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SMOOTH NONCOMPACT OPERATORS FROM (C(K), K SCATTERED

R. DEVILLE AND P. HAJEK

ABSTRACT. Let X be a Banach space, K be a scattered compact and T : Beoxy =+ X be a
Fréchet smooth operator whose derivative is uniformly continuous. We introduce the smooth
biconjugate T** : Bo(g)«x — X** and prove that if T' is noncompact, then the derivative
of T** at some point is a noncompact linear operator. Using this we conclude, among other
things, that either T'(Be,) is compact or else £1 is a complemented subspace of X*. We also
give some relevant examples of smooth functions and operators, in particular a C'1%-smooth
noncompact operator from B, which does not fix any (affine) basic sequence.

Introduction.

The theory of linear operators from C(K) spaces is a vast and important part of Banach
space theory. One of the approaches to this subject is through the reduction (or fixing)
properties of a given T € L(C(K),X). Let us recall the following classical result of
Pelczynski, and refer to Rosenthal’s article in [JL, Chapter 36] and [DU, Chapter VI] for
the history, many more results of this type and references.

Theorem 0.1

Let X be a Banach space, K be compact, and T': C(K) — X be a non-weakly compact
linear operator. Then there exists ¢ & Y — C(K) such that T [y acts as an isomorphism.
Moreover, if K is scattered, the same result holds for 7" a noncompact linear operator.

In his work on the Dunford-Pettis property, Pelczynski [P1, 2] relying on the use of
vector measures, induction by the degree of the polynomial and the use of biconjugates
P** to polynomials (which he is able to define for weakly compact polynomials or in case
when ¢y is not contained in X) obtained the following nonlinear extension of Theorem 0.1.
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Theorem 0.2
Let X be a Banach space, K be a scattered compact, and P : C(K) — X be a
noncompact polynomial operator. Then ¢y — X.

In the same paper Pelczynski observed that in general the assumption of scatteredness
cannot be removed, constructing a homogeneous polynomial P : C[0,1] — ¢; for which
P(Bcqo,1)) contains By, . Let us remark that from [H3] and the fact that every Banach space
containing ¢; (a condition characterizing precisely all C(K), where K is a non-scattered
compact) has an £» quotient, it follows that for every C'(K), K nonscattered and every
separable Banach space X, there exists a homogeneous polynomial P : C(K) — X of
degree 2, such that P(Bg (k) contains Bx. This of course means that a structural theory
for polynomials from C(K), K nonscattered compact, along the classical lines of Theorem
0.1 is not possible.

Our aim in the present paper is to investigate Pelczynski’s-type result for general C'1-
smooth operators. Note again that C''-smoothness alone leads only to a trivial theory (due
to nontrivial work of Bates [B], [BL, p. 261]), stating that arbitrary separable Banach space
is C'-smooth range of every separable Banach space. In our paper we treat the localized
version (which is equivalent to the original one for polynomials) when T': Boxy — X is
Fréchet differentiable, and T” is uniformly continuous. The following question (suggested
by our previous work in [H1|, [H2], and explicitly asked also in Godefroy’s article in the
Handbook [JL, p. 799]) is the source of this note.

Question 0.3
Let X be a Banach space, K be a scattered compact, and T': Bgx)y — X be a chu-
smooth noncompact operator. Is then c¢g <— X7

Keeping in mind the reduction and fixing properties of linear operators, we can propose
the following variants of the question.

Question 0.4 (reduction)

Let X be a Banach space, K be a scattered compact, and T : Bgx)y — X be a (GRS
smooth noncompact operator. Does there exists cp =& Y — C(K) such that T [y is
noncompact?

or even
Question 0.5 (fixing)
Let X be a Banach space, K be a scattered compact, and T' : Bgxy — X be a Cchu-
smooth noncompact operator. Does there exists a sequence {u,};2; in Be(k), such that
both {u,}22; and {T'(un)}52,; are equivalent to the canonical basis of ¢o?

It is obvious that the condition in Q 0.5 is the strongest and implies the other two, whose
mutual relation is not quite clear. In the linear case, the questions are equivalent due to
Theorem 0.1, and for polynomial operators Q 0.3 has a positive answer due to Theorem
0.2. In our paper, we develop some basic theory of smooth nonlinear operators, in order
to deal with Q 0.3-5. The theory is formulated for C'(K), K countable, (or just cg) spaces,
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but due to the general reduction results (Theorem 1.5), the statements remain valid (with
obvious modifications) for all C'(K), K scattered. Let us pass to a brief discussion of
our results. In section 1 we show that every C''“-smooth operator T : Boxy =+ X, K
countable, has a canonical C'**-smooth extension T** : Bg(ky»= — X** (in the general
C(K), K scattered, situation, the biconjugates T** can also be introduced, but their
domain will be contained in Y — C(K)**, where Y is the w*-sequential closure of C(K)
in (C(K)**,w*)). We prove that Q 0.4 has an affirmative answer, provided we consider a
reduction to an affine subspace Y = ¢y of C'(K) (i.e. a subspace not necessarily containing
the origin). For a linear subspace Y £ ¢y the answer to Q 0.4 is trivially negative even
for polynomial operators. In section 2, we focus on operators from B,.,. The main general
result (using the reduction) is that if T : Bg(xy — X, K countable, is a C'*“-smooth
noncompact operator, then there exists a point 2** € Bg(k)-« at which (T**)"(z**) [¢(xk)
is a noncompact linear operator. This implies (for all K scattered) in particular that
Loo — X** a weak answer to Q 0.3 (it also implies that Q 0.5 is true for T**). For special
classes of X, such as duals, weakly sequentially complete spaces, Banach lattices or spaces
with PCP (in particular RNP) property the statement in Q 0.3 is indeed true. In section
3 we investigate the summability properties of smooth functions on ¢y, which are closely
connected with Q 0.5. By a result of Aron and Globevnik ([AG], see also an earlier related

result [Bo]), > |f(ei)| < oo, for every polynomial f on ¢y. This type of result imply that
i=1

the answer to_(afﬁne version of) Q 0.5 is affirmative for polynomial operators, improving
Theorem 0.2.

As we will show, for C':'-smooth functions this property fails, and this allows us to
construct in section 4 a C''-smooth counterexample to the general statement in Question
0.5. Unfortunately, our results are not strong enough to solve the original Question 0.3. So
in fact our paper contains indications going in both directions. It seems, however, that our
conditions on X basically exclude all the known examples of X which come in mind while
seeking a counterexample to Q 0.3. In particular the Bourgain-Delbaen L., spaces [B]
without ¢y, Gowers’ space |G| without ¢y or boundedly complete basic sequence, spaces of
JT type (Ghoussoub-Maurey [GM]) all satisfy Q 0.3. Moreover, relying on Bourgain-Pisier
results [BP] we know that if there exists X violating Q 0.3, then there also exists such £,
space.

