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BERGMAN SPACES

Miroslav Englǐs

Abstract. We show that, perhaps surprisingly, in several aspects the behaviour of
the reproducing kernels, of Toeplitz operators and of the Berezin transform on some
weighted pluriharmonic Bergman spaces is the same as in the holomorphic case.

1. Introduction

Let Ω be a bounded domain in Cn, L2
hol(Ω) ⊂ L2(Ω) the Bergman space of all

square-integrable holomorphic functions on Ω, and K(x, y) its reproducing kernel,
i.e. the Bergman kernel. Thus

f(x) =
∫

Ω

f(y) K(x, y) dy = 〈f, Kx〉, Kx := K(·, x),

for all f ∈ L2
hol and x ∈ Ω. Recall that for φ ∈ L∞(Ω), the Toeplitz operator Tφ

with symbol φ is defined by

Tφ : L2
hol → L2

hol, Tφf := P (φf),

where P : L2 → L2
hol is the orthogonal projection (the Bergman projection). The

Berezin symbol of a (bounded linear) operator T on L2
hol is, by definition, the

function T̃ on Ω defined by

T̃ (x) :=
〈TKx,Kx〉

K(x, x)
=

〈
T

Kx

‖Kx‖ ,
Kx

‖Kx‖
〉
.

Finally, the Berezin transform of f ∈ L∞ is, by definition, the Berezin symbol of
the Toeplitz operator Tf :

Bf(x) = T̃f (x) = K(x, x)−1

∫

Ω

f(y) |K(x, y)|2 dy.
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2 MIROSLAV ENGLIŠ

It is immediate that the mapping T 7→ T̃ is linear, Ĩ = 1, (T ∗)∼ = T̃ , ‖T̃‖∞ ≤ ‖T‖,
and T̃ is a real-analytic function on Ω; similarly for f 7→ Bf . Since the function
〈TKy, Kx〉, being holomorphic in x and y, is uniquely determined by its restriction
to the diagonal x = y, it also follows that both mappings T 7→ T̃ and f 7→ Bf are
one-to-one — a fact which is of crucial importance for some applications.

There are also the weighted analogues of all the above objects: namely, for any
continuous, positive weight function w on Ω, the subspace L2

hol(Ω, w) of all holo-
morphic functions in L2(Ω, w) is closed and possesses a reproducing kernel Kw(x, y)
— the weighted Bergman kernel; and one may define the Toeplitz operators T

(w)
f ,

Berezin symbols T̃ (w) and Berezin transform B(w) in the same way as before.
Consider now a strictly plurisubharmonic (or strictly-PSH for short) real-valued

smooth function Φ on Ω. Then gij = ∂2Φ/∂zi∂zj defines a Kähler metric on Ω,
with the associated volume element dµ(z) = det[gij ] dz (dz being the Lebesgue
measure). For any h > 0, we then have, in particular, the weighted Bergman spaces
L2

hol(Ω, e−Φ/h dµ) =: L2
hol,h, and the corresponding reproducing kernels Kh(x, y),

Toeplitz operators T
(h)
f , and Berezin transforms Bhf . It turns out that the following

theorem holds. (Recall that ρ ∈ C∞(Ω) is called a defining function for Ω if ρ > 0
on Ω, and ρ = 0, ‖∇ρ‖ 6= 0 on ∂Ω. The definition of and basic facts about bounded
symmetric domains are reviewed in Section 3 below.)

Theorem Q. ([E2], [BMS], [Ber], [Cob], [BLU]) Assume that Ω ⊂ Cn is smoothly
bounded and strictly pseudoconvex, and e−Φ is a defining function for Ω; or that Ω
is a bounded symmetric domain in Cn and eΦ is the (unweighted) Bergman kernel
of Ω; or that Ω = Cn and Φ(z) = |z|2. Then as h ↘ 0, there are asymptotic
expansions

Kh(x, x) ≈ eΦ(x)/h h−n
∞∑

j=0

hj bj(x);(1)

Bhf ≈
∞∑

j=0

hj Qjf ; and(2)

T
(h)
f T (h)

g ≈
∞∑

j=0

hj T
(h)
Cj(f,g) (in operator norm),(3)

for some functions bj ∈ C∞(Ω), with b0 = 1; some differential operators Qj , with
Q0 = I and Q1 the Laplace-Beltrami operator with respect to the metric gij ; and

some bidifferential operators Cj , where C0(f, g) = fg and C1(f, g) − C1(g, f) =
i

2π{f, g} (the Poisson bracket of f and g with respect to the metric gij).

The last theorem has an elegant application to quantization on Kähler manifolds.
Recall that the traditional problem of quantization consists in looking for a map
f 7→ Qf from C∞(Ω) into operators on some (fixed) Hilbert space which is linear,
conjugation-preserving, Q1 = I, and as the Planck constant h ↘ 0,

(4) [Qf , Qg] ≈ ih

2π
Q{f,g}.
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(The spectrum of Qf is then interpreted as the possible outcomes of measuring the
observable f in an experiment; and (4) amounts to a correct semiclassical limit.)
Theorem Q implies that (4) holds for Qf = T

(h)
f , the Toeplitz operators on the

Bergman spaces L2
hol,h. This is the so-called Berezin-Toeplitz quantization.

