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SUFFICIENT CONDITIONS FOR BOUNDEDNESS OF THE
RIESZ POTENTIAL IN LOCAL MORREY-TYPE SPACES

A. BURENKOV, A. GOGATISHVILI, V. GULIYEV AND R. MUSTAVAYEV

ABSTRACT. The problem of the boundedness of the Riesz potential I,, 0 <
a < nin local Morrey-type spaces is reduced to the problem of the boundedness
of the Hardy operator in weighted L,-spaces on the cone of non-negative non-
increasing functions. This allows obtaining sharp sufficient conditions for the
boundedness for all admissible values of the parameters.

1. INTRODUCTION

For x € R™ and r > 0, let B(z, ) denote the open ball centered at = of radius
r and BB(:z:, r) denote the set R"\ B(z,r).
Let f € LP¢(R™). The fractional maximal operator M, and the Riesz potential
I, is defined by

Maf () = sup | Be. ) 4% iy 0<a<n
B(x,t

t>0

I,.f(x) :/R Ly)dy, 0<a<n,

n o — gyl

where |B(x,t)| is the Lebesgue measure of the ball B(x,t).

The operators M = My, M, and I, play an important role in real and harmonic
analysis. (see, for example [9] and [10])

In the theory of partial differential equations, together with weighted L, ,,
spaces, Morrey spaces M, \ play an important role. They were introduced by C.
Morrey in 1938 [12] and defined as follows: For A >0, 1 <p < oo, f € M, if
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I
fe Ly (R") and

1 gy = 1F gy = S0P 72l f Ly (aryy < 00

z€R™, r>0

holds .

These spaces appeared to be quite useful in the study of local behavior of the
solutions of elliptic partial differential equations.

Also by WM,, , we denote the weak Morrey space of all functions f € WLLOC(]R”)
for which

||fHWMpA = Hf”WMp,\(R”) = Sup T_A/p“fHWLp(B(x,r)) < 0,
’ ’ z€R™, r>0

where WL,, denotes the weak L,-space.
The classical result by Hardy-Littlewood-Sobolev states that if 1 < p; < ps <

0o, then [, is bounded from L, (R™) to L,,(R") if and only if & = n (pil -1

p2

and for p; =1 < py < 00, I, is bounded from L;(R"™) to WL,,(R") if and only if
a=n (1 — pi> D.R. Adams [1] studied the boundedness of the Riesz potential

2
in Morrey spaces and proved the following statement.

Theorem 1.1. Let 1 < p; < py < 0o. Then 1, is bounded from My, \ to My, x
if and only if

11 11 1 1\
0<a§n(———) andAz(n(———)—a)(———) (1.1)
D1 D2 b1 D2 b1 D2

fa=n <pi1 — p%), then A = 0 and the statement of Theorem 1.1 reduces to

the above mentioned result by Hardy-Littlewood-Sobolev.
Recall that, for 0 < a < n,

Mo f(x) < vi L)), (1.2)

hence Theorem 1.1 also implies the boundedness of the fractional maximal oper-
ator M,. F. Chiarenza and M. Frasca [8] proved that the maximal operator M
is also bounded from M, \ to M, for all 1 <p < oo and 0 < A < n.

If in the place of the power function »~*? in the definition of M., » we consider
any positive weight function w defined on (0, c0), then it becomes the Morrey-
type space M, ,,. T. Mizuhara [11] and E. Nakai [13] generalized Theorem 1.1 and

obtained sufficient conditions on a weights w; and w, ensuring the boundedness
of the Riesz potential I, where a = n <pi1 — p%) from My, ., to M, w,. In [13]
the following statement, containing the result from [11], was proved.

Theorem 1.2. Let 1 < p; <py < o0 and o =n (pil — p%) Moreover, let w be a

positive function satisfying the following conditions: there exists ¢y > 0 such that

0<r<t<2r=cilwlt) <w(r) < cauwt) (1.3)



and there exists co > 0 such that for all r > 0.