Let us now establish the terminology and notation. Let X,Y be Banach spaces. Let
w(t) : R™ — IR, w(0) = 0 be a nondecreasing function. We say that a function f: S —
X, S C Y has modulus of continuity w(t), whenever z,y € S, ||z — y|| < € implies that
IIf () — f(y)|| < w(e) (the definition of course makes sense for mappings between general
metric spaces). A continuous (nonlinear, in general) operator T : S — X, where S C Y
is called a C1“-smooth operator if T' is Fréchet differentiable on int(S) and there exists a
modulus w(t) such that both T and T have modulus of continuity w(t). By C'!'-smooth
operator we mean an operator for which 7" and T" are Lipschitz. An operator T': S — X is
called weakly sequentially continuous (wsc) if it maps weakly Cauchy sequences {z, }52; C
S C Y into norm convergent sequences {7'(z,}°2; C X. An operator T': S — X is called

3



compact if T(S) C X is a norm compact set. By results of [H2], a C'*-smooth operator
T : Boxy — X, K scattered, is wsc iff it is compact. For subsets M, N C IN we use
the notation M < N if max(M) < min(N). If one of these sets is a singleton, we may
abbreviate this notation by replacing the set with its element. The symbol X 22 Y indicates
that the Banach spaces X,Y are isomorphic. Given a scattered compact K, and a point
p € K, we will use the notation Co(K) = {f : f € C(K), f(p) = 0}. In the statements
regarding Co(K) below, it is understood that p is fixed but arbitrary. We also use the
simple fact that Cy(K) = C(K) for all infinite scattered compacts. Recall that a Banach
space X has the point of continuity property (PCP), if every weakly closed bounded subset
of X contains a point of weak-to-norm continuity for the identity mapping.

1. Smooth operators from C(K) spaces.

Recall the basic fact that given two Banach spaces E, F, for any T € L(E, F) there
canonically exists a conjugate T* € L(F*, E*), and thus also a biconjugate operator
T** € L(E**,F**). Pelczynski [P2] observed in the proof of Theorem 0.2 that notwith-
standing the lack of duality, biconjugate operators can be canonically defined also for
weakly compact polynomial operators from P(C(K), X) spaces. In this section we are
going to generalize this definition further for all C*“-smooth operators T : Berxy = X,
K countable and arbitrary separable Banach space X. For a general C(K) , K scattered,
a biconjugate can be defined along the same lines, except that its domain will be the
w*-sequential closure of Bg (k) in (Bzi"( K)» w*). Since our later results rely on a separable
reduction argument, we do not treat the general case here. Let us mention in passing
that similar generalization is in fact possible for operators acting from spaces of class C,
introduced in [H2]. The next lemma is a variation on Lemma 5 from [H2]. We sketch a
proof for readers convenience.

Lemma 1.1
Let K be a scattered compact, X = C(K) or Cy(K), f : Bx — IR be C'*-smooth,
{r,}52; be weakly Cauchy in Bx. Then {f'(z,)}$2 is norm convergent in X*.

Proof. By Lemma 5 and the proof of Theorem 10 of [H2], f’(x,) is norm relatively
compact. By a standard argument, it is enough to prove the result under the additional
assumption that sup{||z,| : n € IN} = r < 1. If we assume that ¢ = lim f'(z2,),

n—00
VES i_)m f'(zony1), and 0 # h € (1 — r) Bx, we have the following:
[e.0]

n

Al
h

Fln +h) = flam) + / £ (en + rﬁxmw = f(en) + F'(@)(R) + Ru,

where |R,,| < w(||h]])]|k]]. So 0= nli—H)lo f(xan+h)— nli—H)lo f(xont1+h) = nli_)rgo f(xan) —
i F (o y1) +(6—9) (1) Tt (Ran— Rangr) = (=) (h)+ R, where [ R < 30(al) 4]

Letting ||h]| — 0 we see that (¢ —1)(h) = o(||h||) and so ¢ = 9. |
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Proposition 1.2

Let K be a countable compact, X = C(K) or Cy(K), f : Bx — IR be Ct%-smooth.
Then there exists a canonical C'**-smooth and w*-sequentially continuous extension f** :
Bxs« — R, f** |g,= f. Moreover, (f**) (z**) € X* — X*** for all z** € Bx«~ i.e. the
derivatives are w*-continuous functionals.

Proof. Since X is ¢y saturated ([PS], for class C we have to invoke [H2] Proposition 6
instead), #; > X. For 0 < A < 1 we have by Odell-Rosenthal’s theorem ([LT1, p. 101])
that every ** € ABx~» is a w*-limit of a sequence {z,}22 ; C ABx. (In fact, as the referee
of this note has pointed out, a simpler argument using Alaoglu’s theorem and C(K)* = ¢
can be employed here). We know that nlgglo f(zy,) exists, so we set f**(z**) = nli_)n(r)lo fxn).

We need to check that this definition is independent of the choice of {z,, }5° ;. However, this

is immediate since if ** = w* — lim x9, = w*— lim 9,41, then z** = w* - lim x,, and
n—oo n—o0 n—oo

the result follows due to wsc property of f again ([H2]). Next, we have to verify that f** is
Cl“_smooth. Let us check first that for z** € ABx«, (f**)'(z**) = lim f'(x,) = ¢ € X*
n—oo

(the limit exists due to Lemma 4 of [H2]). For h** € (1 — A\)Bxs~, h = w* — lim h,,,
n—00
hn € (1 — X\)Bx we have

[ + ) = () = nli_{go(f(mn + hn) — f(zn)) = nli_{go f'(@n)(hn) + Rn
where |R,| < w(]|k]])||A]|. Thus

[f @™+ B7) = f7 (@) = lm @(hn)| = [f* (& + ™) = f*(2™) = d(h)| < w([[RI)][A]],

n—oo

and the conclusion follows. Let us now indicate why f** and (f**)’ have the modulus
of continuity w(-). This clearly follows from the following fact. For z** y** € ABx we
can find sequences {z,}22 ;,{yn}>2; € ABx such that ||z, — yn|| < ||z** — y**|| for every

n € IN, and moreover z** = w* — lim z,, y** = w* — lim ¥,. Indeed, by the Odell-
oo n—>00

n—
Rosenthal’s theorem [LT1, p. 101], choose first {z,}3%, € ABx w*-convergent to z**,
and {z,}52, € ||z** — y**||Bx, w*-convergent to y** — z**. At this point we surely have
that 9, = =, + z, is w*-convergent to y**, but we still need the norm estimate on y,.
Using the fact that we are working in X = C(K) or Cy(K), it suffices to truncate setting
Yn(t) = min{\, max{—X\, ,(t)}}. Let us remark that in case C, one needs to shrink the
domain to get the same modulus. The problem is to generalize Odell-Rosenthal for a pair
of sequences as used here. [ |

Proposition 1.3

Let K be a countable compact, Y be a Banach space, X = C(K) or Cy(K), T : Bx —
Y, T be C1*-smooth operator. Then there exists a C1*-smooth and w*-sequentially con-
tinuous canonical extension T** : Bx«» — Y**. Moreover, (T**)'(z**) € L*(X,Y™**) C
L(X**,Y**), for every z** € Bxs«, i.e. (T**) (z**) are w* — w* continuous.
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Proof. Given y* € By, we set fy» = y*oT : Bx — IR. As f,+ is C%¥-smooth,
and modulus of continuity of f?’l* is w(-), it is wsc and by Proposition 1.2 there exists
fa¥ : Bx«» — IR extending f, -, such that fs(z**) = lim f,«(2,). In particular, 7" maps

n—00
weakly Cauchy sequences into weakly Cauchy sequences. We can therefore define the

extension T** : Bx«« — Y™** as follows. Let £** € ABxx«, £** = w* — limz,, x, € ABx.
We set

T (2**) = w* — lim T(zy) € Y*.

n—00

This formula is independent of the sequence {z,,}5%,, and the existence and uniqueness

of T**(z**) is clear. We continue by proving that 7** is Fréchet differentiable in its domain.