There is also another approach to quantization, discarding the operators Qf but
rather looking for a noncommutative associative product ∗ on C∞(Ω), depending
on h, such that as h ↘ 0,

f ∗ g → fg,
f ∗ g − g ∗ f

h
→ i

2π
{f, g}.

Such products are called a star-products, and are the subject of deformation quan-
tization. The relationship to Bergman spaces is the following: in view of the injec-
tivity of the map T 7→ T̃ from operators to their Berezin symbols, we can define
for two bounded operators T,U on L2

hol,h a “product” of their symbols by

T̃ ∗ Ũ := T̃U.

This gives a noncommutative associative product on

{T̃ : T a bounded operator on L2
hol,h} ⊂ Cω(Ω).

It can be shown from part (2) of Theorem Q (the asymptotics of Bh) that if h is
made to vary, these products can be glued into a star-product on C∞(Ω). This is
the so-called Berezin quantization.

From the point of view of these applications, the weighted Bergman spaces L2
hol,h

have an obvious disadvantage in that their very definition requires a holomorphic
structure (hence, in particular, they can make sense only on Kähler manifolds).
On the other hand, the other ingredients — the operator symbols, the Toeplitz
operators and the Berezin transform — make sense not only for L2

hol, but for any
subspace of L2 with reproducing kernel. Hence it seems very natural to investigate
whether any such spaces other than weighted Bergman spaces can be used for
quantization.

For instance, one such candidate might be the harmonic Bergman spaces L2
harm

of all harmonic functions in L2. As in the holomorphic case, these possess a re-
producing kernel, the harmonic Bergman kernel H(x, y); in contrast to the usual
Bergman kernel, H(x, y) is real-valued and symmetric, H(x, y) = H(y, x) ∈ R.
Similarly, one has pluriharmonic Bergman spaces L2

ph (and pluriharmonic Bergman
kernels), consisting of all functions f in L2 for which ∂2f/∂zj∂zk = 0 ∀j, k.

Unfortunately, it turns out that — from the point of view of the quantization
applications at least — bad things happen. First of all, recall that for the Berezin-
Toeplitz quantization we needed that the Toeplitz operators satisfy

1
h

[T (h)
f , T (h)

g ] ≈ i

2π
T

(h)
{f,g} as h ↘ 0.

However, for Toeplitz operators on L2
harm(Ω), this fails even on Ω = D, the unit

disc in C, with the hyperbolic metric (given by Kähler potential Φ(z) = log 1
1−|z|2 )
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and f(z) = z, g(z) = z. Second, recall that the Berezin quantization was based on
the fact that the correspondence T 7→ T̃ between operators and their symbols was
one-to-one. However, this fails on any harmonic Bergman space: if f, g are any two
linearly independent elements in L2

harm, then the operator T = 〈·, f〉g − 〈·, g〉f is
easily seen to satisfy 〈THx,Hx〉 = f(x)g(x)− g(x)f(x) = 0 ∀x; hence T̃ ≡ 0, while
apparently T 6= 0. Thus, there is no hope to perform the Berezin quantization
either. See [E3] for the details.

In view of these failures, it would be only natural to expect that also the other
assertions (1)–(2) of Theorem Q (i.e. the asymptotics of the reproducing kernels
and of the Berezin transform), or the injectivity of the map f 7→ Bf , very likely
break down. The following results therefore came as some surprise for the author.

Recall that a domain Ω ⊂ Cn is called complete circular if x ∈ Ω implies that
zx ∈ Ω for all z ∈ C, |z| ≤ 1. In particular, such domains are invariant under the
rotations

(5) z 7→ zeiθ, θ ∈ R.

Theorem 1. Let Ω ⊂ Cn be complete circular and let ν be any finite measure on
Ω invariant under the rotations (5). Then on L2

ph(Ω, dν),

T̃f = 0 =⇒ Tf = 0,

(i.e. Bf = 0 =⇒ f = 0).

Thus, although the Berezin symbol map T 7→ T̃ is not injective on all operators,
it is injective on Toeplitz operators.

Theorem 2. Let Ω ⊂ Cn and Φ be such that (1) holds, and assume in addition
that Ω is complete circular and that Φ is invariant under the rotations (5) and tends
to +∞ at the boundary and (if Ω is unbounded) at infinity. Then the pluriharmonic
Bergman kernels Hh(x, y) of the spaces L2

ph(Ω, e−Φ/hdµ) also have an asymptotic

expansion of the form (1) as h ↘ 0: namely,

(6) Hh(x, x) ≈ eΦ(x)/hh−n
∞∑

j=0

hjβj(x)

where the coefficients βj are related to those in (1) by

βj(x) =
{

2bj(x) if x 6= 0,

bj(x) if x = 0.

In other words, as long as everything is circularly symmetric, all goes fine with the
asymptotics of the pluriharmonic Bergman kernels whenever it goes fine with the
asymptotics of the corresponding holomorphic Bergman kernels. Finally, the same
turns out to be true for the asymptotics of the Berezin transform.



BEREZIN TRANSFORMS 5

Theorem 3. Consider the following spaces:

L2
harm(D, (1− |z|2)1/h),

L2
ph(Cn, e−|z|

2/h)

(i.e. the harmonic Bergman spaces on the disc with respect to the usual weights
and the pluriharmonic Fock spaces on Cn), and also the pluriharmonic analogues
of the standard weighted Bergman spaces on bounded symmetric domains in Cn in
their Harish-Chandra realization. Then the associated Berezin transforms possess
the asymptotic expansion (2), i.e. there exist differential operators Qj such that
∀f ∈ C∞ ∩ L∞,

Bhf(x) =
∞∑

j=0

hj Qjf(x) as h ↘ 0.