< cuw M ()T (1.4)

LPl (T,OO)

Hw’l(t)ta_%l

Then for py > 1 1, is bounded from M, ., to M,, ., and for p =1 1, is bounded
from My, to WM, ..

In [5] V.I.Burenkov, V.S.Guliyev considered general local and global Morrey-
type spaces LM, g, ., and studied the boundedness of the Riesz potential oper-
ator I, from LMy g, v, to LMp,p, ., for all admissible values of a. Moreover, for
some values of the parameters necessary and sufficient conditions for the operator
I, to be bounded from LM,y g, v, to LMp,p, ., Were obtained.

2. DEFINITIONS AND BASIC PROPERTIES OF MORREY-TYPE SPACES

Definition 2.1. Let 0 < p,6 < oo and let w be a non-negative measurable
function on (0,00). We denote by LM,, 9, w,» GM,g., the local Morrey-type
spaces, the global Morrey-type spaces respectively, the spaces of all functions
f € Li°(R") with finite quasinorms

HJCHLM,)L@W1 = HfHLMpl’glywl(]R") = Hw(T)HfHLp(B(O,T))HL(,(O,OO) ;
1. = S0 1@+ M,
respectively.
Note that
Wl = W llgar = 111,
Furthermore, GM,,, ,-x/» = M, x, 0 < A < n. The interpolation properties of the

spaces G My Were studied by S. Spanne in [16]. The spaces GM,p - were used
by G. Lu [15] for studying the embedding theorems for vector fields of Hormander
type. The boundedness of various integral operators in the spaces G My ,, Was
studied by T. Mizuhara [11] and E. Nakai [13]. In [6, 7] the boundedness of
the maximal operator M from LM, ¢, w, to LMy, ., and from GM, g, ., to
G My,0, v, Was investigated.

In [7] the following statement was proved.

Lemma 2.2. Let 0 < p,0 < oo and let w be a non-negative measurable function
on (0,00).
1. If for allt >0
[w(r) || Ly (t,00) = 00, (2.1)
then LM,, 9, 0, = GM,g., = O, where © is the set of all functions equivalent to
0 on R™.
2. If for allt >0
()|l o0 = oo, (2:2)
then, for all functions f € LMy, g, w,, continuous at 0, f(0) =0, and for 0 <p <
o0 GMp’gw = 0.
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Definition 2.3. Let 0 < p, 0 < co. We denote by 2y the set of all functions w
which are non-negative, measurable on (0, c0), not equivalent to 0 and such that
for some ¢t > 0

[[w(r)l| Lot,00) < 00 (2.3)

Moreover, we denote by €2, the set of all functions w which are non-negative,
measurable on (0, 00), not equivalent to 0 and such that for some ¢, > 0

o) zoter00) < 00, [w(r)r™ Pl Ly(040) < 00 (2.4)

In the sequel, keeping in mind Lemma 2.2, we always assume that either w € €2y
orw € Q.
In [5] the following statements were proved.

Lemma 2.4. Let 1 < p; < 00,0 < py < 00,0 < a<n,0<6b,0 < oo,
w1 € Qy,, and wy € Qy,. Then the condition

n
a < —
4

is necessary for the boundedness of I, from LM, g, ., to LM,, , .,-

Lemma 2.5. Let 1 < p; < 00,0 < py < 00,0 < a<mn,0<b,0 < o0,
w1 € Qg,, and wy € Qp,. Moreover, let wy € Ly, (0,00). Then the condition *

a>n <ﬁ — ﬁ) (2.5)
bt P2/ 4

is necessary for the boundedness of I, from LMy, g, ., to LM,, , 0,-

Remark 2.6. If wy € Qp, but wy & Ly, (0,00), then condition (2.5) is not neces-
sary for the boundedness of I, from LM,, 9, o, to LMy, g, .-

Throughout this paper a < b, (b 2 a), means that a < Ab, where A > 0 depends
on inessential parameters. If b < a < b, then we write a = b.