We have for every y* € By, ** = w* — lim z,, and 2** = w* — lim z, from the domain
n—>00 Tn—>00

VT 42 = T @) = Ly (T + 20) = T(an).
Also
Y'(T(@n + 2n)) = y*(T(2n)) + fy- (@n)(2n) + Rn, wWhere |Rn| < w([[zn]))]|2nll-
Recall that by Proposition 1.2 and Lemma 1.1
Jim. fye (@n) = (f32) (™) in norm.

So

g (T (& + 2) = T (2™)) = (f37) (@) (&) < w({znl)l|2nl|

In particular,

y —
A 0

) < w(A) +w(o),

independently of y* € By» and z** € Bx«~, which implies that 7**(z**) has uniform
directional derivatives. Similarly, we can prove the linear relations between the directional
derivatives in order to see that (T™**)'(z**) exists in the Fréchet sense.

Once we have established the differentiability of T**, we continue by proving that that
(T**) (z**) = nli_)IIC}O(T’(xn))** in the weak operator topology (note that (T"(z,))** is just

the ordinary linear biconjugate operator to T'(z,)). That is to say we claim that

v (T (@) (2**)) = lim y*((T"(z))** (2**) for all y* € By~ and 2™ € Bx--.

n—o0
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Using the notation from above, this follows using standard arithmetic from the following
relations.

((T"(wn))™" (2™) = w* = lim T'(zn)(2)-

k—o00

yr (T (™ + 2*) =T (™)) = lim lim y*(T(zn + 2x) — T(zy))-

n—00 k—00

The weak operator topology convergence, together with the trick used in the proof
of Proposition 1.2 in order to preserve modulus w(-) for the extension, yield the same
conclusion here, namely (7**)'(z**) has modulus of continuity w(-) as a function of z**.
The w* — w* continuity of (T**)'(z**) follows using similar arguments.

[

The previous extension results will be used for a study of smooth operators on C(K)
spaces. As one of our corollaries below we prove that if 7" is noncompact, then there
exists £** € Bx«» such that (T**)'(z**) is a noncompact linear operator. This implies
in particular that there exists a noncompact linear operator from X to Y**, so that by
Theorem 0.1 ¢y is contained in Y**. However, we first need to prove the reduction lemma
below, which transfers the problem to the simplest space ¢y and gives more information.

Lemma 1.4

Given a countable ordinal «, let T' : Bg(p,o)) — X be a noncompact CY%-smooth
operator. Then there exists F' € B ([o,q]) and a sequence {uy, }nev of disjointly supported
elements from C[0, ], with F' + u, € Bg([o,q)) for all n € IN, and such that T'(F + uy) is
a noncompact sequence in X.

Proof. We may and will assume that X is separable. Suppose that {y,}nemw is a
sequence in Bgio,o) such that T'(y,) is noncompact. We will WLOG assume that our
original sequence has the following additional properties. The sequence y,, and so also
T(yn), are weakly Cauchy. Using the standard argument from the proof of Lemma 12 in
[H2], there exists some ¢ > 0, a sequence {f;},ew € Bx~ so that f;(T(y,)) =0 for n <4
and f;(T(y;)) > €. Moreover, as (Bx-,w*) is metrizable, f; is w*-convergent, and (by
replacing f; by fa;+1 — f2; and passing to subsequences) we may assume that in fact f; is

w*-null. Fix a system {€3}3<q of positive numbers such that ) eg < 5.
BLa

Using an (necessarily finite) inductive argument in j, we are going to construct a system
consisting of the following objects:

(i) a decreasing sequence §; of ordinals a = 31 > B3 > -+ > B, =0,
(ii) a decreasing system M1 C M, of subsets of M; = IN, 1 < j <m,
(iii) a function F' € Bg([o,a)) F 18;41,8;411= F(Bj+1) is constant,

(iv) a system of sequences {y%}neMj,lstm.in Boo,a)s {Yntnen = {Yn}nemw, and for
every j < m, and n € M;;1 we have yJ (1) = y2*1(r) for all 7 € [0, Bj+1] U[B; + 1, a]. For
a fixed j, the system {supp(yi** — F) N [Bj41+ 1,a]}nen,,, is pairwise disjoint.
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|fn( ’-ZL+1) - fn(y%)‘ < €B; for all n € Mj-l-l'

We present only the inductive step from j to 57 4+ 1, as the first step requires only minor
changes. Suppose we have so far constructed: 3;, M; and the sequences {4’ },enr, for
i < j, and F is partially defined on [3; + 1, ].

If B; is nonlimit, the step to a smaller ordinal 8;4; = B; — 1 is really trivial, setting
FBj+1+1) = F(B;) = nlél}ll Yn(Bj), and using some standard perturbation arguments

J

together with the inductive assumption we choose appropriate M;11 and {yZ* } e, -
In this case we will have ¢/ (Bj41 +1) = F(Bj+1 + 1).
So we may assume that §; is a limit ordinal. Put » = lim y,(5;).
n—00

For ¢ < n < B, we define a continuous operator on C[0, o] by P} (r) = X[o+1,m% +
TX[o+1,q) for € C[0,a]. Similarly, for ¢ < n < 0 < 3; we define Pg’ () = T — X[p+1,m% +
TX[o+1,m] = X[6+1,8;]F + TX[g+1,8,] for z € C[0, .

