
Optimal and online preemptive scheduling

on uniformly related machines

Tomáš Ebenlendr∗ Jǐŕı Sgall∗

November 30, 2007

Abstract

We consider the problem of preemptive scheduling on uniformly related machines.
We present a semi-online algorithm which, if the optimal makespan is given in ad-
vance, produces an optimal schedule. Using the standard doubling technique, this
yields a 4-competitive deterministic and an e≈ 2.71-competitive randomized online
algorithm. In addition, it matches the performance of the previously known algo-
rithms for the offline case, with a considerably simpler proof. Finally, we study the
performance of greedy heuristics for the same problem.

Keywords: Online scheduling; preemption; uniformly related machines.

1 Introduction

We consider the scheduling problem denoted Q|pmtn|Cmax in the three-field notation. We
are given m uniformly related machines, each characterized by its speed, and a sequence of
jobs, each characterized by its processing time. If a job with processing time p is assigned
to a machine of speed s it requires time p/s. Allowing preemption means that any job
may be divided into several pieces that may be processed on several machines; however,
the time slots assigned to different pieces need to be disjoint. The goal is to minimize the
length of the schedule (makespan), i.e., the time when all jobs are finished.

In the online problem Q|online-list, pmtn|Cmax the jobs arrive in a sequence and we
have to assign each job without any knowledge of the future requests; the algorithm has
to determine immediately all the machines and all the time slots in which the current job
is scheduled. In other words, the online nature of the problem is in the order in the input
sequence and it is not related to possible preemptions and the time in the schedule.

∗Mathematical Institute, AS CR, Žitná 25, CZ-11567 Praha 1, The Czech Republic. Email:
ebik,sgall@math.cas.cz. Partially supported by Institutional Research Plan No. AV0Z10190503, by
Inst. for Theor. Comp. Sci., Prague (project 1M0021620808 of MŠMT ČR), grant 201/05/0124 of GA
ČR, and grant IAA1019401 of GA AV ČR.

1

Preprint, Institute of Mathematics, AS CR, Prague. 2007-12-10 IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic

We also consider the semi-online variant in which an algorithm is given in advance
the value of the optimal makespan. Online and semi-online algorithms are evaluated by
the competitive ratio and the approximation ratio, respectively, which in both cases is the
worst case ratio of the length of the produced schedule to the minimal length.

Finally, we also study the performance of two well-known greedy heuristics, List and
Lpt. List (list scheduling) is an online algorithm which schedules each coming job so that
it finishes as soon as possible. For preemptive scheduling, it means that at each time the
job is scheduled on the fastest available machine. Lpt (Largest Processing Time first) uses
the same strategy, but the jobs are sorted and processed from the largest one; i.e., it is no
longer an online algorithm.

Preemptive scheduling on uniformly related machines is a classical scheduling problem,
yet it did not receive much attention in the online version. One motivation for its study is
the expectation that, similarly as for identical machines, the problem should be tractable,
as the structure of the optimum is well understood, and at the same time it could provide
a useful insight for constructing efficient randomized algorithms for the non-preemptive
version.

We describe known results and our contribution in each area separately.

1.1 Optimal offline and semi-online algorithms

For offline preemptive scheduling the optimal solution was given already by Horvath et
al. [17] and Gonzales and Sahni [16]. The algorithm of Gonzales and Sahni is more efficient:
First, the total number of preemptions in the schedule is 2(m−1), which is the best possible
bound for schedules with the optimal makespan. Second, its running time is O(n+m log m)
and this is also best possible: the term m log m is caused by sorting the largest m jobs,
which is necessary to obtain the value of the optimal makespan. Another algorithm using
2(m − 1) preemptions was given by Shachnai et al. [20]; it simplifies the algorithm of
Gonzales and Sahni, but it also sorts the jobs, so it is not semi-online and needs time
O(n log n+m2). ([20] claims running time O(n logn), however, the analysis sketched there
is flawed as quadratic time is needed to update their data structure.)

An optimal (1-approximation) semi-online algorithm with the optimal makespan known
in advance was previously known only for two machines, see Epstein [11].

Our results. We give an optimal (1-approximation) semi-online algorithm for the studied
problem. It generates at most 2(m − 1) preemptions and runs in time O(n + m log m),
thus it is as efficient as the offline algorithm of Gonzales and Sahni. In addition it has the
advantage of being semi-online, i.e., the jobs can be scheduled in an arbitrary order after
computing the optimal makespan.

