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Abstract. Let T be a bounded operator on a complex Banach space X. If
V is an open subset of the complex plane, we give a condition sufficient for
the mapping f(z) 7→ (T − z)f(z) to have closed range in the Fréchet space
H(V, X) of analytic X-valued functions on V . Moreover, we show that there
is a largest open set U for which the map f(z) 7→ (T − z)f(z) has closed range
in H(V, X) for all V ⊆ U . Finally, we establish analogous results in the setting
of the weak–∗ topology on H(V, X∗).

Introduction. Let X be a complex Banach space and denote by B(X) the algebra
of bounded linear operators on X. For T ∈ B(X), let σ(T ) denote the spectrum
of T , and denote by Lat (T ) the collection of closed T -invariant subspaces of X. If
M ∈ Lat (T ), we write the restriction of T to M as T |M .

A basic notion in local spectral theory is that of decomposability. Given an open
subset U of the complex plane C, T ∈ B(X) is said to be decomposable on U
provided that for any open cover {V1, . . . , Vn} of C with C \ U ⊂ V1, there exists
{X1, . . . , Xn} ⊂ Lat (T ) such that X = X1 + · · · + Xn and σ(T |Xk

) ⊂ Vk for each
k, 1 ≤ k ≤ n; see [2], [5], [8], [11], and [12]. The fact that there exists for each
T ∈ B(X) a largest open set U on which T is decomposable was first shown by
Nagy, [11].

An alternative characterization of decomposability may be given in terms of
a property introduced by E. Bishop, [3]. For an open subset V of C, let H(V,X)
denote the space of all analytic X-valued functions on V. Then H(V,X) is a Fréchet
space with generating semi-norms given by pK(f) := sup {‖f(λ)‖ : λ ∈ K} , where
K runs through the compact subsets of V. Every operator T ∈ B(X) induces a
continuous linear mapping TV on H(V,X), defined by TV f(λ) := (T − λ)f(λ) for
all f ∈ H(V, X) and λ ∈ V. An operator T is said to possess Bishop’s property (β)
on an open set U ⊂ C if for each open subset V of U, the operator TV is injective
with range ran TV closed in H(V, X); see [6, Prop. 1.2.6]. Clearly there exists a
largest open set ρβ(T ) on which T has property (β).

Fundamental work by Albrecht and Eschmeier established that an operator T ∈
B(X) has property (β) on U precisely when there exists an operator S ∈ B(Y )
such that S is decomposable on U , X ∈ Lat (S) and T = S|X , [2, Theorem 10].
Moreover, [2, Theorems 8 and 21], T is decomposable on U if and only if T and its
adjoint T ∗ share property (β) on U . Thus Nagy’s largest open set on which T is
decomposable is the set ρβ(T ) ∩ ρβ(T ∗).
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An operator T ∈ B(X) is said to have the single-valued extension property
(SVEP) at a point λ ∈ C provided that, for every open disc V centered at λ, the
mapping TV is injective on H(V, X). If U ⊂ C is open, then T is said to have SVEP
on U if T has SVEP at every λ ∈ U, equivalently, if TV is injective for each open
set V ⊆ U. Let ρSV EP (T ) denote the largest open set on which T has SVEP.

Recently, M. Neumann, V. Miller and the first author of the current paper
showed, [9, Theorem 2.5], that TV has closed range in H(V, X) for every open
subset V of the “Kato-type” resolvent set of T , an open set that contains the
semi-Fredholm region of T , thus extending a result of Eschmeier, [5]. Following
Neumann, we say that an operator has the closed range property (CR) on an open
set U ⊂ C provided ran (TV ) is closed in H(V, X) for every open subset V of U .
Thus T has property (β) on U if and only if T has both SVEP and (CR) on U .

In this note, we give a more general condition that suffices for T ∈ B(X) to have
(CR) on an open set U and prove that there is in fact a largest open set ρCR(T ) on
which T has the closed range property. Thus ρβ(T ) = ρSV EP (T )∩ ρCR(T ). In the
last section we establish corresponding results in the setting of the weak–∗ topology
on H(V, X∗).