In fact, these are the same Qj as in the holomorphic case.

The proofs of these theorems go by explicit calculations of the reproducing ker-
nels in question (which are possible owing to the rotational symmetry of the domains
and measures) and the method of stationary phase. The proofs of Theorems 1–2
can be found in Section 2, which also briefly reviews the relevant material on the
method of stationary phase. Theorem 3 is proved in Section 3, after briefly recalling
the basic facts about bounded symmetric domains. The final Section 4 contains
some concluding remarks.

Acknowledgement. Some of the above results were presented in the fall of 2005
at the conference on Complex Analysis from the Geometric Viewpoint in Leipzig
and at the Hayama Symposium on Several Complex Variables. The author thanks
the organizers for the invitations.

2. Proofs of Theorems 1–2

Throughout this section, let Ω be a bounded complete circular domain in Cn

and ν a finite rotation-invariant measure on Ω. Note first of all that Ω is star-like
with respect to the origin, and therefore any pluriharmonic function on Ω can be
uniquely written in the form

(7) f + g, f, g holomorphic, g(0) = 0.

In view of the circularity of Ω and ν, we have for any holomorphic function F
in L1(Ω, dν), ∫

Ω

F (z) dν(z) =
∫ 2π

0

∫

Ω

F (zeiθ) dν(z)
dθ

2π
.

However, if F (z) =
∑

α multiindex Fαzα is the Taylor expansion of F , then

∫ 2π

0

F (zeiθ)
dθ

2π
=

∫ 2π

0

∑
α

Fαzαeiθ|α| dθ

2π
= F0 = F (0).
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Thus ∫

Ω

F (z) dν(z) = ν(Ω) · F (0).

It follows, firstly, that the reproducing kernel of L2
hol(Ω, dν) at the origin is given by

(8) K0(x) ≡ K(x, 0) = 1
ν(Ω) , ∀x ∈ Ω;

and, secondly, that for any pluriharmonic function (7),
∫

Ω

|f + g|2 dν =
∫

Ω

|f |2 dν +
∫

Ω

|g|2 dν + 2 Re ν(Ω)f(0)g(0) = ‖f‖2 + ‖g‖2

since g(0) = 0. Thus f + g ∈ L2
ph(Ω, dν) if and only if f, g ∈ L2

hol(Ω, dν). Now for

any x ∈ Ω, the function Hx := Kx + Kx − 1
ν(Ω) ∈ L2

ph(Ω, dν) satisfies

〈f + g, Hx〉 =
∫

Ω

(f + g)(Kx + Kx − 1
ν(Ω) ) dν

= 〈f, Kx〉+
∫

Ω

f · (Kx − 1
ν(Ω) ) dν +

∫

Ω

g (Kx − 1
ν(Ω) ) dν + 〈Kx, g〉

= f(x) + ν(Ω)f(0)(Kx(0)− 1
ν(Ω) ) + ν(Ω)g(0)(Kx(0)− 1

ν(Ω) ) + g(x)

= (f + g)(x),

by (8). We thus see that the reproducing kernel of L2
ph(Ω, dν) must be given by

(9) Hx(y) ≡ H(y, x) = K(x, y) + K(y, x)− 1
ν(Ω) .

Proof of Theorem 1. In view of (9), T̃f = 0 if and only if

0 = 〈fHx,Hx〉 =
∫

Ω

f · |Hx|2 dν =
∫

Ω

f · (Kx + Kx − 1
ν(Ω) )

2 dν

=
∫

Ω

f · (K2
x + Kx

2
+ 1

ν(Ω)2 − 2 1
ν(Ω)Kx − 2 1

ν(Ω)Kx + 2|Kx|2) dν(10)

for all x. Since the mapping x 7→ Kx is holomorphic, this means that
∫

Ω

f |Kx|2 dν = a(x) + b(x) ∀x ∈ Ω,

where

a(x) =
∫

Ω

f · (Kx
2 − 2 1

ν(Ω)Kx + 1
2

1
ν(Ω)2 ) dν,

b(x) =
∫

Ω

f · (Kx
2 − 2 1

ν(Ω)Kx + 1
2

1
ν(Ω)2 ) dν
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are holomorphic functions on Ω. It is well known that if a function F (x, y) is
holomorphic in x and y and vanishes for x = y, then it must vanish identically
([BM], Proposition II.4.7). Thus we even have

(11)
∫

Ω

f Ky Kx dν = a(x) + b(y) ∀x, y ∈ Ω.

Taking in particular y = 0, x = 0, and x = y = 0, respectively, we get

1
ν(Ω)

∫

Ω

f Kx dν = a(x) + b(0),

1
ν(Ω)

∫

Ω

f Ky dν = a(0) + b(y),

1
ν(Ω)2

∫

Ω

f dν = a(0) + b(0),

by (8). Consequently,

(12)
∫

Ω

f · (Ky − 1
ν(Ω) )(Kx − 1

ν(Ω) ) dν = 0 ∀x, y ∈ Ω.