Since the value of the optimal makespan can be easily computed, our algorithm can be
also used as an efficient offline algorithm instead of the algorithm of Gonzales and Sahni.
The efficiency is the same and we believe that our algorithm is significantly simpler and
easier to understand.

2

1.2 Online algorithms

For Q|online-list|Cmax, non-preemptive scheduling on uniformly related machines, the first
constant competitive algorithm was given by Aspnes et al. [1]; it is deterministic and its
competitive ratio is 8. This was improved by Berman et al. [3]; they present a 5.828-
competitive deterministic and a 4.311-competitive randomized algorithm. For an alterna-
tive very nice presentation see [2].

These algorithms can also be used for preemptive scheduling. Woeginger [23] ob-
served that the optimal non-preemptive makespan is at most twice the optimal preemptive
makespan for uniformly related machines. Consequently, the previous algorithms that do
not use preemption are also 11.657-competitive deterministic and 8.622-competitive ran-
domized algorithms for Q|online-list, pmtn|Cmax. No better preemptive online algorithms
were known before for the general case.

All these algorithms are based on a semi-online algorithm and a doubling strategy for
guessing the optimal value. This common tool was first used for online scheduling in [21, 1].

The lower bounds for Q|online-list|Cmax are 2.438 for deterministic algorithms [3] and
2 for randomized algorithms; the same lower bound of 2 works for Q|online-list, pmtn|Cmax

both for deterministic and randomized algorithms [14].

Our results. Using our 1-approximation semi-online algorithm and the same doubling
strategy as in the previous results, we obtain a 4-competitive deterministic and e≈2.7183-
competitive randomized algorithms for Q|online-list, pmtn|Cmax.

Subsequent results. Subsequent to this work, an optimal online algorithm for any combina-
tion of speeds was given in [8]. The new algorithm is based on the idea of virtual machines
introduced in this paper. The new algorithm is deterministic but it is optimal even among
all randomized algorithms, solving one open question from the conference version of this
paper. However, the best overall upper bound on the performance of the new algorithm
is e ≈ 2.71 and it is based on the analysis of the randomized doubling algorithm from this
paper. We do not know any direct proof of the same or better upper bound on the optimal
algorithm. A new lower bound of 2.054 on the optimal competitive ratio is also shown
in [8].

1.3 Greedy algorithms

Both List and Lpt were previously studied for the non-preemptive case, Q|online-list|Cmax.
The competitive ratio of List is not constant, it is asymptotically Θ(log m), see [5, 1], for
the lower bound and the upper bound, respectively. This is very far from the optimum,
however, sorting the jobs improves the performance dramatically. The approximation ratio
of Lpt is between 1.52 and 1.66 [15]; a better upper bound of 1.58 is claimed in [7], but
the proof appears to be incomplete. Recently Kovács [18] gave tighter bounds showing
that the approximation ratio of Lpt is between 1.54 and 1.5773.

Our results. We show that with preemption, Q|online-list, pmtn|Cmax, the situation is
similar. The competitive ratio of List is Θ(log m) and the approximation ratio of Lpt

3

is 2 − 2/(m + 1). Note the preemptive versions of List and Lpt may generate very
different schedules from the non-preemptive ones, as the greedy rule can take advantage
of preemptions. So these result do not follow easily from the non-preemptive case.

1.4 Special cases

We conclude by a few cases in which we know the exact competitive ratio for preemptive
scheduling from previous results.

The first case is that of identical machines (i.e., all the speeds are equal to 1), de-
noted by P |online-list, pmtn|Cmax. Chen et al. [4] gives an optimal deterministic algorithm
and a matching lower bound which works even for randomized algorithms. The optimal
competitive ratio is 4/3 for m = 2 and increases to e/(e − 1) ≈ 1.582 as m → ∞.

For the special case of two related machines the optimal competitive ratio for preemptive
scheduling, Q2|online-list, pmtn|Cmax, was given independently by Wen and Du [22] and
Epstein et al. [13] for any combination of speeds. If the ratio of the two speeds is s ≥ 1, the
optimal competitive ratio is 1 + s/(s2 + s + 1) (this is equal to 4/3 for s = 1 and decreases
to 1 as s → ∞); randomization does not help here either. The semi-online deterministic
case of Q2|online-list, pmtn|Cmax with jobs arriving sorted was completely analyzed in [12].