Main results. We denote the kernel of T ∈ B(X) by ker(T ) and define N∞(T ) :=⋃
n≥0 ker(Tn) and R∞(T ) :=

⋃
n≥0 ran (Tn). If T ∈ B(X) is such that ran (T ) is

closed and N∞(T ) ⊆ R∞(T ), then T is said to be a Kato operator. A systematic
exposition of this class, also referred to as semi-regular operators, may be found
in [10, Section II.12]; also see [1, Section 1.2] and [6, Section 3.1]. In particular,
an equivalent condition may be given in terms of the reduced minimum modulus
function: for S ∈ B(X), define γ(S) := inf{‖Sx‖ : dist (x, ker(S)) = 1}. Then
an operator T is Kato if and only if γ(T ) > 0 and the mapping z → γ(T − z) is
continuous at 0, [10, II.12 Theorem 2]. Denote by σK(T ) the set of all λ ∈ C such
that T − λ is not Kato. Then σK(T ) is a nonempty compact set, z 7→ R∞(T − z)
is constant on each component of ρK(T ) := C \ σK(T ), R∞(T − λ) is closed and
(T − λ)R∞(T − λ) = R∞(T − λ) for each λ ∈ ρK(T ), [10, II.12, Theorem 15 and
Cor. 19]. Moreover, if G is a component of ρK(T ) and S ⊂ G has an accumulation
point in G, then

⋂
z∈S ran (T − z) = R∞(T − λ) for each λ ∈ G, [6, 3.1.11].

For each closed subset F of C, define the “glocal” analytic spectral subspace
XT (F ) := {x ∈ X : x ∈ ranTC\F }. These spaces are T -invariant, but generally not
closed. If M ∈ Lat (T ) and V ⊂ C is such that (T − z)M = M for all z ∈ V , then
M ⊂ XT (C \V ) by a theorem of Leiterer, [6, Theorem 3.2.1]. It follows from above
that if G is a component of ρK(T ) and V ⊂ G is open, then XT (C\V ) = R∞(T−λ)
for all λ ∈ G; in particular, XT (C \V ) is closed. Also, it is easily seen that if T has
(CR) on an open set U , then XT (C \ V ) is closed for every open V ⊂ U .

The content of Theorem 4 below is that the converse holds under the additional
assumption that ran (T − z) is closed for all but countably many z ∈ V . Some
additional assumption beyond closeness of the glocal spectral subspaces is seen to
be necessary for (CR) by the facts that, on one hand, T has property (β) on all of
C precisely when T has (CR) on C, [6, Prop. 3.3.5], while on the other hand, there
is an operator T ∈ B(X) without property (β) but for which XT (F ) is closed for
all closed F ⊂ C, [7].
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Lemma 1. Let T ∈ B(X) and let V be an open subset of C. Let (Di)i∈A be an
cover of V consisting of simply connected open sets Di such that XT (C \ Di) is
closed for each i ∈ A and Di \Dj 6= ∅ if XT (C \Di) 6= XT (C \Dj).

Let M =
⋂

i∈A XT (C \Di). Then M is closed, TM ⊂ M and

(i) if x ∈ M and gj ∈ H(Dj , X) is such that TDj
gj = x, then gj(Dj) ⊂ M ;

(ii) kerTDj ⊂ H(Dj ,M);
(iii) (T − z)M = M for all z ∈ V ;

(iv) if T̃ : X/M → X/M is the quotient map induced by T then T̃Dj
is injective on

H(Dj , X/M).

Proof.
Clearly M is a closed subspace of X and TM ⊂ M .

(i) Let x ∈ M and gj ∈ H(Dj , X) such that TDj
gj = x.

We show first that gj(Dj) ⊂ XT (C \Dj). Let z ∈ Dj , and define hj : Dj → X
by hj(ω) = (gj(ω) − gj(z))/(ω − z) if ω ∈ Dj \ {z} and hj(z) = g′j(z). Then
hj ∈ H(Dj , X) and

(T − ω)hj(ω) =
1

ω − z

(
x− ((T − z) + (z − ω))gj(z)

)
= gj(z).

Hence gj(z) ∈ XT (C \Dj) and so gj(Dj) ⊂ XT (C \Dj).
If i is such that XT (C \ Di) 6= XT (C \ Dj), let gi ∈ H(Di, X) be such that

TDigi = x, let z ∈ Dj \Di and define hi : Di → X by hi(ω) = gi(ω)−gj(z)
ω−z . Then

hi ∈ H(Di, X) and again

(T − ω)hi(ω) =
1

ω − z

(
(T − ω)gi(ω)− ((T − z) + (z − ω))gj(z)

)

=
1

ω − z
(x− x + (ω − z)gj(z)) = gj(z).

Thus gj(z) ∈ XT (C \Di) and gj(Dj \Di) ⊂ XT (C \Di).
Since the sets Di and Dj are open, simply connected and Dj \ Di 6= ∅, it is

easy to see that Dj \Di contains an accumulation point. Indeed, let z0 ∈ Dj \Di.
If z0 /∈ Di then there is an open neighborhood of z0 is contained in Dj \ Di. If
z0 ∈ ∂Di, then there is a sequence (zn) ⊂ Dj \Di such that zn → z0.

Since XT (C \ Di) is closed and gj(Dj \ Di) ⊂ XT (C \ Di), it follows that gj :
Dj → XT (C \Di).

This proves (i).

(ii) is an immediate consequence of (i).