Now, by (8) again, for any f ∈ L2
hol(Ω, dν) we have f−f(0) = P1⊥f , the orthogonal

projection of f onto the orthogonal complement 1⊥ of the function 1 in L2
hol(Ω, dν).

Thus the last equality means that

〈P1⊥TfP1⊥Ky,Kx〉 = 0 ∀x, y ∈ Ω.

Since Tf is bounded (in fact, ‖Tf‖ ≤ ‖f‖∞ by the definition of Toeplitz operator)
and the linear combinations of Kx, x ∈ Ω, are dense in L2

hol(Ω, dν), it follows that
〈TfP1⊥f, P1⊥g〉 = 0 for all f, g ∈ L2

hol. In particular,

〈Tfzα, zβ〉 =
∫

Ω

f(z)zαzβ dν(z) = 0

for any multiindices α, β with |α|, |β| ≥ 1. It follows that
∫
Ω

f(z)|z|2 p(z, z) dν = 0
for any polynomial p in z, z, and, hence, by the Stone-Weierstrass theorem, for any
continuous function p on Ω. Thus f(z)|z|2 = 0 a.e., hence f = 0 a.e., and the proof
is complete. ¤

Before continuing, we pause to mention a situation when the hypothesis of the
boundedness of Ω in Theorem 1 can be dropped. Recall that a domain Ω ⊂ Cn is
called complete Reinhardt if x ∈ Ω and |yj | ≤ |xj | ∀j imply y ∈ Ω. In particular,
such domains are invariant under the rotations

(13) z 7→ (z1e
iθ1 , z2e

iθ2 , . . . , zneiθn), ∀θ1, . . . , θn ∈ R.
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Theorem 4. Let Ω ⊂ Cn be a complete Reinhardt domain (not necessarily
bounded) and ν any finite measure on Ω invariant under the rotations (13). Then
on L2

ph(Ω, dν),
T̃f = 0 =⇒ Tf = 0.

Proof. As in the preceding proof, we arrive at the conclusions (11), (12), and
P1⊥TfP1⊥ = 0; however, in view of the possible unboundedness of Ω, the monomi-
als zα need no longer be contained in L2

hol(Ω, dν), and thus a different argument is
required to conclude the proof. Differentiating (11) on both sides, we see that for
any multiindices α, β with |α|, |β| ≥ 1,

(14) 0 =
∂|α|+|β|

∂xα∂xβ

∫
f |Kx|2 dν =

∫
f

∂|β|Kx

∂xβ

∂|α|Kx

∂xα dν.

(The differentiation under the integral sign is legitimate since, in view of the holo-
morphic dependence of Kx on x, we may use Cauchy’s formula to replace the
differentiation by an integration over a small contour around x, and then apply
Fubini’s theorem.) However, by the radial symmetry of Ω and dν the monomials
are a basis of L2

hol; thus

K(y, x) =
∑
α

yαxα

‖zα‖2 , whence
∂|α|K(y, x)

∂xα

∣∣∣
x=0

=
α!

‖zα‖2 · y
α,

with 1/‖zα‖2 interpreted as zero if zα /∈ L2(Ω, dν). Setting x = 0 in (14) we
therefore obtain

0 =
∫

Ω

f(y) yβyαdν(y),

for all multiindices α, β such that |α|, |β| ≥ 1 and zα, zβ ∈ L2
hol(Ω, dν). Next,

substituting (12) into (10) we obtain
∫

Ω

f · (K2
x + Kx

2 − 1
ν(Ω)2 ) dν = 0 ∀x.

Differentiating again we see that for any multiindex α with |α| ≥ 1,

0 =
∂|α|

∂xα

∫

Ω

f ·Kx
2
dν

∣∣∣
x=0

=
∑
γ⊂α

(
α

γ

) ∫

Ω

f · ∂|γ|

∂xγ
Kx · ∂|α−γ|

∂xα−γ
Kx

∣∣∣
x=0

dν

=
∑
γ⊂α

α!
‖zγ‖2‖zα−γ‖2

∫

Ω

f(y) yα dν(y).

The constant in front of the integral is positive whenever there exist β and γ such
that β + γ = α and zβ , zγ ∈ L2

hol(Ω, dν); hence
∫

Ω

f(y) yα dν(y) = 0
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for all α as above and such that |α| ≥ 1. Similarly for
∫
Ω

f(y) yα dν(y). Finally,
taking x = 0 in (10) yields

∫
Ω

f dν = 0, by (8). Thus we see that

∫

Ω

f(y) yα yβ dν(y) =
∫

Ω

f(y) yα yβ dν(y) = 0

for all α, β such that zα, zβ ∈ L2
hol(Ω, dν). Since for complete circular domains

and measures L2
hol is spanned by the polynomials contained in it (see e.g. [E1]),

by (7) the span of {zα, zα : α a multiindex such that zα ∈ L2
hol(Ω, dν)} must be all

of L2
ph(Ω, dν). Thus

∫

Ω

fφψ dν = 0 ∀φ, ψ ∈ L2
ph(Ω, dν),

that is, Tf = 0 on L2
ph(Ω, dν), q.e.d. ¤

Remark. In general, if Ω is not bounded, Tf = 0 need not imply that f = 0, even
if the measure ν is finite. For instance, there exist Reinhardt domains of finite
volume for which L2

hol (and, hence, L2
ph) reduces to the constant functions, see

Wiegerinck [Wie]; and then Tf = 0 whenever
∫
Ω

f = 0.