For a fixed ¢ < f3;, we have the following alternative. Either for every o < n < f; there
exists an infinite set {n € M; : | f(P7(y3))— fn(y3)| < €p,}. In this case we say that g is of
type I. Or else there exists o <7 < §; such that {n € M; : |fo(P2(y4)) — fn(yl)| < ep,} is
finite, and we say that g is of type I1. Given yJ, is of type (¢,n) if | fu(P1(y)) — fn(y3)| >
eg;- We claim that there exists ¢ < B; of type I. Assuming, by contradiction, that all
0 < B; are of type I, using the fact that §; is a limit ordinal we obtain for every N € IV
a sequence g1 < 11 < 02 < M2 < --- < pny <y < B; and some yl,n € M; which is of
type (0i,m;) for all 1 <4 < N. This is a contradiction with Lemma 5 of [H1]. This allows
us to choose Bj41 = p < fB; of type I, and extend the definition of F on [3;41 + 1, 3;] by
the constant value 7. We continue now by defining M; 1 and {y4"'}ncpm,,, by induction.
Let n; € M;, and using that Tli)nﬁl yfll (1) =r, find p < m < B; such that

J

yif (1) = yi, (1) for 7 & [m + 1, Bj],

yﬁb‘l"l( ) =rforT € [m + 1,5l

satisfies |fn, (y3T") — fn. (4,)| < €p,. Having found ni,...,n; and the corresponding
m < - <m <pBjand yit . . yi*t! we proceed as follows. Pick nit1 € Mj, nip1 > n;
such that

‘fnz—l—l( (ynz+1)) - fni+1 (ygli_l_l)‘ < €,Bj’

and set it = P (gl
frir (W, ,,)| < €p; remains valid. We have thus described Mj 11 = {n;}ien and {3 }nen,,, -

The above described inductive procedure ends in finitely many m steps, due to the
well-ordering of a. The last step provides us with a desired sequence {y7*},en,, and a
function F'. To conclude, it remains to put u, = y,' — F'. |

Theorem 1.5

) for a large enough 7; < ;41 < B, s0 that | fn,,, (¥41}) -
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Given a scattered compact K and a Banach space X, let T' : Bo(x) — X be a non-
compact C1*“-smooth operator. Then there exists an affine subspace cp &Y C C(K) such
that T' [ynBc ., 18 noncompact. Moreover every CY*-smooth real function on Y N Box)
is wsc.

Proof. Let {yn}new € Beo(k) be such that {T'(yn)}nemv is not relatively compact. By
a standard argument of passing to suitable separable subalgebra of C(K) generated by
{Yn}nem, it suffices to prove the statement for every countable compact. By the classical
result of Mazurkiewicz and Sierpinski in [MS] this is equivalent to the case K = [0, a], «
a countable ordinal, and X is a separable subspace containing the range of T'(C(K)). The
reduction result now follows from the previous Lemma 1.4. The last fact on wsc property
follows from the explicit description of the space Y, which satisfies the conditions used in
the proof of Theorem 10 of [H2]. |

Theorem 1.5 gives a general positive answer to an affine version of Q 0.4. In the next
section we will investigate noncompact operators from B.,, in the canonical norm. It
is standard to check (relying on the mentioned proof of Theorem 10 in [H2]), that all
our statements remain valid when the domain is a convex and lattice bounded set with
nonempty interior, as is the case in the reduction theorem. So the results of the next
section apply to the reduced operators from a general scattered C(K). We have chosen
the canonical version for the obvious reason of notational simplicity and clarity.

2. Smooth operators from ¢,

In this section we establish general structural properties of 7' and X, assuming that
there exists a noncompact C'*-smooth operator T : B., — X. Our results come close to
X having a ¢y a subspace, but we did not manage to prove this condition in full generality.

Our main structural result is that (T**)'(z**) € L**(co, X**) is a noncompact linear
operator for some point z** € B.,, which implies that X** contains a copy of £,,, X*
contains a complemented copy of ¢; and X has a ¢y quotient. When applied to some
classes of X, such as Banach lattices, duals etc., our results allow to conclude that X
indeed contains cg, as conjectured. For spaces with PCP property we show that all C1:-
smooth operators are in fact compact. In fact, most known examples of Banach spaces
seem to be covered by our criterions. On the other hand, by the result of Bourgain
and Pisier [BP], every separable space X not containing cq is contained in a L., space
not containing cy. This seems to suggest a canonical way to a counterexample, namely
constructing a concrete L., space. However this appears to be a delicate problem, since
the classical £, spaces of Bourgain and Delbaen ([B]) have PCP and cannot help (as was
suggested by Haydon in [Hay]). Let us finally recall the fact that due to the reduction
Theorem 1.5, all results in this section remain valid (upon obvious modifications) for C'!+%-
smooth operators T : Bg(x) — X, where K is countable (or even scattered, if we use the
appropriate biconjugate).

Lemma 2.1



Let X be a Banach space, T : B, — X be a C'%-smooth operator such that T'(B.,)
is not compact. Then there exist sequences {f,}52, € Bx- and {T,}>2, € L(co,X),
sup ||Tn|| < oo such that (Tpe;, fi) > 1 whenever i < n, where {e;}32; is the canonical
basis of c¢g.

Proof. We know that 7" maps weakly Cauchy sequences from B, to weakly Cauchy
sequences from X. The assumption that T'(B.,) is non-compact together with Lemma 12
and Proposition 7 of [H2] imply that there exist u, {v,}>2; € B, ({vn} ~ {en}) such that
nli_)rglo T(u+ v,) = T(u) does not hold and therefore {T'(u + v,)}22; cannot be convergent.

By passing to a subsequence we may assume that for some § > 0

IT(u+vn) —T(u+vm)| >20 if n#m.

For the rest of the proof, we may WLOG assume that v = 0, v, = e,, T(0) = 0 and
T'(0) = 0. Indeed, these conditions are easily achieved by replacing T' with

T : B, — X T(Z aiei) = T(u + Zai’vi) — T('u,) — T’(u) (Z aivi).

In the above formula 7'(u) may be assumed to be a compact linear operator, since
otherwise by Theorem 0.1 ¢y — X and the conclusion of the lemma follows easily. As
every compact operator from ¢y can be approximated by finite dimensional operators (I;
has the approximation property - see [LT1, p. 33]), compact perturbations cannot violate
the conclusion of the lemma. We have ||T'(e;)|| > J, and {T'(e;) }i=100 C X is weakly
null. By passing to a subsequence of {e;}32,, relabelled as {e;}$2, again, y; = T'(e;)
is a seminormalized basic sequence in X ([LT1, p. 5] or [FHHMPZ, p. 173]), with its
biorthogonal functionals ¢; € %B x~ satisfying

1 ifn=m

Pn(Ym) = {

0 otherwise.

In case X is a dual space, using standard perturbation arguments together with Gold-
stine’s theorem these functionals can be assumed to be from the predual X,.

Claim 2.2
For every T > 0, there exists a subsequence {e,, }52, of {e;}52, such that N > k implies

N k
Ong OT(Z aieni) — Qn, OT(Z aieni) <7 for alljoy| <1.
i=1 i=1
Proof of Claim. By induction. Set n; = 1, fix a finite set
-1 1-2 [—1 1
S={-1,- T T ,1}C[—1,1]suchthatw(7)<2.