(iii) Let z ∈ Dj and x ∈ M ⊂ XT (C\Dj). There is a function gj : Dj → X such
that TDj gj = x. By (i), gj(z) ∈ M and so x = (T − z)gj(z) ∈ (T − z)M .

(iv) If π : X → X/M is the canonical projection, then Gleason’s theorem implies
that the sequence 0 → H(Ω,M) → H(Ω, X) π→ H(Ω, X/M) → 0 is exact, [6,
Prop. 2.1.5]. Thus, if T̃Dj h = 0 for some h ∈ H(Dj , X/M), then there exists
f ∈ H(Dj , X) such that h = f̃ , where f̃ = π ◦ f . Clearly TDj f ∈ H(Dj , M) and
(iii) together with Leiterer’s theorem implies that there exists g ∈ H(Dj ,M) such
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that TDj f = TDj g. Thus f − g ∈ kerTDj ⊂ H(Dj ,M) by (ii). Consequently,
f ∈ H(Dj ,M) and therefore, h = f̃ = 0.

Proposition 2. Let V1, V2 be open subsets of C. If T ∈ B(X) has (CR) on each
Vj (j = 1, 2), then T has (CR) on V1 ∪ V2.

Proof. Let Ω ⊂ V1∪V2 be an open set. We show that TΩ has closed range. Without
loss of generality, assume that Ωj = Ω ∩ Vj is nonempty for each j, j = 1, 2. So
Ω = Ω1 ∪ Ω2 and T has (CR) on each Ωj .

Let U be an cover of Ω consisting of open discs such that U contains a disc in each
component of Ω1 ∩Ω2 and for each D ∈ U , either D ⊂ Ω1 or D ⊂ Ω2. We may also
assume that D\D′ 6= ∅ whenever D,D′ ∈ U are distinct. Let M =

⋂
D∈U XT (C\D).

By the assumptions, M is closed.
Let f ∈ ranTΩ. Then there are gj ∈ H(Ωj , X) such that f |Ωj

= TΩj
gj for

j = 1, 2. We have TΩ1∩Ω2(g1−g2) = 0, and so (g1−g2)(Ω1∩Ω2) ⊂ M by Lemma 1
(ii). So g̃1|(Ω1∩Ω2) = g̃2|(Ω1∩Ω2) and we can define h ∈ H(Ω, X/M) by h(z) = g̃j(z)
for z ∈ Ωj . We have f̃ = T̃Ωh and, again by Gleason’s theorem, there exists
g ∈ H(Ω, X) such that h = g̃. Then f − TΩg ∈ H(Ω,M) and so f − TΩg = TΩk for
some k ∈ H(Ω,M). Hence f = TΩ(g + k) ∈ ran TΩ.

Theorem 3. Let T ∈ B(X). Then there is a largest open set ρCR(T ) on which T
has (CR).

Proof. Let W be the family of all open subsets V ⊂ C such that T has (CR) on V .
We show that T has (CR) on the union W =

⋃W, which is obviously the largest
open set on which T has (CR).

Clearly W is the union of countably many open set Wn with (CR). Write Vn =
W1∪ · · · ∪Wn. By the previous proposition, T has (CR) on each Vn, V1 ⊂ V2 ⊂ · · ·
and W =

⋃
n Vn.

Let Ω ⊂ W be a nonempty open subset. We show that TΩ has closed range. For
each n, let Ωn = Ω ∩ Vn. Then T has (CR) on each Ωn and Ω =

⋃
n Ωn. Without

loss of generality, we assume that Ω1 6= ∅.
Let U1 be an open cover of Ω1 consisting of open discs D ⊂ Ω1 such that

D \D′ 6= ∅ whenever D,D′ ∈ U1 are distinct. Similarly, for each n ≥ 2, let Un be
a cover of Ωn \ Ωn−1 consisting of open discs such that D ⊂ Ωn, D \ Ωn−1 6= ∅ for
each D ∈ Un, and D \D′ 6= ∅ whenever D, D′ ∈ Un are distinct. Let U =

⋃
n≥1 Un.

Then for each D ∈ U there is an n such that D ⊂ Ωn and D \ D′ 6= ∅ whenever
D, D′ ∈ U are distinct.

Let M =
⋂

n XT (C \D). By Lemma 1, M is a closed subspace of X, TM ⊂ M

and (T − z)M = M for all z ∈ Ω. Denote by T̃ : X/M → X/M the operator
induced by T and by π : X → X/M the canonical projection.

Let f ∈ ranTΩ. Then for each n there exists gn ∈ H(Ωn, X) such that f |Ωn =
TΩngn. If n ≥ 2, then TΩn−1(gn|Ωn−1 − gn−1) = 0 and so, by Lemma 1 (ii),
gn|Ωn−1 − gn−1 : Ωn−1 → M , i.e.,

g̃n|Ωn−1 = g̃n−1 in H(Ωn−1, X/M).