Remark. If ν(Ω) = ∞, then the formulas (8) and (9) remain still valid, only 1
ν(Ω)

has to be interpreted as zero. However, the definition of the Berezin transform does
not make sense at the origin since K(0, 0) = 0 by (8). Still, the argument used in
the proof of Theorem 1 works without changes (just with P1⊥ interpreted as the
identity operator, i.e. omitted), and thus the following assertion holds.

Proposition 5. Let Ω ⊂ Cn be a complete circular domain (not necessarily
bounded) and ν a measure on Ω (not necessarily finite) invariant under the ro-
tations (13). Then on L2

ph(Ω, dν),

〈TfHx,Hx〉 = 0 ∀x =⇒ Tf = 0.

We now turn to the proof of Theorem 2, which in fact is a trivial application of
the formula (9).

Proof of Theorem 2. By (1), (8) and (9),

(15) Hh(x, x) ≈ 2eΦ(x)/hh−n
∞∑

j=0

hjbj(x)− eΦ(0)/hh−n
∞∑

j=0

hjbj(0).

Observe that the origin is a strict global minimum of Φ: indeed, for any x 6= 0,
the function of one complex variable gx(z) := Φ(zx) is strictly subharmonic and
depends only on |z|, thus by the sub-mean-value property of subharmonic functions
gx(0) < gx(1), or Φ(0) < Φ(x). Consequently, if x 6= 0, then the second term in
(15) is smaller by an exponential factor than the first, and so can be dropped. ¤
Remark. In contrast to the holomorphic case, the coefficients of the asymptotic
expansion (6) are not smooth but may have a jump discontinuity at the origin.
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Before proceeding, we pause to recall some facts about the method of stationary
phase. Let f be a smooth function on Rd with compact support, and S a smooth
function such that

S(y) = 0, ReS(x) < 0 for x 6= y, detS′′(y) 6= 0.

Then as h ↘ 0,

(16) (πh)−d/2

∫
f(x) eS(x)/h dx =





∞∑

j=0

hj Rjf(y) if S′(y) = 0,

O(h∞) if S′(y) 6= 0.

Here Rj are some differential operators whose coefficients are given by expressions
involving only S and its derivatives. In particular,

R0f(y) = det S′′(y)−1/2f(y).

See for instance Hörmander [Hrm], Section 7.7.
The assertion remains in force also for f with not necessarily compact support,

provided that the integral exists for some h = h0 > 0 and “Re S(x) is bounded
away from 0 for x away from y” in the sense that Re S(x) → 0 implies x → y.

3. Proof of Theorem 3

Recall that a bounded domain Ω ⊂ Cn is called symmetric if for each x ∈ Ω
there exists a holomorphic mapping sx : Ω → Ω such that sx ◦ sx is the identity
and x is an isolated fixed-point of sx. The simplest example of such domains are
the unit balls of m×M complex matrices (viewed as operators from CM into Cm,
with operator norm); in particular, for M = 1 we recover the unit ball of Cm, and
m = M = 1 gives the most basic bounded symmetric domain of all, the unit disc.
It is further known that, using a suitable biholomorphic transformation if necessary,
any bounded symmetric domain can be put into a canonical (so-called Harish-
Chandra) realization which is circular (with respect to the origin) and convex —
in particular, which is complete Reinhardt. Throughout the rest of this section we
will assume that Ω is in its Harish-Chandra realization.

Bounded symmetric domains have been completely classified by Cartan and from
our point of view here, their main virtue is that they resemble the unit disc very
prominently as far as Bergman spaces are concerned, in the following sense. Let
K(x, y) be the (ordinary unweighted holomorphic) Bergman kernel of Ω (i.e. the
reproducing kernel of L2

hol(Ω)). For each α ≥ 1, consider the measure

(17) dµα(z) := K(z, z)1−α dz.

Then µα(Ω) < ∞ and the reproducing kernel of L2
hol(Ω, dµα) is given by

(18) Kα(x, y) =
µ1(Ω)α

µα(Ω)
K(x, y)α.
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Further, the measure dµ corresponding to the metric gij from the Introduction with
Φ(z) = log K(z, z) coincides (up to a constant factor) with K(z, z) dz. It follows
that the associated Berezin transform (which we now denote by Bhol to avoid con-
fusion with the pluriharmonic Berezin transform to be discussed below) is given by

Bhol
α f(y) =

µ1(Ω)α

µα(Ω)

∫

Ω

f(x)
[ |K(x, y)|2
K(x, x)K(y, y)

]α

dµ(x),

and an application of the stationary phase method leads to the asymptotic expan-
sion (2) from Theorem Q:

(19) Bhol
α f =

∞∑

j=0

α−j Qjf as h = 1/α ↘ 0.

For Ω = D, the unit disc, K(x, y) = π−1(1 − xy)−2, and (18) reduces to the
well-known fact that

Kα(x, y) =
2α− 1

π
(1− xy)−2α.

For the unit balls of complex m×M matrices, K(x, y) = const ·det(1−y∗x)−m−M .
For a general bounded symmetric domain, it is known that 1/K(x, y) is a polyno-
mial in x, y such that 1/K(x, x) attains its maximum 1/K(0, 0) = vol(Ω) only at
the origin and vanishes at the boundary; further, at z = 0

(20) K(z, z) = K(0, 0) + γ|z|2 + O(|z|4), γ > 0.