10



By Corollary 10 of [H1] there exists m1 € IN such that N > m; implies

<

=1

N
@n, 0 T (ten, + Z a;ei) — ¢, o T(aey,)

1=m1

for every a € S, |a;| < 1. We choose ns = mj and continue by finding ms € IV,
mo > myq, such that N > my implies

N
Pns O T(aenl + ﬁeng + Z aiei) — $Pny O T(aen1 + ﬂenz)

i=m2

<

=~

for every a, B € S, || < 1.
We set n3 = mo and continue in an obvious manner.
Using this inductive procedure, we obtain a sequence {e,, }$2, such that N > k implies

N k
Pny © T(Z aiem) — Pny © T(Z aieni)

=1 =1

<7'
4

for every a; € S. In order to pass to arbitrary values of a; € [—1,1] it suffices to recall
that w(%) <7 [

Before we proceed, we reindex {en, }52, as {e;}2, again.
Claim 2.3

For every 7 > 0 there exists a subsequence {ey, }32, of {e;}72, such that

k

Ony, oT(Zaiem) — ¢n, o T(agen, )| <7 forall o] < 1.
i=1

Proof of Claim. Relies again on Lemma 5 from [H1]. It gives us that for k large
enough (and depending only on the modulus of continuity of 77), I > k and o € S fixed,
there exists ¢ < k such that

r
[y 0 T(eies + arer) = pn o T(ewer)| < 7 for Jai < 1.

In fact, Lemma 5 of [H1] gives an upper bound on the number of i for which the above
estimate is not valid. Since S is a finite set, Repeating this argument for each a; € S, we
get that for k large enough but fixed and any [ > k there exists some ¢; < k

T
on, 0 T(avi ei, + arer) — o, o T(auer)| < 1

for oy € S, |Odil| <1.
11



Clearly, there exists an infinite subsequence k£ < M; C IN such that n, := 4, = 4,, for
every I,m € M. Next, choose a large enough initial segment I C M, so that for every
I <l € M,, there exists some i;, i; # n1, such that for every ay,,,a; € S, and |o;,| < 1

T
|(pnz © T(a’n1en1 +ageq + alel) — ¥n; © T(aﬂqeﬂq + alel)‘ < g

Again, there exists an infinite subsequence I < My C M; such that ny := 4 = 4y, for
every [,m € M,. We continue in an obvious way by induction; after having constructed
ni,...,Nng € IN and infinite sequences My C My_1 C --- C My C IN, M;_1 > n; < M;, the
inductive step consists of choosing a long enough initial sequence I C My, so that VI > I,
le My, 35, €1,4 ¢ {n1,...,ng}, such that V|jey,| <1 Va,,,...,on, €S, a1 € 8

k

Pn,; © T(E A, En, + Qi €4, + alel — ¥n; © E O, En, + alel)
=1

2k+2

We then find an infinite subsequence I < M1 C My such that I 3 ng4q1 =4 = iy,
for every I,m € Mj.1. The sequence {ey,, }52, obtained in this way satisfies

©On, oT(Z aieni) — @n, 0 T(agen, )| <

k—2

(pnk o T(Z aieni + ake’nk) - ¢nk o T(ake’nk)
=1

+

k—2

Qonk Z azenz (pnk o T(Z Q;€n, + akenk)

=1

<

k—3

Pny, © T(Z Qien; + akenk) — Pny © T(a’kenk)
=1

+

k—2 k—3

Pny, © T(Z Qi€n, + akenk) — Pny © T(Z oe; + akenk)
=1 =1

T

+W

+

1 1 1
<< opy, OT(OAlenl+Oék6nk)_()0nkOT(O!kenk)|+7'(23 + 51 +---+—2k+2) <
1 1 T
<ttt o) <3

whenever o; € S. Passing to arbitrary a; € [—1,1], at the expense of adding § on the

right hand side, is possible due to w(%) < ir.

|
12



Combining Claim 2 and Claim 3 we obtain that given 7 > 0 we may WLOG assume
that T satisfies (assuming n > k):

Pk © T Zazez Pk O T(akek) S 2T.

Recall that ¢ 0 T(0) =0, ¢ o T(ex) =1, ||kl < 5. Since

1 = g 0 T(ex) :/0 ox (T (tex), ) dt

there exists to € [0, 1] where ¢ ((T"(toex), ex)) > 1. Fix A > 0 satisfying w(A) < g. Then
for t € [tg — A, to + A] we have ||T"(tex) — T'(toex)|| < & and thus

o ((T" (ter), ex)) >
7

or (T (toew), ) = 51T (toer) = T'(tew)] >

OO

Consequently,
A 7TA
oo T((to + - )er) — o 0 Ttoer) > -

If, on the other hand, we have for some r € [0, 1]

A 6A
proT((r+ - )ex) —proT(rer) > 2=,

2 8 2
then there exists s € [r,r + ] for Which o ((T'(sex), ex)) > S and thus for every t €
[r,7+ %] we have ||T" (tey) — T’(sek)|| < ¢ and in particular oy, ((T’(tek) er)) > S8-3 =2
We now set the value of 7 = £, and we suppose that {e,}52 ; satisfies both Clalm 2 and
3. For every k € IN there exists an interval Ji C [0, 1] of length A such that

~J

o ((T' (ter), ex)) > 3 for t € Jg.

There exists an infinite subsequence {n;}$2; of IV such that [a,b] = J C ﬂ Jp, is an

=

interval of length %. We may again WLOG assume that n; = . We have

TA
¢ o T(bey) — @r o T(aex) > T

13



Moreover we have for any |o;| <1

k—1 k—1
ppoT Zazez+bek+ Z a,ez —pgoT Zazez-}-aek—i- Z azeZ >
=1 i=k+1 =1 i=k+1
o o T'(beg) — g o T(aeg) — 41 > 72—?—%: 62—?.
Thus, for every c € [a,b], |a;| <1
/ k—1 5
T ZZlozzeZ + cey, —i—zzlozzez ek>) > 3

To finish the proof of Lemma 1 we set for n € IN:

T,:co— X tobeT, = —T' z:aeZ

fn =100pn.

Our main structural result on noncompact smooth operators is the following.

Theorem 2.4

Let X be a Banach space, T : B,, — X be a Cl*-smooth operator such that T(B,,) is
not compact. Then there exists a point z** € Bgs«, such that (T7*)'(z**) € L**(co, X ™)
is a noncompact linear operator. Moreover, if X is a dual space, we can get in addition

(T**) (x**)(co) C X, and (T**)"(z**) [, is noncompact.

Proof. In the proof of Lemma 2.1, we have established the existence of u,{v,}32, €
B.,, such that v, are disjointly supported vectors ({vn,} ~ {en}), and corresponding
biorthogonal functionals {f,}o>, € Bx- (or Byx,, if X is a dual space) to {T'(v,) —
T(u)}s2, in X, so that

n
(T’ (Z av;) (vk), fx) > p > 0 for every n > k.
i=1

[&.°]
It suffices to put z** = w* — lim ) av;, since (T**)'(z**) being a weak operator limit

n

of the sequence {T” (Z avi) }o2, is, due to the above inequality, clearly a noncompact
i=1

linear operator. The case when X is a dual space follows by standard w*-compactness

argument using the additional information that f; € X,. [
14



The following are immediate consequences.

Corollary 2.5
Let X be a Banach space, T : B., — X be a Cl*“-smooth operator such that T'(B,,) is
not compact. Then X has the following properties.
(i) £oo — X** £; is a complemented subspace of X* and X has a ¢y quotient.
(ii) X does not have nontrivial cotype.
(iii) X is not weakly sequentially complete.