Define h : Ω → X/M by h|Ωn = g̃n. Then h is well-defined and analytic on Ω.
Also, f̃ = T̃Ωh in H(Ω, X/M). By Gleason’s theorem, there exists g ∈ H(Ω, X)
such that g̃ = h and therefore, π(f − TΩg) = 0. Exactness implies that f − TΩg ∈
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H(Ω,M), and so it follows from Lemma 1 (ii) that there is a k ∈ H(Ω, M) such
that f − TΩg = TΩk, i.e., f = TΩ(g + k) ∈ ran TΩ.

Next, we give a condition which implies that T ∈ B(X) has (CR) on an open
set V . Note that if T has (CR) on V then the spaces XT (C \U) are closed for each
open set U ⊂ V .

Theorem 4. Let T ∈ B(X) and let V ⊂ C be an open set. Suppose that the set
{z ∈ V : ran (T − z) is not closed} is countable and that, for all z ∈ V and r0 > 0,
there is an r, 0 < r < r0 such that the space XT ({z : |z| ≥ r}) is closed. Then T
has (CR) on V .

Proof. Since the conditions of the theorem are inherited by every open subset U
of V , it suffices to show that TV has closed range in H(V,X). Moreover, because
the set {z ∈ C : ran (T − z) is closed and T − z is not Kato} is countable by [10,
II.12 Theorem 13], it follows that E := V ∩ σK(T ) is countable. Let E = {λn :
n = 1, 2, . . . } (the sequence (λn) can be possibly finite). Note that the set V \E is
open.

We can construct a sequence (Bj) of mutually disjoint open discs such that
E ⊂ ⋃

j Bj , Bj ⊂ V and XT (C\Bj) is closed for each j. Indeed, choose r1 > 0 such

that B(λ1, r1), the open disc with center λ1 and radius r1 satisfies B(λ1, r1) ⊂ V ,
XT (C \B(λ1, r1)) is closed and |λj − λ1| 6= r1 (j ≥ 2). Set B1 = B(λ1, r1). Let k
be the smallest index such that λk /∈ B1 and find r2 > 0 such that B2 := B(λk, r2)
satisfies B2 ⊂ V \B1, the space XT (C\B2) is closed and |λj−λk| 6= r2 (j > k). If
we continue in this way, we obtain the required sequence of open discs UE = (Bj)j

covering E.
For each z0 ∈ V \ E we can find a simply connected open set Wz0 such that

z0 ∈ Wz0 ⊂ V \ E and Wz0 ∩ (V \⋃
n Bn) 6= ∅. This is clear if z0 /∈ ⋃

n Bn — in
this case there is an r > 0 such that {z : |z − z0| < r} ⊂ V \ E and we can take
Wz0 = B(z0, r).

Suppose then that z0 ∈
⋃

n Bn\E. Since the sets Bn are mutually disjoint, there
is only one j with z0 ∈ Bj , and since the set E is countable, there is a θ, 0 ≤ θ < 2π
such that {z0 + teiθ : t ≥ 0} ∩ E = ∅. Let t0 = min{t ≥ 0 : z0 + teiθ /∈ Bj}. Since
the set S := {z0 + teiθ : 0 ≤ t ≤ t0} is compact and the set E ∪ ∂V is closed,
there is an ε > 0 such that the set Wz0 := {z ∈ C : dist {z, S} < ε} is disjoint
with E ∪ ∂V . Clearly Wz0 is an open simply connected set, z0 ∈ Wz0 ⊂ V \ E.
Moreover, Wz0 ⊂ ρK(T ); if G is the component of ρK(T ) containing Wz0 , then
XT (C \ Wz0) = R∞(T − λ) for every λ ∈ G. Thus XT (C \ Wz0) is closed and
Wz0 ∩Wz1 = ∅ if z0, z1 ∈ V \ E are such that XT (C \Wz0) 6= XT (C \Wz1). By
construction, Wz \ Bj 6= ∅ and Bj \ Wz 6= ∅ whenever z ∈ V \ E and Bj ∈ UE .
Thus, if UK = {Wz : z ∈ V \ E} and U = UK ∪ UE , then U is an open cover of V
satisfying the hypotheses of Lemma 1.

As in Lemma 1, let M =
⋂

D∈U XT (C \ D) and let T̃ : X/M → X/M be the
operator induced by T . By (iii), we have (T − z)M = M for all z ∈ V . We show
that T̃ − z is bounded below for each z ∈ V \ E, equivalently, if z ∈ V \ E and
(xn)n ⊂ X is such that (T̃ − z)x̃n → 0 in X/M , then x̃n → 0 in X/M .