We refer to [Ara] for further information on bounded symmetric domains.
Another example of a situation where (1)–(2) can be made fairly explicit is

Ω = Cn and Φ(z) = |z|2. The corresponding spaces L2
hol,h are then the Fock

(or Segal-Bargmann) spaces

L2
hol(C

n, e−|z|
2/h)

of entire functions square-integrable with respect to a Gaussian measure, with re-
producing kernels

Kh(x, y) = (πh)−n e〈x,y〉/h.

In this case the associated (holomorphic) Berezin transform is given by

Bhol
h f(y) =

∫

Cn

f(x) e−|x−y|2/h dx

(πh)n
,

which means that it is just the heat equation solution operator for time t = h/4;
thus

(21) Bhol
h f = e∆h/4f =

∞∑

j=0

hj

j!4j
∆jf,

which is the asymptotic expansion (2).
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We now turn to the proof of Theorem 3, concerning the corresponding plurihar-
monic analogues

L2
ph(Ω, dµα) (Ω a bounded symmetric domain, α = 1/h),

L2
ph(Cn, e−|z|

2/h) (pluriharmonic Fock space),

of the last two spaces.

Proof of Theorem 3. Recall that, by definition,

Bhf(y) =
〈fHy,Hy〉
H(y, y)

,

where, by (8) and (9),

Hy(x) ≡ Hh(x, y) = Kh(x, y) + Kh(y, x)−Kh(0, 0).

Let us first deal with the case of Ω = Cn. Then, as we have seen in the preceding
paragraph,

(22) Kh(x, y) = (πh)−ne〈x,y〉/h.

If y = 0, then Hh(x, 0) = Kh(x, 0), so Bhf(0) = Bhol
h f(0) coincides with the

holomorphic Berezin transform. So let us assume that y 6= 0. Then (πh)nH(y, y) =
2e|y|

2/h − 1 = 2e|y|
2/h [1 + O(h∞)], so

Bhf(y) ≈ (πh)−n

2e|y|2/h

∫

Cn

f(x)
(
e〈x,y〉/h + e〈y,x〉/h − 1

)2
e−|x|

2/h dx.

Expanding out the square, we obtain

Bhf(y) ≈ (πh)−n

2e|y|2/h

∫

Cn

f(x)
[
e2〈x,y〉/h + e2〈y,x〉/h + 1− 2e〈x,y〉/h

− 2e〈y,x〉/h + 2|e〈x,y〉/h|2] e−|x|
2/h dx.

Let us now apply the stationary phase to each term. The contribution from the
first one can be written as

(23) 1
2e−|y|

2/h(πh)−n

∫
f(x)e2〈x,y〉/h e−|x|

2/h dx.

The phase function S(x) = −|y|2 + 2〈x, y〉 − |x|2 satisfies S(y) = 0, S′′(y) = −I,
and Re S(x) = −|x − y|2 < 0 if x 6= y, but S′x = 2y − x, S′x = −x, so S′(y) 6= 0
(since y 6= 0). Thus by (16), the contribution (23) is O(h∞). Similarly for the
second term (where everything is just the complex conjugate). For the third term,
we have likewise

1
2e−|y|

2/h (πh)−n

∫
f(x)e−|x|

2/h dx ≈ 1
2e−|y|

2/h f(0) = O(h∞).
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The contribution from the fourth term can be estimated as follows:
∣∣∣e−|y|2/h (πh)−n

∫
f(x) e〈x,y〉/he−|x|

2/h dx
∣∣∣

≤ e−|y|
2/2h(πh)−n

∫
e−|x|

2/2h |f(x)| e−|x−y|2/2h dx

≤ e−|y|
2/2h(πh)−n

∫
|f(x)| e−|x−y|2/2h dx.

As the last integral is ≈ (2πh)n|f(y)| by the stationary phase method, this is again
. 2ne−|y|

2/2h|f(y)| = O(h∞). Similarly for the fifth term (where everything is just
the complex conjugate of the fourth). Finally, the last term contributes

e−|y|
2/h(πh)−n

∫
f(x)|e〈x,y〉/h|2e−|x|2/h dx = Bhol

h f(y).

Thus we see that, both for y 6= 0 and for y = 0,

Bhf(y) = Bhol
h f(y) + O(h∞),

which establishes the claim for the Fock space in view of the asymptotic expansion
(21) for Bhol.

For bounded symmetric domains, the argument is completely parallel, only the
role of the exponential e〈x,y〉 is taken over by the unweighted holomorphic Bergman
kernel K(x, y), the Lebesgue measure is replaced by dµ(z) = K(z, z) dz, and the
normalizing constants are different.

Namely, instead of (22) the reproducing kernels are now given by the formula (18)
(with α = 1/h). Introducing the notations

k(x, y) := µ1(Ω) K(x, y), cα = 1/µα(Ω),

the latter can be written more compactly as

Kα(x, y) = cα k(x, y)α.

Also, 1/k(x, y) is a polynomial in x and y,

(24) k(z, z) > k(0, 0) = 1 for z 6= 0, k(z, z) → +∞ as z → ∂Ω,

and (20) becomes

(25) k(x, x) = 1 + p|x|2 + O(|x|4), p > 0.