Proof of (i). (T**)'(z**) |, is a noncompact operator, so by Theorem 0.1, ¢y — X**.
The rest are general consequences of this fact, to be found in [LT1] or [FHHMPZ].

Proof of (ii). By the principle of local reflexivity [FHHMPZ, p. 292] ¢ embeds uniformly
to X, which is equivalent to X lacking nontrivial cotype [DJT, p. 283].

Proof of (iii). The weak sequential completeness of X, together with the w*-to-weak oper-
ator topology continuity of the mapping z** — (T**)'(z**) implies that (T**)'(z**)(co) C
X, so by (i) we get cp — X which is however a contradiction with the weak sequential
completeness of X. [ |
Corollary 2.6

Let X be a Banach space with any of the following properties:

(i) X is a dual space,

(ii) X is a complemented subspace of a Banach lattice,

(iii) X is a subspace of a space with an unconditional basis,

(iv) X has property (u) of Pelczynski.

Suppose that there exists a C1%-smooth operator T : B,, — X, such that T(B,,) is not
compact. Then ¢y — X.

Proof. (i) follows along the same lines as (iii) of Corollary 2.5, using the functionals
from predual. (ii)-(iv) follow from (iii) of Corollary 2.5 and the classical results in [LT1,2],
according to which any Banach space from one of these classes is weakly sequentially
complete unless it contains cg. |

Recall that a Banach space X has the point of continuity property (PCP), if every weakly
closed bounded subset of X contains a point of weak-to-norm continuity for the identity
mapping. Spaces with the PCP property have been extensively studied by many authors.
In particular it is known that all RNP spaces belong to this class, and in the following
theorem we will use the fundamental description of separable PCP spaces as those admit-
ting a boundedly complete skipped blocking finite dimensional decomposition. The last
notion is due to Bourgain and Rosenthal, and its equivalence to the PCP was established
by Ghoussoub and Maurey in [GM]. We refer to this paper for the result and further
references in this area.

Theorem 2.7
15



Let X be a Banach space with the PCP property. Then every C'“-smooth operator
T : B,, — X is compact.

Proof. Since PCP is a hereditary property, we may WLOG assume that X is separable.
We proceed by contradiction, assuming that there exists a C'*“-smooth noncompact op-
erator T': B,, — X, and X has a boundedly complete skipped blocking finite dimensional
decomposition. That is to say, there exists a sequence G; of finite dimensional subspaces
of X satisfying

(o.¢]

(1) X =span |J Gi

=1
(2) Gxnspan U G; = {0}
i#k
(3) if {mr}e2,, {ni}r>, are sequences from IN, m; < ny + 1 < myy1 then setting
ng [’}
Hy =span | , {Hk}%° , is a boundedly complete FDD for span |J Hj.
1=my k=1
In our proof we will use the notation from the proof of Lemma 2.1. The starting point
of our proof are the results obtained there, in particular, we assume that {e;}°, € B,
is a seminormalized basic sequence equivalent to the canonical basis, y; = T(e;) is a
seminormalized basic sequence in X with its biorthogonal functionals ¢; € %B x~ satisfying

1 ifn=m

Pn(Ym) = {

0 otherwise.

Moreover, the following relations hold for some 7 > 0.

<7 forall |oy| < 1.

k
on, o T(D _ aien,) = ¢n, o T(aken,)
=1

<27 foralln >k, |o <1.

Pk © T(Z a;e;) — or o T(aner)
i=1

We now proceed by constructing sequences of integers {my}32,, {nr}52,, {lx}32, as fol-
lows:

(e.e)
Fix a sequence &, \ 0, > &, <1, put my =1, [; = 1. Set ny > m; such that

n=1

ni

dist (T'(ey), span U Gi) < er.

i=1
Next, put mo = n1 + 2 and choose I3 which satisfies for |o;| <1
N 0
dist (T (ex + Z a;e;) — T(ey),5pan U G;) < e3.

i:l2 i:m2

16



The existence of such Iy follows since T'(e; + x) — T'(e1) maps weakly null sequences {z,, }
mo—1
from B, to weakly null sequences in X, and span |J G; is finite dimensional. Next
=1
choose ns such that

dist (T (s, + e1,) — T(ey, ), span U G;) < e2.
i=ma

Put m3z = ny + 2, and continue by induction as follows. Having constructed {ni}le,
{mi}k_ | {l:;}F_,, we set mgy1 = ng + 2. We then find Iy 1 > I, for which if |o;| < 1 then

k N
dist (T(Z e, + Z Q;€;) Zel , Span U G < Ek-
=1 i:lk+1 1= =ME41

Finally, find ng41 > mgy1 for which

k+1 Ng41
dist (T(Z e,) — Zel , span U G < Ek-
=1 =Mk
k NE41
Denote yo =0, yx = T(>_ e1,), H, =span |J G;. With this notation, it is clear that
=1 i:mk_H

for some z, ||zk|| < ek
Uk := Yk+1 — Yk T 2k € Hy.

N N
Since Y ur = yn+1 + . 2k is a norm bounded sequence, it is norm convergent. Thus
k=1 k=1

y = nli)ngo Yn = lim T(Z er;)

n—oo
i=1
exists in norm. However,

o1, (yn) > o1, (T(er,)) —T7=1—7
1, (Un-1) < @1, (T(0)) + 7=1.

Thus ||yn — Yn—1]| > (1 — 27) > (1 —27)4, a contradiction.

1
[
|

In particular, and answering a question of Haydon from [Hay] in the negative, we have the
following.

Corollary 2.8
17



Let X be a Bourgain-Delbaen Lo, space (cf. [B]), T : B.,, — X be C1%-smooth. Then
T(B.,) is compact.

Proof. Combining the results in [B] and [GM], these spaces have the PCP property.
|

3. Summability properties of smooth functions on c;

oo

Given a function f : B., — IR, we are interested in the value V = > |f(en)|. There
n=1

are numerous results which give the convergence of the last summation. In the complex

scalar case (when ¢ is over the complex field and f is complex), Aron and Globevnik [AG]
(generalizing K. John’s earlier work [J]) showed that if f is a homogeneous polynomial,
then V' < supgep,, |f(z)|- This estimate is independent of the degree of the polynomial.
Aron, Beauzamy and Enflo [ABE] treated the corresponding real case. The result is
that for a general k-homogeneous polynomial V < 4k*supzep,, |f ()|, but there exists k-
homogeneous polynomials for which V' > ksupsep, |f()|. Thus an upper estimate using
the supremum of f, independent on the degree, does not exists even for homogeneous
polynomials. However, in [H2|, we prove the following degree free estimate for every
homogeneous polynomial: V' < 16supgep,, [|f”(z)||. The main result of this section is a
construction of nonhomogeneous real polynomials for which V' cannot be estimated from
above using f” independently of the degree.

It turns out that these results are closely connected with the behaviour of smooth operators,
in particular the Question 0.5 (in fact, after checking Sections 3,4 of this note, the reader
will realize that the validity of the estimate from [H2] is essentially equivalent to the validity
of Q 0.5). We recover a sharper form of Pelczynski Theorem 0.2 from this and Theorem
1.5 (answering Q 0.5 in the positive for polynomial operators). In the subsequent section
we construct a C1'-smooth noncompact operator which fails this description (and Q 0.5)
and seems to be a half-way counterexample to Question 0.3.