The special case of non-decreasing speed ratios was solved in [10]. Extending the
technique for identical machines, the exact competitive ratio is given for all combinations
of speeds satisfying the given restriction; all these values are smaller than or equal to 2.

A preliminary version of the paper was presented at 21st Symposium on Theoretical
Aspects of Computer Science (STACS) [9].

2 Preliminaries

Let Mi, i = 1, . . . , m, denote the m machines and let si ≥ 0 be the speed of machine
Mi. We assume, w.l.o.g., that the machines are sorted so that s1 ≥ s2 ≥ The input
sequence of jobs is denoted J = (pj)

n
j=1, where n is the number of jobs and pj ≥ 0 is the

processing time of the jth job.
Let Opt be the makespan of the optimal schedule. There are two easy lower bounds

on Opt. First, Opt is bounded by the total work that can be done on all machines. Thus

Opt ≥

∑n
j=1 pj

∑m
i=1 si

. (1)

Second, Opt is bounded by the optimal makespan of any k jobs. If k < m, then an optimal
schedule of k jobs uses only k fastest machines: if it used a slower machine, some faster
one would be idle at the same time. Thus, for all k = 1, . . . , m − 1,

Opt ≥

∑k
j=1 p̄j

∑k
i=1 si

, (2)

4

where p̄j is the jth largest processing time. It is known that the actual value of Opt is the
minimal value satisfying the conditions (1) and (2) [17, 16]; our algorithm and its analysis
gives an alternative and easy proof of this fact. This means that given an input instance,
we can compute the value Opt in time O(n + m log m), using the conditions (1) and (2).

3 An optimal semi-online algorithm

In this section, we give a semi-online algorithm, which, given T , generates a schedule with
makespan at most T , if some such schedule exists.

The idea of the algorithm is to schedule each job on two adjacent machines so that,
at any time in [0, T), exactly one of them remains idle. Such a pair of machines can be
thought as one virtual machine with possibly changing speed. For the subsequent jobs,
such virtual machines are used in place of real ones. See Fig. 1 for an example. If a job
is too small, we create a machine with zero speed, to fit this scheme. To prove that this
outline works, it remains to check that if a job is too long to fit on a machine, T is smaller
than Opt, as one of the conditions (1) and (2) is violated.

3.1 Preliminaries

We assume in this section, w.l.o.g., that pj > 0 for all j; any algorithm can skip the jobs
with pj = 0. We define machines Mm+1, Mm+2, . . . as machines with speed equal to zero.
These machines only serve to simplify the description of the algorithm as otherwise we
would need to analyze separately a case when a job is too small to occupy the slowest
machine for the whole time interval [0, T).

We define a virtual machine as a set of adjacent machines, such that exactly one of
them is idle at any time in [0, T). Let Vi denote the ith virtual machine. Scheduling a job
on Vi at time t means that we schedule it on the machine in Vi that is idle at time t. The
speed of virtual machine Vi is denoted vi(t); it is defined to be the speed of the unique
machine in Vi which is idle at time t. Let Wi =

∫ T
0 vi(t)dt be the total work which can be

done on Vi. Note that a virtual machine is defined so that all this work can be used by a
single job.

3.2 Algorithm InTime

The algorithm is defined to schedule in the interval [o, o+T) instead of [0, T). This is used
later in the online variants of the algorithm.

Invariants: The algorithm works with sets Vi and numbers Wi. The following properties
of the virtual machines are invariants of the algorithm:

1. Sets Vi are virtual machines with speed vi(t) at time t ∈ [o, o+T). Every real machine
belongs to exactly one virtual machine. Wi =

∫ o+T
o vi(t)dt.

2. For all i and t, vi(t) ≥ vi+1(t). This also implies Wi ≥ Wi+1.

5

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

0

TT

b)a)

t

0

t

Vi+1 ViVi

Figure 1: One step of the algorithm InTime. The vertical axis is the time. The width of
the columns is proportional to the speed of the machines and thus the area is proportional
to the work done on a given job. (a) Two machines with one job that spans over [0, T).
(b) The new virtual machine obtained by merging the two idle parts. There is a new
postponed preemption at time t.