Fix z ∈ V \E and let x ∈ ker(T−z). Then ker(T−z) ⊂ R∞(T−z) = XT (C\Wz),
and so there exists g ∈ H(Wz, X) so that (T − ω)g(ω) = x for all ω ∈ Wz. If



6 THOMAS L. MILLER AND VLADIMIR MÜLLER

h = (T − z)g, then h ∈ kerTWz and, since Wz ∈ U , it follows that h : Wz → M . In
particular, x = h(z) ∈ M . Thus ker(T − z) ⊂ M .

A sequence (xn)n ⊂ X satisfies (T̃ − z)x̃n → 0 only if there exists (yn)n ⊂ M
so that (T − z)xn − yn → 0 in X. Since (T − z)M = M , there exists (wn)n ⊂ M
so that (T − z)wn = yn and therefore, (T − z)(xn − wn) → 0. Since ran (T − z) is
closed, it follows that dist (xn − wn, ker(T − z)) → 0. But ker(T − z) ⊂ M , and so
dist (xn,M) → 0, i.e., x̃n → 0 in X/M as required. Hence T̃ − z is bounded below
for each z ∈ V \ E.

The conclusion now follows as in [9]. Suppose that (fn)n is a sequence in
H(V, X/M) such that T̃V fn → 0. If F is a compact subset of V , then there is
a contour γ ⊂ V \E surrounding F in the sense of Cauchy’s theorem. By continu-
ity of z 7→ γ(T − z) on V \ E, there is a constant c > 0 so that supz∈γ ‖fn(z)‖ ≤
c supz∈γ ‖(T − z)fn(z)‖ for all n. Thus for each λ ∈ F Cauchy’s theorem implies
that

‖fn(λ)‖ ≤ c supz∈γ ‖(T − z)fn(z)‖
2π dist (γ, F )

|γ|,

where |γ| denotes the length of γ. Thus the seminorms pF (fn) = supz∈F ‖fn(z)‖ →
0 as n → ∞, and since F is arbitrary, it follows that T̃V is injective with closed
range. Since (T − z)M = M for all z ∈ V by part (iii) of Lemma 1, Leiterer’s
theorem implies that TV H(V, M) = H(V, M). TV therefore has closed range in
H(V, X) by [9, Prop. 2.1], and the theorem is established.

For T ∈ B(X) denote by K(T ) the analytic core of T , i.e., the set of all x0 ∈ X
such that there exists a sequence (xn) ⊂ X such that Txn = xn−1 (n ≥ 1) and
sup ‖xn‖1/n < ∞. Clearly K(T ) =

⋃
n XT (C\D(0, 1/n)). This set has been shown

to play a significant role in the Fredholm theory of Banach space operators; see, for
example [1].

Corollary 5. Let T ∈ B(X) and let V ⊂ C be an open set. Suppose that K(T −z)
is closed for each z ∈ V and that the set {z ∈ V : ran (T − z) is not closed} is
countable. Then T has (CR) on V .

Proof. Let z ∈ V and K(T − z) be closed. Clearly (T − z)K(T − z) = K(T − z)
and, by the Banach open mapping theorem, there is an ε > 0 such that K(T −z) =
XT (C\B(z, ε)). (In fact, ε = γ((T −z)|K(T−z))−1). Clearly XT (C\W ) = K(T −z)
for each open set W with z ∈ W ⊂ B(z, ε). By Theorem 4, T has (CR) on V .

A generalized Kato decomposition for T ∈ B(X) is a pair of subspaces X1, X2 ∈
Lat (T ) such that X = X1 ⊕ X2, T |X1 is Kato and T |X2 is quasinilpotent. The
operator T is said to be of Kato-type if T |X2 is nilpotent. It is well known that
semi-Fredholm operators are of Kato-type, see e.g. [1], [10].

If ρgk(T ) denotes the set of λ ∈ C such that T −λ has a generalized Kato decom-
position, then ρgk(T ) is open and ρgk(T ) ∩ σK(T ) accumulates only on ∂ρgk(T ).
Indeed, suppose that 0 ∈ ρgk(T ) and that X1, X2 ∈ Lat (T ) such that X = X1⊕X2,
T |X1 is Kato and T |X2 is quasinilpotent. If ε > 0 is such that B(0, ε) ⊂ ρK(T |X1),
then for 0 < |z| < ε, (T − z)X2 = X2. Thus ran (T − z) = (T − z)X1⊕X2 is closed
and N∞(T − z) = N∞(T |X1 − z) ⊂ R∞(T |X1 − z).
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Moreover, if T has generalized Kato decomposition (X1, X2) as above, then
by the remarks preceding Lemma 1, R∞(T |X1) ⊆ K(T ). On the other hand, if
x ∈ K(T ), write x = u0 + v0 with u0 ∈ X1 and v0 ∈ X2. We show that v0 = 0.