3. L,-ESTIMATES OVER BALLS
Our aim is to obtain the following inequality

||[Oéf||LMp2,92,w2 S ||f||LMp1,€1,w1'

In order to obtain conditions on w; and ws ensuring the boundedness of I, we
shall reduce the problem of the boundedness of I, in the local Morrey-type spaces
to the problem of the boundedness of the Hardy operator in weighted L,-spaces
on the cone of non-negative monotone functions.

Let l<p<oo, f€ L;)OC(]R”). For any r > 0 we have

oS |2y, 301y < Ha(FXBO20) Ly B0 + [HalFX g0 )l B0m)  (31)

'Here and in the sequel t, =t ift >0 and t; =0ift <Oandt_ = —tift <Oandt_ =0
ift > 0.



If || <7, |y| > 2r, then |y|/2 < |z —y| < 3y|/2. (3.2)
Therefore

f(y) o\
]’a fXU |Lp B - et (/ / —dy d.x
H ( B(0,27’))’ 2 (B(O0)) B(0,r) BB(0,2r) |37 - 3/|n7a
P / W)l (3.3)
R

7\ B(0,2r) ly|n—e

Let us estimate ||1(fXB(0.2))lL,,(B0,)- The next lemma is true

Lemma 3.1. Let 0 < a < n, 0 < py < co. Moreover, let1<nf_2a’; < p1 < o0,
or P2 <1 <p; <o0, or 22 =1<p; <oo. Then

n+apa n+ap2
a—n 1
Mol Fxp020) o0 S 75575 | £l o020 (3.4)
Proof. Suppose that 1 < nf;; < p; < 0o. Then by Sobolev’s theorem we have

o (fxB0.2r) Ly, B0 S IFIlL_pon 8021

7L+ap2

If n_’g; = pj, then we arrive at (3.4). If p; > n_’g;z, then applying Holder’s
inequality (with exponents ’% and (w) ) we get (3.4).

pan
Assume that an <1< p; < oo. Since

|B(O.1)] . im
/ (La(FXB0.2n)(@))" dz = / [(Ta(fxB02r))" ()] dt
B(0,r) 0 (3.5)

n—a * P2 |B(O7T)| a—n
<| swp o £ (L(fxsosn) (0 / 1520 gy
0

0<t<|B(0,r)|

Using the boundedness of I, from L;(R") to WL_»_(R") we have

/B o Va0 @) o S 11 ey BO.NIT (30

Therefore
1o (fXB020) ) Loy (BO) ST ” £l 2. (B(0,2r))- (3.7)
If p; = 1, then we arrive at (3.4). If p; > 1, then applying Holder’s inequality
(with exponents p; and p;’) we get (3.4).
Suppose that _’fa’; =1 < p; < o0o. Let py > p; be defined by n <—1 — p%) =«
Then by Holder’s inequality (with exponents 22 and (£2)") we have

1o (fXBO2)) Loy (BOM) S ria i 1o (fXB(0.20)) | Ly (BO))- (3.8)
Then by Sobolev’s theorem we arrive at (3.4). UJ

The statement of the next lemma follows from (3.1), (3.3) and Lemma 3.1.
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Lemma 3.2. Let 0 < a < n, 0 < py < 00. Moreover, let 1 < 22— < p; < o0,

n n n+apa
or E- <1< p <oo, or ;B2 =1<p <oo. Then
/(W)

1o fllL,, B <c7”’2/
ra ) R"\ B(0,2r) ly|"=

where constant ¢ does not depend on r.

Ly + e G £l 0y, (3.9)

The next lemma is true.

Lemma 3.3. Let 0 < o < n, 0 < py < 0co. Moreover, let 1 < 22— < p; < 00,

n+apa
pan p2n
07"n+ap2<1<P1<OO 0rn+ap2—1<p1<oo. Then

1
*° o dt
H_[ f||Lp Or)) < CTPQ ’f([)’))lpld{)'} ) (310)
2 r B(0,t) tor o1

where constant ¢ does not depend on r.

