of a theorem of

Thom.

Let Mn be an orientable differentiable manifold.

A.1. Theorem [Thom1954 Theorem II.25]. a) For each coho-
mology class z ∈ Hk(Mn,Z) there exists a number N(k, n) such that
the class N(k, n) · z is the Euler class of an orientable vector bundle
on Mn. b) If k = 2l, then there exists a number N1(k, n) ≥ N(k, n)
such that the class N1(k, n) ·z is a top Chern class of a complex vector
bundle on Mn.

Thom gave a detailed proof of Theorem A.1.a. He noticed that
his proof also works for the statement b. Since we use this statement
in [Le2005] as well as for our statement in the introduction on the
relation with Atiyah-Bott theorem, we feel a need for a detailed proof
of Thom’s theorem A.1.b.

Proof of Theorem A.1.b. Suppose that u ∈ H2k(Mm,Z). Then
there is a map

f : Mm → K(Z, 2k)

such that f∗(τ2k) = u, where τ2k is the fundamental class ofHk(K(Z, 2k),Z).
Moreover we can assume that f(Mm) ⊂ Km(Z, 2k), where Kq(Z, 2k)
is the q-skeleton of the Eilenberg-McLane space K(Z, 2k). To prove
Theorem A.1 it suffices to find a map

h : Km(Z, 2k)→ BUk

such that for some positive number N1(k,m) we have

(2.2) h∗(ck) = N1(k,m)j∗(τ2k),

where ck is the top Chern class of the universal bundle γk over BUk
and j is the embedding Km(Z, 2k)→ K(Z, 2k).

To find a map h we apply Proposition 2.1. The main issue is to
verify that the space BUk satisfies the condition for the space Y in
Proposition 2.1. We use the same argument as that in our proof of
Lemma 2.3, actually the case of BUk is easier, since the related exact
sequences are simpler. The required map h can be constrcuted in the
same way as we did in our proof of Lemma 2.2 . 2
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