If y = 0, then again Hh(x, 0) = Kh(x, 0) and Bhf(0) = Bhol
h f(0) coincides with

the holomorphic Berezin transform, so let y 6= 0. Then

Hh(y, y)
Kh(y, y)

= 2− Kh(0, 0)
Kh(y, y)

= 2− k(y, y)−α.
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Since k(y, y) > 1 for y 6= 0, the second term is exponentially small and can thus be
neglected. Consequently (α = 1/h),

Bhf(y) =
cα

cα
1

∫

Ω

f(x)
[k(x, y)α + k(y, x)α − 1]2

2k(y, y)α − 1
k(x, x)−α dµ(x)(26)

≈ cα

cα
1

∫

Ω

f(x)
[k(x, y)α + k(y, x)α − 1]2

2k(y, y)α
k(x, x)−α dµ(x).

Expanding the square again yields

(27)
Bhf(y) ≈ cα

2cα
1 k(y, y)α

∫

Ω

f(x)
[
k(x, y)2α + k(y, x)2α + 1− 2k(x, y)α

− 2k(y, x)α + 2|k(x, y)α|2] k(x, x)−α dµ(x).

We again proceed by applying the stationary phase method to each term; however,
prior to that we need to know the asymptotic behaviour of cα. To that end, observe
that it is immediate from the definition of the Berezin transform that Bh1 = 1.
Thus taking f = 1 and y = 0 in (26), we get

1 ≈ cα

cα
1

∫

Ω

k(x, x)−α dµ(x).

In view of (24) and (25), the stationary phase method applies to the last integral,
and gives ∫

Ω

k(x, x)−αdµ(x) ≈ (πh)n
∞∑

j=0

γjh
j

as h = 1/α ↘ 0, with some real numbers γj , γ0 = 1. Thus

cα

cα
1

= O(h−n).

The contribution from the first term in (27) is therefore

cα

2cα
1

k(y, y)−α

∫

Ω

f(x) k(x, y)2α k(x, x)−α dµ(x)

= O(h−n) k(y, y)−α

∫

Ω

f(x) k(x, y)2α k(x, x)−α dµ(x).(28)

The phase function in the last integral is

(29) S(x) = log
k(x, y)2

k(x, x)k(y, y)
= log

K(x, y)2

K(x, x)K(y, y)
.

By the Cauchy-Schwarz inequality, the real part of this is ≤ 0, with equality taking
place only if Kx and Ky are linearly dependent, i.e. if af(x) + bf(y) = 0 for some
a, b ∈ C, not both zero, for all f ∈ L2

hol(Ω). Taking for f the function 1 shows that
a + b = 0, and taking for f the coordinate functions then shows that x = y. Thus
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Re S indeed attains a unique global maximum at the point y. Also, by (24), Re S(x)
tends to −∞ as x tends to the boundary. Finally, it can be shown that S′′(y) is
invertible. Thus the stationary phase method applies to the integral in (28); so let
us see if S has a critical point at y. Clearly,

S′x(y) =
∂yk(y, y)
k(y, y)

.

Since k(y, y) is real-valued, this can vanish only if ∇k(y, y) = 0. We claim that
this can happen only for y = 0. To see this, observe first of all that owing to the
circularity of Ω we can choose an orthogonal basis φ0, φ1, . . . of L2

hol(Ω) such that
φ0 = 1 and φj , j ≥ 1, are homogeneous polynomials of degrees > 1. Since

K(x, x) =
∑

j

|φj(x)|2
‖φj‖2 ,

it follows that for any t > 0,

K(tx, tx) =
∑

j

t2j |φj(x)|2
‖φj‖2 ,

that is,

(30) k(tx, tx) = ‖1‖2
∑

j

t2j |φj(x)|2
‖φj‖2 .

If φj(x) = 0 ∀j ≥ 1 for some x, then, since φj are a basis, f(x) = f(0) for all
f ∈ L2

hol(Ω), which implies that x = 0. (Just take for f the coordinate functions.)
Thus for x 6= 0, some φj(x), j ≥ 1, is always nonzero, which implies that (30) is a
strictly increasing function of t, and, consequently, ∇k(x, x) cannot vanish.

Thus y is not a critical point of S, and therefore the contribution from (28)
is O(h∞).

The second term is handled similarly (just taking complex conjugates). The third
term in (27) contributes

cα

2cα
1

k(y, y)−α

∫

Ω

f(x) k(x, x)−α dµ(x) ≈ 1
2k(y, y)−αf(0),

which is again O(h∞) as k(y, y) > 1. The contribution from the fourth term can
be estimated in a similar way as for the Fock space:

∣∣∣cα

cα
1

k(y, y)−α

∫

Ω

f(x) k(x, y)α k(x, x)−α dµ(x)
∣∣∣

≤ cα

cα
1

k(y, y)−α

∫

Ω

|f(x)| |k(x, y)α| k(x, x)−α/2 dµ(x)

=
cα

cα
1

k(y, y)−α/2

∫

Ω

|f(x)|eαs(x)/2 dµ(x),
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where s(x) is the real part of the phase function S(x) in (29); as we have seen
there, s has a unique global maximum (which thus must be a critical point) at y
and decays to −∞ at the boundary. Thus the last integral is susceptible to the
stationary phase method, which shows that it is O(hn)|f(y)| as h = 1/α ↘ 0.
Owing to the extra factor of k(y, y)−α/2, it therefore again follows that this con-
tribution is also O(h∞). Finally, the fifth term in (27) is handled similarly as the
fourth one (passing to complex conjugates), and the last term is again nothing but
the holomorphic Berezin transform Bhol

h f(y). Thus we again arrive at the fact that,
both for y 6= 0 and for y = 0,

Bhf(y) = Bhol
h f(y) + O(h∞),

and the proof is complete.