Proof. Denote by

I, = T;;/ |y )|d and I :=r *"(%%)||f||Lp1(B(o,2r>>-
R"\B(0,2r) |?J|

Let estimate [;. By Fubini’s theorem we have

N ©
h=at [ ) [
R™\B(0,2r) wl ¢
W [ dt
ot [ (/ T <>rdx>—+1

2r<|z|<t e
<c7’P2/ / |f |dx
2r JB(0,) ot

Applying Holder’s inequality

a0 Wodt
I <ecree |f(z)[Prdx gr—) (3.11)
2r B(0,t) tr1

In the other hand

o o dt
f(z pldiﬁ) =
/Qr (/B(O,t)’ (@)l o Ot
L )
> ([ wran)” [T
B(0,2r) 2r tP1

1

=™ (/ |f(:1:)]p1dx> "
B(0,2r)




Then .
n [ o dt
_[2 < cre2 |f(l')|pldl' Ta—i—l (312)
or B(0,t) tr
The statement of the lemma follows from (3.11) and (3.12). O

Remark 3.4. Note that inequality (36) in [5]

1
P =4 ~ P L "
e flioom < ™ ([ ([ @i ) ot )

follows from the inequality (3.10) by applying Holder’s inequality.
Proof. For any § > 0

- wodt
P1
oo < o [ ([ (ptapran)” S0
r B(Ovt) t?l
1
. o dt
- flz pldx) -
/r (/B(o,t)| (@)l tﬁ’(a“)*ﬁﬂ”ﬁl/

By applying Holder’s inequality
[ a1, (B0

1 1
2 ([ dt o[ dt
P2 p
<ecr (/r (/B(O 5 | f(x)] 1d:c> tn—(a+§)p1+1) (/r —tpl’5+1>
o ([T dt Y
P 0 p1
= </r (/B(O t) (@) dx) t"(a+5)p1+1) )

Lemma 3.5. 0 < py < 00, 0 < a < n and f € L*(R™). Then the next inequality

holds
> dt
1ol £y, B0y 2 772 » T (3.13)
t

where the constant ¢ does not depend on 7.

O

Proof. 1t easy to see that
Mol fll Ly B0 = el FIXB020) Ly (B0 + ol fIX g0 90 | Loy (BOr) (3.14)

Taking into account (3.2), and then, applying Fubini’s theorem, we have

a /()
|[a f|XE I B 0771 ~ T P2 / dy
‘ (’ B(0,27«)) H Pz( (0,7)) R7\ B(0,27) ’y‘nia

n o dt
z7"”2/ |f(y)|/ a1
R\ B(0,2r) lyl
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dt
~ 12 / / )]d — (3.15)
B(0,t)\B(0,2r)

In the other hand the next inequality is true for all x € B(0, 7’)

fly a-n
(Ll xs020)() = [ VWL, >, FW)ldy.
B(0,2r) [z —yl B(0,2r)

Then
wummMmmuom>W“w/ F)ldy
0 2r

dt
~ i y)|dy . (3.16)
/ /02T) tn—a+l

From (3.14), (3.15) and (3.16) we get the next inequality
dt
ooy 275 [ sl

n dt
R P2 |f(x)|de———. (3.17)
/r /B(o,t) tn—ott

Theorem 3.6. Let 0 < a <n, 0 < py < oo and p2” -~ < 1. Then

ol aom =% [ gy O_Q)A%)Jf@ﬂ%% 3.15)

R\B(0,r) [Y]"
Proof. The statement of the Theorem follows from Lemma 3.1 and Lemma 3.5.
O

4. RIESZ POTENTIAL AND HARDY OPERATOR

Let H be the Hardy operator

(Hg)(t) := %/o g(r)dr, 0 <t < oo,

Lemma 4.1. Let 0 < a <n, 0 <py <00, 0 <0y <00 and wy € y,. Moreover,

let1<ni’§; p1<oo,07’ni2;;<1<p1<oo ornf;;—l<p1<oo.
Then
oS Lty 0p0y S NH YLy, 0 0.00) (4.1)

for all f € Lfn‘;c, where

and



Proof. By Lemma 3.3 we have

= ot
n_ P1
HIO‘fHLMPQﬁz’Wz 5 WQ(T)TPQ / (/ |f(x)|2?1dx> to+l
r B(0,t)