Theorem 3.1

Let X be a Banach space, K be a scattered compact, P : C(K) — X be a noncom-
pact polynomial operator (not necessarily homogeneous). Then there exists a sequence
{vn}nzo € Be(k), such that both {v, —vo}nL, and {P(vn) — P(vg)}5Z, are equivalent to
the canonical basis of c¢j.

Proof. By the reduction theorem we may replace C(K) by the space ¢g. Let k = deg(P).

As P(B.,) is not relatively compact, by [H2], Lemma 12, there exists v, € B, n =

0,1,..., such that {v,}52 ; is equivalent to the unit basis of ¢y and || - || — lim P(vg + v,)
n— o0

does not exist. Put yo = P(vo), yn = P(vo+ V), 2n = Yn — Yo As was shown in the proof
of Lemma 2.1, by passing to a subsequence WLOG {z,,}22 ; is a C-seminormalized weakly
null Schauder basic sequence (C~! < ||z,]] < C for some C). We claim that {z,}22; is
equivalent to the canonical basis of ¢g. To this end, it suffices to show that there exists
K € IR such that

18



sup || Zanznﬂ < K.

lan|<1 57

which is equivalent to > |¢(z,)| < K for every ¢ € Bxs.

n=1
Assume P(z) = P(vo + z) — P(vo) = Z Py(z), where P; are homogeneous polynomials.

Fixing [, there exists K; € IR, such that for every ¢ € Bx«, ¢po P, : cg — IR is a real valued
k- homogeneous polynomial satisfying ||(¢ o P})"(z)|| < K; for all z € B,,.
By ([H2], Lemma 15)

3" |¢ 0 Bi(vg)| < 16C*K;.

n=1
Consequently,
oo [e'e) k k
> oo (3 R = 3103 b0 Rl < 31604 K = K < o
n=1 1=1 n=1 I=1 1=1
This estimate is true for every ¢ € Bxx. [ |

The improvement of Theorem 3.1 over Theorem 0.2 consists of showing that P actually
carries a translate of the canonical basis of ¢y into the range space X, in the spirit of
Theorem 0.1. The next simple example shows that Theorem 3.1 is optimal in the sense
that the shifting of the cy basis by yo is necessary, so the result is necessarily of affine
rather than linear nature.

Example 3.2
Put P(z) : cg — co, P((%:)2,) = (x1, 2323, 222%,...). Then P is noncompact, but

lim P(u,) = 0 for every weakly null sequence in ¢g. Choosing v; = e;41, 1 = 1,2,...
n—>00

gives P(vg) = e1, P(vo+v;) = €1 + e;+1. Since the image of P is contained in the positive
cone of ¢y, we also see that we cannot hope for B., C P(B,).

We continue with the main result of this section, a construction of a special sequence of
C%1-smooth functions failing the good summability properties. These functions will be
used later to construct a C''-smooth noncompact operator which fails the statement of
Theorem 3.1 (and also Q 0.5).

Theorem 3.3
Let ¢y, : Ben — IR be defined as

) = =10 o),
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Then 3C independent of n such that ¢, : Bea — L(cg,£7),

0%, () )n

" _
#n(2) = (Gaam, Jis=

satisfies ¢y |l z(cn,eny < C.

n n
Proof. First note that for (a;;)7 ;=1 = L € L(cf,£T), we have ||L||z(cp ony = max YD aijei| <
i gi=Tli=1 j5=1

n n
> 3" |aij|. Now we have

i=1j=1
(=22 [T(1—2b)  ifizj
Vi i k :
Pn(z) _ o,
Oz,02; 16,853 [] (1—ab) ifi#J.
\ kk;z,la

We wish to estimate for z € Bcp the quantities

#J
WLOG assume that 0 < z7 < z9--- <z, <1, so that (1 — a:k) (1 — z) and put

F(@)im) = o=+ = Z Hl—xk

=1

12 n n—1
W(Z”J?H(l— Z@“ H L= ).
= = = k=1
k#1
The reason for introducing F' instead of estimating directly the original term is the useful
symmetry of VF, as we will see below. There exists z = (2;)i— 11 € Bcg_l such that
F(z) = ,Jaax F(z) > A. Clearly, either z € OB n-1 or else VF(z) = 0. In the first case,

e 1
)

z; = 1 for some i < n — 1 and thus F(z) = % Suppose z ¢ 8Bcg_1.
12 n—1
VF(z):%@ziH(l—zk —423( JE:ZQ)H 1—23)) :0.

k=1
k#1
20



Put v = Z . Unless z; = 0, we have (1 — z}) — 2yz2 = 0. Solving this equation for 22
J:

gives 22 = —y £+ /72 + 1. However, since 22 > 0, we have 22 = /y2+1—y = z]2 for

every 4,j < n — 1, for which z;,z; # 0. Suppose that m = card{z' :2; #0} <n—1and

|z;| = A whenever z; # 0. Thus A = W, and

12 12 m 1
1+ mA2(1 = AH™ 1+ 1-
(Um0 =297 = 20+ an - Tram

F(z) = %

L 12vm

< — — V" <K
where K is a constant independent of n and m < n. Indeed, recall that lim (1—5 +12m)m =
m—00
%. In order to estimate B, suppose WLOG 0 <z < z9 <--- < x,. Then
16 n—2n—2 —
sz H (1—z}) < sz Hl—mk + S0+ 51 +1)
k=1 =1 j=1 k=1

J;éz k#i,j

where S, = x3__ Z H (1 — z7). By comparing this expression with the formula for
j=

F(x), and keeping in mlnd that :Uj > a:j we get \1/—%(80—1—81 +1) < 4K. In order to estimate
B, set (again for reasons of symmetry of VG which makes the calculations easier)

16 n—2n—2 n—2 n—2 1 n—2
_ sz 2 [[a-at)+ > e [T -ab)
_ k=1 =1 k=1
J#Z

and note that clearly

16
G 4K > G —(So+S1+1) > B.
wergax () + mEI%?}_z () + \/7_1( ot Sitl) 2

i) 0

Suppose z € Bn-2, G(z) = En];ax G(z) (and WLOG z; > 0). In case z € 8Bcg—27 we
T n 2

have z; = 1 for some ¢ and G(z) = O Thus z ¢ 0B, n-2 and so VG(z) = 0. A straitforward
calculation gives

gf( 3z2H 1—zka—4z3H 1—23)B) =0

k;éz
21



—2n—2

where o = Z z3 and f = Z Z 273 + Z 525 Therefore, whenever z; # 0, we have

3(1 — zHa — 4z,,8 = 0. Thus zz,zJ #0 1mp11es P 2 = % — z;’-’. As the real function

¢(t) = § —t3 is decreasing on IR, this gives z; = z; = A. Denote by m = card{i : z; # 0}.
We have

16
NG

In order to estimate the last expression, fix m and define a function ¢(A) = A6(1—-A*)™. On