Suppose on the contrary that v0 6= 0. Then, by definition, there are sequences
(un) ⊂ X1 and (vn) ⊂ X2 such that Tun = un−1 and Tvn = vn−1 for all n and
C := sup ‖un + vn‖1/n < ∞. Let P ∈ B(X) be the projection with kerP = X1 and
ranP = X2. We have ‖vn‖1/n = ‖P (un + vn)‖1/n ≤ ‖P‖1/n · C. Thus

lim ‖Tn|X2‖1/n ≥ lim sup
( ‖v0‖
‖vn‖

)1/n

=
1

lim inf ‖vn‖1/n
≥ 1/C > 0,

a contradiction to the assumption that T |X2 is quasinilpotent. Hence v0 = 0 and
K(T ) ⊆ X1. Therefore

K(T ) = K(T |X1) = R∞(T |X1);

in particular, K(T ) is closed.
Thus we have established the following special case of Corollary 5, generalizing

[9, Theorem 2.5].

Corollary 6. T ∈ B(X) has (CR) on ρgk(T ).

Duality and weak–∗ closed ranges. Let C∞ = C∪{∞} be the Riemann sphere
and for U an open neighborhood of ∞, let P (U,X) denote the Fréchet space of
analytic functions f : U → X with f(∞) = 0. If T ∈ B(X), then T induces a con-
tinuous mapping TU on P (U,X) defined by TUf(z) = (T−z)f(z)+lim|ω|→∞ ωf(ω).
If F is closed in C∞ with ∞ ∈ F , let P (F, X) denote the inductive limit of the
spaces P (U,X), U ⊃ F open; i.e., P (F, X) is the (LF )-space consisting of germs of
analytic X–valued functions defined in a neighborhood of F and vanishing at infin-
ity. The mappings TU induce a continuous mapping TF on P (F, X). Recall that
if V is open in C, then the Fréchet space H(V, X∗) may be canonically identified
with the strong dual of P (C∞ \ V, X) via

〈f, g〉 =
∫

γ

〈f(z), g̃(z)〉 dz,

where f ∈ H(V, X∗), g̃ ∈ P (U,X) is a representative of g ∈ P (C∞ \ V, X) and γ
is a contour surrounding C \ U in V ; see [6, Chapter 2] for details. In particular,
we have that T ∗V = (TF )∗, where F = C∞ \ V , [6, Theorem 2.5.12 and Lemma
2.5.13]. Moreover, by the duality results of Albrecht and Eschmeier, specifically,
Theorem 21 and the proof of Theorem 5 of [2], T ∗ has property (β) on U if and only
if TF P (F, X) = P (F, X) for every closed set F ⊆ C∞ with C∞ \ U ⊆ F . In this
case, for every open V ⊆ U , T ∗V is injective with weak–∗ closed range in H(V, X∗)
by a theorem of Köthe, [6, Theorem 2.5.9].

Let us say that T ∗ has the property, (CR)weak−∗, on U provided that ranT ∗V is
weak–∗ closed in H(V, X∗) for every open V ⊆ U .

Proposition 7. Let T ∈ B(X) and U ⊂ C open.

(i) If T has (CR) on U , then for every closed F ⊃ C \ U , XT (F ) = ⊥X∗T∗(C \ F ),
the preannihilator of X∗T∗(C \ F ) :=

⋃{X∗T∗(K) : K compact, K ⊂ (C \ F )}.
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(ii) If T ∗ has (CR)weak−∗ on U and F is closed with F ⊃ C \ U , then X∗T∗(F ) =
XT (C\F )⊥, the annihilator of XT (C\F ) =

⋃{XT (K) : K compact, K ⊂ (C\F )}.
In particular, X∗T∗(C \ V ) is weak–∗ closed whenever V ⊆ U is open.

Proof. If F is closed and C \ U ⊆ F , then V := C \ F is an open subset of U .
Thus ran TV is closed and ranT ∗V is weak–∗ closed. The result now follows from
Lemma 2.5 (c) and (d) of [4]; alternatively, one could argue as in the proof of [6,
Prop 2.5.14].

Lemma 8. If U is open in C with {z : |z| ≥ R} ⊂ U for some R ≥ 0, then
H(U,X) = H(C, X)⊕ P (U∞, X), where U∞ = U ∪ {∞}.
Proof. If g ∈ H(U,X) and z ∈ C, choose a contour γ1 surrounding {z} ∪ (C \ U)
in the sense of Cauchy’s theorem, and define g1(z) = 1

2πi

∫
γ1

g(ω)
ω−z dω. Then g1(z)

is independent of the choice of γ1, and so g1 ∈ H(C, X). Similarly, for z ∈ U , let
γ2 be a contour surrounding C \ U in C \ {z} and define g2(z) = − 1

2πi

∫
γ2

g(ω)
ω−z dω.