— 1

WQ(T)T:?/(; </B(O s, ]f(a:)|p1da:) " dr

—0o

= wQ(r)r% /01" g(T)dr

Lo, (0,00)

Q

Loy (0,00)

1

P

—0o

g(T)dT) dr

Lo, (0,00
1

= /OOO <w2(r)mn2>e2 (/OT
([ Gty 3 o) )’

= 191l ., (0.00) (4.4)
U

Theorem 4.2. Let 0 < a < n, 0 < ps < 00, 0 < 01,0, < 00, wy € Qy, and

we € Qy,. Moreover, let 1 < %;;2 < pp < o0, 07’%;;2 <1< p <o0, or
pan

n+apz
Assume that the operator H is bounded from Ly, ., (0, 00) to Lg, .,(0,00) on the

cone of all non-negative and non-increasing functions on (0,00), that is,

=1<p <o0.

||HgHL92,U2(0700) S ||g||L81,u1(0700)7 (45)

where ) )
oi(r) = wy' (r-e)re (4.6)
va(r) = e (=3 ) 7e) =, (4.7)

Then 1, is bounded from LMy, g, ., to LM,, 0,0,

Proof. Since ¢ is non-negative and non-increasing on (0,00) and H is bounded
from Ly, ., (0,00) to Lg, , (0, 00) on the cone of functions containing g, by Lemma
4.1 we have

a2y 0, 0 S Gl Lo, 0 (0,00)-
Hence

1
o0 o
< 01
oot < ([ 02 oy )

1
~ (/ w?l(r_%)r_é_lnfnel L dr) "
0 Ly(B(0,” %)
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1

o) p 0 01
(/ wi'(7) ||f||L1p(B(O,r))dr>
0

Q

= | fllza,, 0,0, -

5. TWO-WEIGHTED HARDY INEQUALITIES FOR
NON-INCREASING FUNCTIONS

In order to obtain sufficient conditions on the weight functions ensuring the
boundedness of I, we shall apply the following Theorem ensuring the bounded-
ness of the Hardy operator H from one weighted Lebesgue space to another one
(see [3] and [4]).

Theorem 5.1. Let p, g € (0,00] and let v, w be weights. Denote by

¢ ! 1 1 1
V(t) = [ v(s)ds, W(t):= | w(s)ds, —=—-——.
0 0 r . q p
(i) Let 1 < p < q < oo. Then the inequality
IH | Ly0.000 < €llgll,.0 00,00 (5.1)

holds for all non-negative and non-increasing g on (0,00) if and only if

AL = supWa()V # (1) < o0 (5.2)
t>0

([ ([Wee) <= oo

and the best constant ¢ in (5.1) satisfies c = A + A}.
(ii) Let 0 < p < 1,0 < p < q < oo. Then (5.1) holds if and only if A} < oo

and )
A% = supt (/ w(:)ds) ' V_%(t) < 00, (5.4)
t

t>0 S

and

cr Al + A3
(i1i) Let 1 <p < o0, 0 < qg<p<oo,q#1. Then the inequality (5.1) holds if

and only if
e ([ (5 o)

(SR ()

1
P

v(t)dt) < 00 (5.5)

B3
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and
([ ) ([ )] ) < 0

bS]

and ¢ = A} + A3.