1

1
(m2A8(1 =A™ + 5m,\‘5(1 —aH™) < 210

G(Z) = m2)\6(1 . )\4)m

: . . . . . 3

the interval [0, 1] ¢ has only one critical (and clearly a local maximum) point A = {/525—.
_ 216 . , L oym s
SOG(Z)_\/ﬁm2(1+ m) (1—1+2 ™ .Slncemgn—2andn}ﬂo(1—ﬁ) =e" 32,

there exists a constant L, independent of the values n, m < n, for which G(z) < L. Finally,
setting C = L+ 5K > A + B satisfies the requirements.
[

4. Range of C'! smooth operator.

Using the functions constructed above, we are now going to construct an C'-smooth
noncompact operator such that the set T'(B,,) does not contain a translate of the canonical
basis of ¢y (and consequently fails Question 0.5). This phenomenon cannot occur with
polynomials, or real analytic operators. In fact we are able to control the ”positive” span
of T(B.,) as well. However, using negative coefficients generates the copy of ¢y in the
range. Changing the construction somewhat, we are able to eliminate ¢y basis from spans
containing a limited number of negative coordinates. We do not present these modifications
here (as they are technical and do not suffice for a general counterexample), but they may
shed some light on the delicacy of the problem.

Let T : ¢o — £oo be an operator, T'(z) = (fn(x))52,

Lemma 4.1

Let T : B,y — fo be a C'-smooth operator. Then T” : B., — £L(co,%x) is uniformly
continuous with modulus of continuity w(t) iff every f], : B, — ¢1 is uniformly continuous
with modulus of continuity w(t).

Proof. Consider an infinite matrix (a;;)$%_,, which represents L € L(co,%ls). More

precisely,

2,7=1

L(ex) = (aix)i21 € Lo
Since L is bounded, we have

sup Z laik| = ||L||£(c0, Loo)*

N =1
22



Put g; = (aik)32, € £1. We can write L = (g4)21, ||L]|£(co,t00) = suﬂ%||gi||gl. Now given
i€

2,y € By, |lz =yl = t. (fu(@),_, =T'(@) = L = (9)21, (fi®),_, =T'(y) =5 =
(h;)$2, we have

||L - 5||z:(co,eoo) = Sup ||9z‘ - hz‘||el-
iclN

Clearly, ||L — S||£(co,t00) < w(t) iff for every i € IN ||g; — hille, < w(t).
[

In the rest of the note we will construct simultaneously a Banach space X — £, and a
CYl-smooth and noncompact operator T' : B, — X, such that T'(B,,) does not ”contain”
a canonical basis of ¢g.

First, let C be from Theorem 3.3, fix a sequence n; = 2%, and put 1, : R" — IR,

1 1
= i (@)
Clearly, ¥n,(0) = 0, ¥}, (0) = 0, 9, is symmetric and ||, || < 27% on Beni. Since ¢y, is

a symmetric function, given A C IN, |A| = n;, we may put dz;?i : B., = IR to be

A ((@)321) = ¥, ((25)jea)-

Vn, (T)

The system of tuples of sets

Sk, = {(Al,Ag,. ..,Al) Az C W, |A1| < |A2| <K< |Al|, |A1| - {ni}fil, |Al| = nk}

is countable, and so is S = |J S;. For (Ay,...,4;) € S put ¢pAv-4) : B — IR,
k=1

l
YA A () = Z:lipﬁil(x). Fix a bijection w : S — IN. We define 7,, : B., — IR by

(@) =9 ™ (z), and T : B, — loo by T(z) = (11(z), 2(z), . ..). By Lemma 4.1, T is
CYl-smooth. We define X = spanT(B,,) < feo-

Theorem 4.2

T : B,, — X is a noncompact, C1'l-smooth operator, with the property that there is no
sequence {y™}2, in T'(B,,) such that {y™ — 3"}, is equivalent to the canonical basis of
Co-

Proof. It remains to prove the statement about {y™ — 3°}5 ;. We proceed by contra-
diction, assuming y™ = T'(u™), where u™ € cgo. Clearly, by passing to a subsequence of
{u™}22, WLOG there exists some m € IN, § > 0 and a sequence m < j; < ja < ..., such
that supp(u®) C [1,m], u}f > . Take a set A C {jr}324, |A| = n, = 2*7. We have
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A 1 1 1
ny— _— 1_”1_ ndhyy s~ 54 A
np(u) w0 np( 1 ( U, )) 20C or n € A,

¥ (u®) = 0.

Thus Tw((A))(’U,O) =0, yZ}(A) = Tw((A))(’U:j) > 2;;10 \/Ln—p(sél- So ” %(yj - yO)” > %yc{;(A) >
J J

% - /np(54, which is a contradiction, since the last expression can be made arbitrarily
large (by the choice of p). |

In fact, our construction enables us to prove a somewhat more general statement. Let
N, € IN, o € IR where 1 <i < N, y™* =T (2™"). The main conjecture on containment

N, ,
of ¢p in X would be disproved if for each such system, {)_ ay™*}22; is not equivalent
=1

to the canonical basis of ¢y. We are able to prove this statement under assumption that
a; > 0. This is not sufficient to ensure that ¢y ¥+ X, and in fact in our construction the

k41 k
sequence {T'(Y_ e;) — T(D>_ e;)}32, is equivalent to {ex}32; and thus ¢y — X. However,
further modifications of our construction may lead to the full counterexample. Since the

following result is not central in this work, we present only a sketch of the argument.
Proposition 4.3

In the notation above, assume that a > 0. Then {% ay™*}%° | is not equivalent to the
canonical basis of c¢p. =

N, .
Sketch of Proof. Assume, By contradiction, that {}_ ay™*}52, is equivalent to the

n=1
=1

canonical basis of ¢g. Let {m,}>2; be a sequence form IN such that 3A > 0

Ny
> alymt > A
=1
We will distinguish two cases (which involve passing to subsequences).

Case 1.
I{m,, }52, as above and such that

w™(my) = (A7, . .., Al') where lim |AT| = oo.
n—00

Case I1.

N, .

. n,,n,t —_
Lim sup DL aiy iy, a) =0
k—oo [Ar]=n =1

In Case I, we may clearly assume, by passing to a subsequence, that n > n implies
|A{;\ < |A%|. Thus
24



n_ n,i
Za Yu(ar,...,a 1LATLLLA? Al,...,A?)z

lg2" @t
nnz
>E ayw(A )ZA.

P Nn )
In particular, || > Y al’y™*||cc > p-A a contradiction. (Note that this case can be handled
n=1¢=1
without the assumption a > 0.)
In Case II, we may WLOG assume that 3p € IN such that w=(m,) = (A"), |A"| = n,.

Next, choose a set A, |[A| =n,, A" C Afor1 <n< :—; It is easy to observe that

L= Ja-aty) =L V2ya(y).

A
>
Vi (2) 2 Vit ' P VI

27“

Thus (due to al* > 0)

Z Zan?/g&) Tip Z_]:A =27rA

n=114i=1

a contradiction. [ |
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