3. Each job that is already processed is scheduled on machines that belong to a single
virtual machine. For every i, there are exactly |Vi|−1 jobs that are scheduled on the
machines that belong to Vi.

Algorithm InT ime(T)

• Initialization:

procedure InitInT ime(offset, time)

T := time; o := offset

For all i do Vi := {Mi}; Wi := si · T

• Step j: (schedule a job j with processing time p = pj)

function DoInT ime(p)

1. Find i such that Wi ≥ p > Wi+1 or return FALSE

2. Find t such that
∫ t
o vi(τ)dτ +

∫ o+T
t vi+1(τ)dτ = p

3. Schedule job p on Vi in time interval [o, o + t) and on Vi+1 in

[o + t, o + T).

4. Vi := Vi ∪ Vi+1; Wi := Wi + Wi+1 − p;
For all j > i do Vj := Vj+1; Wj := Wj+1

5. return TRUE

• Main body:

InitInT ime(0, T);

for j := 0 to n do if not DoInT ime(pj) fail

6

Theorem 3.1 Algorithm InTime maintains all the invariants and generates a schedule
with makespan at most T whenever the conditions (1) and (2) are satisfied for the input
instance, i.e., whenever such a schedule exists.

Proof: All invariants are satisfied after the initialization. Now we show that the function
DoInT ime() maintains the invariants and that it can fail only in line 1.

In line 2, t exists because the left-hand side of condition is continuous in t, and p lies
between values of the left-hand side for o and o+T (i.e., between Wi+1 and Wi). The value
t can be computed efficiently since the function vi(t) changes its value at most m times.

Line 3 is correct, because virtual machines are idle by definition. The real schedule can
be generated because the algorithm knows the mappings to determine vi(t).

Line 4 merges the two half-used virtual machines to one virtual machine that satisfies
invariant 1. Invariant 2 is not broken because the two virtual machines are adjacent. If
there are k real machines and k − 1 jobs in Vi and l machines and l − 1 jobs in Vi+1, we
create one virtual machine with k + l real machines and k + l − 1 jobs by scheduling the
actual job and merging the two virtual machines. Thus invariant 3 is valid as well.

If DoInT ime() returns FALSE in line 1, then pj > W1 when processing some job j (we
always have a machine of speed zero). We know that V1 = {M1, . . . , Mk}, for some k. In
case k ≥ m we know that

∑j
j′=1 pj′ > T ·

∑m
i=1 si. By (1), T < Opt and thus no schedule

exists. In case k < m we know that there are k − 1 jobs scheduled on the machines of V1.
So, including j, we have k jobs that are together larger than the total work that can be
done on the k fastest machines before T . By (2), T < Opt and no schedule exists again.

Our algorithm can also be used as an optimal offline algorithm. As noted in the
previous section, the exact preemptive optimum can be computed using conditions (1)
and (2). Using the computed value as T in InT ime(T), Theorem 3.1 guarantees that the
produced schedule has makespan at most T . Since the conditions (1) and (2) are necessary,
the makespan of any schedule cannot be smaller than T , and the produced schedule is thus
optimal.

3.3 Efficiency of the algorithm

The number of preemptions. There are two types of preemptions in the algorithm.
Immediate preemptions are created by dividing a job between two virtual machines. Post-
poned preemptions are generated by scheduling on the virtual machine as its speed changes.
It is clear that every immediate preemption generates at most one postponed preemption.

Define a zero virtual machine as a set of real machines with zero speed. When scheduling
on a non-zero virtual machine and a zero virtual machine, no immediate preemption occurs
because the job is completed on the non-zero one. On the other hand, after scheduling
on two non-zero machines, the number of non-zero machines decreases. Because we have
m non-zero virtual machines after the initialization, the algorithm creates at most m − 1
immediate preemptions and thus no more than 2m − 2 preemptions overall.

7

The time complexity and implementation. Even with a simple implementation using
linked lists to store both the list of machines and the lists of preemptions on the machines,
the algorithm is quite efficient.

If a job is scheduled partially on a zero virtual machine, it is processed in time O(1).
The analysis of the number of preemptions implies that only m − 1 jobs are scheduled
on two non-zero virtual machines; each such step takes O(m) time, including searching
for the time of the new preemption, actual scheduling and merging the lists of remaining
preemptions. Thus the total time is O(n + m2).