Again, g2(z) is independent of the choice of γ2; thus g2 ∈ H(U,X) and |g2(z)| → 0
as z → ∞, so g2 ∈ P (U∞, X). If z ∈ U and γ1 and γ2 are disjoint contours as
above, then, since γ1 − γ2 is homotopic to zero in U , g(z) = 1

2πi

∫
γ1−γ2

g(ω)
ω−z dω =

g1(z) + g2(z). The mappings g 7→ gj are clearly continuous with ranges H(C, X)
and P (U∞, X), respectively. If g ∈ P (U∞, X) and γ1 surrounds {z}∪ (C \U), then
1

2πi

∫
γ1

g(ω)
ω−z dω = 0 by [12, Theorem 4.15].

Lemma 9. Let F1 and F2 be closed in C∞ with ∞ ∈ F1 ∩F2, and let Vj = C \Fj ,
j = 1, 2. Then the mapping q : P (F1, X) ⊕ P (F2, X) → P (F1 ∩ F2, X) given
by q([f1] ⊕ [f2]) = [f1 − f2] is a continuous surjection. Consequently, its adjoint
q∗ : H(V1 ∪ V2, X

∗) → H(V1, X
∗) ⊕H(V2, X

∗), given by q∗f = f |V1 ⊕ (−f |V2), is
injective with weak–∗ closed range.

Proof. If ∞ ∈ F is closed and U is open with F ⊂ U , let iU : P (U,X) →
P (F, X) be defined by iUf = [f ]. Then a mapping S from P (F,X) to an arbitrary
topological vector space E is continuous if and only S ◦ iU is continuous for every
open neighborhood U of F . For j = 1, 2, let Uj be a neighborhood of Fj in C∞,
and let Wj = Uj ∩ C. Then the sequence 0 → H(W1 ∪ W2, X) −→

f 7→f |W1⊕f |W2

H(W1, X)⊕H(W2, X) −→
f1⊕f2 7→f1−f2

H(W1∩W2, X) → 0 is exact by [6, Proposition

2.1.7]. Suppose that g ∈ P (U1 ∩ U2, X) and g|W1∩W2 = f1 − f2 for some fj =
fj,1 + fj,2 ∈ H(Wj , X) = H(C, X) ⊕ P (Uj , X) by the previous lemma. It follows
that f1,1−f2,1 = 0, and therefore, g = f1,2−f2,2. If qU1,U2 : P (U1, X)⊕P (U2, X) =
P (U1 ∩U2, X) is defined by qU1,U2(f1 ⊕ f2) = f1 − f2, then it follows that qU1,U2 is
a continuous surjective.

Define q : P (F1, X)⊕P (F2, X) → P (F1∩F2, X) by q([f1]⊕ [f2]) = [f1−f2]. We
verify that q is well defined and continuous: [f1] ⊕ [f2] = [g1] ⊕ [g2] ∈ P (F1, X) ⊕
P (F2, X) if and only if there exists there exists a neighborhood Gj of Fj so that
fj |Gj = gj |Gj , which implies that ((f1 − g1) − (f2 − g2))|G1∩G2 = 0. In this case,
[(f1 − g1)− (f2 − g2)] = 0 ∈ P (F1 ∩ F2, X). Also, q ◦ (iU1 ⊕ iU2) = iU1∩U2 ◦ qU1,U2 ,
and so q is continuous. The surjectivity of q follows from that of the mappings
qU1,U2 since every open neighborhood of F1 ∩ F2 has the form U1 ∩ U2 for some
open neighborhoods Uj of Fj . By the theorem of Köthe, [6, Prop. 2.5.9], q∗ :
H(V1 ∪ V2, X) → H(V1, X

∗)⊕H(V2, X
∗) is injective, with weak–∗ closed range.
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It remains to establish the formula for q∗. Let f ∈ H(V1 ∪ V2, X
∗) and g ∈

P (F1 ∩ F2, X). Then g has representative g̃ ∈ P (U1 ∩ U2, X) then g̃ = g̃1 − g̃2

for some open neighborhoods Uj of Fj and g̃j ∈ P (Uj , X). Choose contours γj

surrounding C \ Uj in Vj . Then

〈f, g〉 =
∫

γ1

〈f(z), g̃1(z)− g2(z)〉 dz +
∫

γ2

〈f(z), g̃1(z)− g2(z)〉 dz

=
∫

γ1

〈f(z), g̃1(z)〉 dz −
∫

γ1

〈f(z), g̃2(z)〉 dz

+
∫

γ2

〈f(z), g̃1(z)〉 dz −
∫

γ2

〈f(z), g̃2(z)〉 dz

=
∫

γ1

〈f(z), g̃1(z)〉 dz −
∫

γ2

〈f(z), g̃2(z)〉 dz

= 〈f |V1 ⊕ (−f |V2), g1 ⊕ g2〉.