4. Concluding remarks

In a way, our Theorems 1–3 raise more questions than they answer. First of all,
it is not clear whether the results are anomalies whose validity stems from the
abundant symmetries of the domains, or whether they hold in more general set-
tings. For instance, does Theorem 1 hold for the Toeplitz operators on the pluri-
harmonic Bergman space on a general smoothly bounded strictly pseudoconvex
domain in Cn? Or does Theorem 3 hold for the pluriharmonic analogues of the
spaces L2

hol(Ω, e−Φ/hdµ) from the traditional Berezin and Berezin-Toeplitz quanti-
zations? Finally, for domains Ω ⊂ Cn with n ≥ 2 one can also consider instead of
L2

ph the analogous spaces L2
harm of harmonic functions; in this case, it even makes

sense to study the problem not only for pseudoconvex domains in Cn, which are
the natural arena for holomorphic functions, but for any open set Ω ⊂ Rn. In that
setting, one can obtain an analogue of Theorem 3 for the “harmonic Fock spaces”

L2
harm(Rn, e−|z|

2/h dz)

on Rn, see [E4]; however, currently it is not even known whether an analogue of
Theorem 3 holds for the unit ball of Rn.

In the holomorphic case, we have outlined in the beginning of Section 3 the
proofs of our Theorem Q from the Introduction for the case of Ω = Cn and of Ω a
bounded symmetric domain. In the remaining case of a smoothly bounded strictly
pseudoconvex domain, the asymptotics of the weighted Bergman kernels, of the
Berezin transform and of the Toeplitz operators can be derived from the boundary
behaviour of the Szegö kernel of the “inflated” domain Ω̃ = {(x, t) ∈ Ω×C : |t|2 <
e−Φ(x)}, using the formula of Forelli-Rudin-Ligocka and the Fefferman-Boutet de
Monvel-Sjöstrand theorem. Namely, the hypotheses ensure that Ω̃ is smoothly
bounded and strictly pseudoconvex, and admits r(x, t) := e−Φ(x)−|t|2 as a defining
function. Its boundary X = ∂Ω̃ is a smooth compact manifold, and α = Im ∂r is a
contact form on X (i.e. α∧ (dα)n−1 is a nonvanishing volume element). Let H2(X )
be the Hardy subspace of all functions in L2(X ) that extend holomorphically into Ω̃.
According to a formula of Forelli, Rudin and Ligocka, the reproducing kernel KX
of H2(X ) — the Szegö kernel — satisfies

KX ((x, t), (y, s)) =
1

2πn!

∞∑

k=0

(ts)k K1/(k+n+1)(x, y).
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On the other hand, by results of Fefferman, Boutet de Monvel and Sjöstrand,

KX |diagonal =
a

rn+1
+ b log r, where a, b ∈ C∞(Ω̃).

Employing the usual Cauchy estimates for the function fx(ts) := KX ((x, t), (x, s))
of one complex variable on the disc |ts| < e−Φ(x), the expansion (1) is obtained
(where h = 1/(k + n + 1), k →∞). In fact, this even gives a similar expansion for
Kh(x, y) for (x, y) ∈ Ω×Ω close to the diagonal, and (2) then follows by an applica-
tion of the stationary phase method. Finally, (3) can be proved using the Boutet de
Monvel-Guillemin theory of generalized Toeplitz operators (with pseudodifferential
symbols). See e.g. [E2] for the details. (A completely analogous result also holds
if Ω is an arbitrary Kähler manifold such that the second cohomology class [ω] of
the Kähler form ω is integral, only one has to use sections of line bundles instead
of functions; see [BMS],[Zel].)

It should be noted that the Forelli-Rudin-Ligocka formula holds also for the
pluriharmonic Bergman spaces: if we denote by H2

ph(X ), X = ∂Ω̃, the subspace
in L2(X ) of all functions that have a pluriharmonic extension inside Ω̃, then the
reproducing kernel of H2

ph(X ) is given by

Kph
X ((x, t), (y, s)) =

1
2πn!

∞∑

j=−∞
(st)[j] Kph

1/(|j|+n+1)(x, y),

where z[j] = zj or z−j according as j ≥ 0 or < 0, and Kph
1/m(x, y) is the reproducing

kernel of L2
ph(Ω, e−mΦ dµ). Thus in principle we can again get the asymptotics as

m → +∞ of Kph
1/m, and of the pluriharmonic Berezin transform Bph

1/m, from the

boundary singularity of Kph
X . Unfortunately, what is missing is the pluriharmonic

analogue of Fefferman’s theorem, i.e. the description of the boundary singularity of
the pluriharmonic Szegö or Bergman kernels.

Similarly, it seems unknown what is the boundary singularity of the harmonic
Bergman (or Szegö) kernel of a domain in Rn. (There exist optimal estimates for
the boundary growth, though; see [KK].) However, in this case there is no analogue
of the Forelli-Rudin-Ligocka formula.
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