(iv) Let 1 = q < p < oo. Then (5.1) holds if and only if A3 < oo and

() +t [ g

4 . > W
= ( Vit
)+t [~

W(o0) > (W
i / ( V(1)

S

)pll /too W) oy

~|

< 00, (5.7)

w(s) 7o\ ”
: 8) o(t)dt

and ¢ = A} + A3,
(v) Let 0 < ¢ < p=1. Then (5.1) holds if and only if A3 < co and
r = \
w<s)ds) (ess inf V(s)) wdt) <oo, (5.8)
0<s<t S q

w0

and ¢ =~ A3 + Aj.
(vi) Let 0 < ¢ < p < 1. Then (5.1) holds if and only if A3 < co and

v w(t B
wl )dt> < 0, (5.9)

AS = / sup i - (/ w<8)d$)
0o o<s<tV(s)r \Jr 87 t

and ¢ = A + AS.
6. SUFFICIENT CONDITIONS

From Theorem 5.1 follows the next statement
Corollary 6.1. Let 0 < 6y, 65 < 0o and weight functions vy, ve are determined

n
o+ —
+P2 p1

by (4.6) and (4.7).
(a) Let 1 < 6y < 0y < co. Then the inequality (4.5) holds if and only if
) 5 [ [ o
dr) (/ W (r)dr> < oo, (6.1)
¢

By = sup (/ W ()% (o5
t

t>0
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and

: N R A Gy 1
B, := sup </ ng(r)rezpzdr> i / :}1 (r)r ~dr <oo. (6.2)
0 ¢

o 1 91
>0 [ W (p)dp)

(b) Let 0 < 6; < 1,0 < 60, <0y <oo. Then (4.5) holds if and only if B] < oo

and
n ¢ % o0 _%
Bi :=supt" » (/ Wl (1) v dr) (/ wfl(r)dr) < 00. (6.3)
t>0 0 t

(c) Let 1 < 0; <00, 0< 0y <6 <o0,0y#1. Then the inequality (4.5) holds
if and only iof

r
P

oo @ O v > —
Bi’, _ /oo ) W22(T>T 2( P2 P1>dr wez
0

o3
t)t o) dt | < oo,
S W rar S -

and

02-17 5, -6,

|/ opt e YA
B§:=/O (/0 ()’ der) /t(fof)el o <

61—02

91 0, (a_1> 6162
A1 ARANEY
1 ) 101 dt < 00.
" o))
(6.5)
(d) Let 1 = 05 < 0, < co. Then (4.5) holds if and only if B} < co and
00 OOWHQ(T)T%(O“L%*ﬁ)dT-}-t Pl f w E_H_ dr e
Bj = / L2 X
’ 0 = WO (r)dr
t . 01
X / W ()t e T T et dt) < 00
0
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(e) Let 0 < 0y < 6y = 1. Then (4.5) holds if and only if B} < co and

o0 t % 0o 89%1
BS = / (/ wd? (7")7“62P2d7") ’ (ess infspl_a/ w?%p)dp) T
0 0 t<s<oo s (67)

1—09

xw§2(t)t92%dt> " < .

(f) Let 0 < 05 < 0, < 1. Then (4.5) holds if and only if B} < oo and

o0 S <a7ﬁ> 90;1*9922 t n 916—292
BY = / sup 5 (/ wh? (r)rgzwalr) X
0 t<s<oo ( 800 w? (p)dp) 01—02 0

xwd? (t)t92£dt> < o0.

(6.8)

From Theorem 4.2 and Corollary 6.1 follows the next theorem.

Theorem 6.2. Let 0 < o < m, 0 < py < 00, 0 < 0y, 0 < 00, wy € Qy, and

pan pan
wo € p,. Moreover, let 1 < nj’am < p < o0, or n;’am <1< p < o0, or
p2n
roms = 1 < p <o0.

Assume that any of conditions (a)-(f) be satisfied. Then 1, is bounded from
LMP1,9170J1 to LMP2,9270-12'

Remark 6.3. We can combine two conditions (6.1) and (6.3) into one condition

1

o0 92% [2) 00 -3
op ([Tt ) ([Tebor) T < 09
P1 t

>0 (t+7r)

which coincide with the necessary condition for boundedness of the Riesz poten-
tial from LMy, g, », to LMy, g, ., in the case 0 < 61 < 1, 0 < 0; < 0, < oo,
1 <p1 <ps<o0,a=n(l/pr —1/ps2) (see [5]).
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