As a consequence of the Proposition 7 and Lemma 9, we obtain weak–∗ analogs
of Theorems 3 and 4.

Theorem 10. There is a largest open set V on which T ∗ ∈ B(X∗) has (CR)weak−∗.

Proof. Suppose that T ∗ ∈ B(X∗) has (CR)weak−∗ on V1 and V2 and let Ω be an
open subset of V1 ∪ V2. Let U be an cover of Ω as in the proof of Proposition 2,
and let M =

⋂
D∈U X∗T∗(C \ D). By the previous proposition, for each D ∈ U ,

X∗T∗(C \D) is weak–∗ closed and therefore M is also weak–∗ closed; in fact, M ≈
(X/⊥M)∗ and X∗/M ≈ (⊥M)∗. If f ∈ ranT ∗Ω

weak−∗
, then by the previous lemma

f |Ωj ∈ ran T ∗Ωj

weak−∗
, and so, by assumption, there are gj ∈ H(Ωj , X

∗) such that
f |Ωj = T ∗Ωj

gj for j = 1, 2. We have T ∗Ω1∩Ω2
(g1−g2) = 0, and so (g1−g2)(Ω1∩Ω2) ⊂

M by Lemma 1 (ii). If ϕ̃ := ϕ + M in X∗/M , then g̃1|(Ω1∩Ω2) = g̃2|(Ω1∩Ω2) and
we can define h ∈ H(Ω, X∗/M) by h(z) = g̃j(z) for z ∈ Ωj . We have f̃ = (T ∗)̃Ωh
and, by Gleason’s theorem, there exists g ∈ H(Ω, X∗) such that h = g̃. Moreover,
f − T ∗Ωg ∈ H(Ω,M) and so f − T ∗Ωg = T ∗Ωk for some k ∈ H(Ω, M). Hence f =
T ∗Ω(g + k) ∈ ranT ∗Ω. Thus T ∗ ∈ B(X∗) has (CR)weak−∗ on V1 ∪ V2.

To complete the argument, we adapt the proof of Theorem 4 similarly. The
details are left to the reader.

Recall that ran T ∗ is weak–∗ closed in X∗ if and only if ran T is closed in X, [6,
A.1.10]. Also, σK(T ∗) = σK(T ), [10, II.12 Theorem 11].

Theorem 11. Let T ∈ B(X) and let V ⊂ C be an open set. Suppose that the set
{z ∈ V : ran (T − z) is not closed} is countable and that, for all z ∈ V and r0 > 0,
there is an r, 0 < r < r0 such that the space X∗T∗({z : |z| ≥ r}) is weak–∗ closed.
Then T ∗ has (CR)weak−∗ on V .

Proof. Since the conditions of the theorem are inherited by every open subset U
of V , it suffices to show that T ∗V has weak–∗ closed range. Let E := V ∩ σK(T )
and construct a covering U = UK ∪ UE as in the proof of Theorem 4. Let M =⋃

D∈U XT (C \D) and denote by (T ∗)̃ the operator on X∗/M induced by T ∗. Then
Lemma 1 (iii) implies that (T ∗ − z)M = M for all z ∈ V , and, as in the proof of
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Theorem 4, (T ∗)̃ − z is bounded below for each z ∈ V \ E. The conclusion now
follows from [9, Prop. 3.1], noting that, as in the proof of Theorem 4, it suffices
that the set E = V ∩ σK(T ) be countable rather than discrete.

Corollary 12. Let T ∈ B(X) and let V ⊂ C be an open set. Suppose that
K(T ∗ − z) is weak–∗ closed for each z ∈ V and that the set {z ∈ V : ran (T −
z) is not closed} is countable. Then T ∗ has (CR)weak−∗ on V . In particular, then
T ∗ has (CR)weak−∗ on ρgk(T ).

Proof. The first statement follows from Theorem 10 just as Corollary follows
from Theorem 4. If T ∈ B(X) has generalized Kato decomposition (X1, X2),
then (X⊥

2 , X⊥
1 ) is a generalized Kato decomposition for T ∗ consisting of weak–∗

closed subspaces of X∗. Thus ρgk(T ) ⊆ ρgk(T ∗). If z ∈ ρgk(T ), and (X1, X2) is
a generalized Kato decomposition for T , then K(T ∗ − z) = K((T ∗ − z)|X⊥

2
) =

R∞((T ∗−z)|X⊥
2

)); in particular, K(T ∗−z) is weak–∗ closed in X∗. Since ρgk(T )∩
σK(T ), is countable, the result follows.
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