To improve the running time to O(n + m log m), we use search trees to store both the
list of machines and the lists of preemptions on the machines. Specifically, we use 2-3-trees,
defined as search trees with inner nodes with 2 or 3 successors that are perfectly balanced,
i.e., all the leaves have the same depth. The items are stored at leaves only. Each inner
vertex also contains pointers to the leftmost and rightmost nodes in its subtree; this allows
to test in constant time if our key is smaller or larger than all the keys in the tree. This
standard data structure with N items needs in the worst case time O(log N) to perform
search, insertion, delete, or merge of two trees such that all the keys in one tree precede
all the keys in the other tree, see [6].

The non-zero virtual machines are stored in the 2-3-tree using the value of Wi as a key.
The zero machines are not represented, when scheduling on the last represented machine,
the algorithm acts as if the next virtual machine exists and it is the zero one.

The virtual machine Vi is represented by its Wi, its preemption offset ωi (an arbitrary
real number, as explained in the next paragraph) and a 2-3-tree of preemptions. Each
preemption is represented by its time πi,j , which is also used as a search key, its relative
work wi,j and the index of the corresponding real machine. The relative work wi,j is defined
so that wi,j + ωi is the actual work that can be done on Vi before time πi,j.

The algorithm needs to know the actual work that can be done before any given post-
poned preemption. A simple solution which simply remembers this value for each pre-
emption does not allow fast updates. The more complicated representation with an offset
ωi solves this problem. In particular, if the actual work of many preemptions needs to
be updated by the same number the algorithm changes preemption offset ωi instead of
changing all the values wi,j.

Now we specify how each step of the algorithm is implemented with this data structure
and analyze the running time.

In line 1, the algorithm searches for Vi, but at first it looks at the last non-zero virtual
machine in constant time. The search is done in O(log m). There are at most m − 1
searches, as the number of virtual machines decreases after each search, and the total cost
is O(n + m log m).

If Wi+1 = 0, in line 2 the algorithm looks on the first preemption of Vi before doing
the search, so if the job can be done before the first preemption the lines 2 to 4 take
only constant time. If not, the algorithm searches for the appropriate value of t in time
O(log m). For all jobs, the total time is at most O(m log m) because we delete at least one
preemption if the job is longer than the first preemption. The complexity of scheduling a
job in lines 3 and 4 is a constant plus O(logm) for each removed preemption. Thus the

8

total complexity of this case for all jobs is at most O(n + m log m).
If Wi+1 > 0, the algorithm is scheduling on two non-zero machines. Let Πi be the

current number of preemptions of Vi.
In line 2, the algorithm searches for the indices k and l satisfying πi,k ≤ t < πi,k+1

and πi+1,l ≤ t < πi+1,l+1. After this it computes the value of t. We claim that this can
be done in time O(log Πi log Πi+1). Assume that Πi ≤ Πi+1, otherwise use a symmetric
argument. For any time τ , we may compute in time O(log Πi+1) the work that can be
performed on Vi+1 after time τ (using binary search on the preemptions of Vi+1). We
perform a binary search for the correct value of k. In constant time we find a preemption
on Vi which is approximately in the middle of the tree (e.g., the leftmost leaf in the second
subtree). In time O(logΠi+1) we determine if t needs to be before or after this preemption
and recurse. After at most two iterations the height of the remaining 2-3-tree decreases,
thus after O(log Πi) iterations we are done. After computing k, it is easy to compute l in
time O(log Πi+1) and t in constant time. This finishes the proof of the claim.

In line 3, we schedule the job and update the preemption trees on the two machines so
that we remove the preemptions used by the scheduled job one by one. The time needed
for this is a constant for each job plus at most O(log m) for each removed preemption.
Thus the total cost is at most O(n + m log m).

In line 4, the algorithm needs to merge the trees of remaining preemptions. Note that
all the remaining preemptions on Vi occur after all the remaining preemptions on Vi+1. The
algorithm first, in constant time, updates the offset ωi so that ωi + wi,j is the actual work
before any remaining preemption that can be done on the new merged virtual machine.
Next it updates the offset and the relative work of preemptions in the smaller tree so that
the actual work does not change and ωi = ωi+1; this takes time O(min(Πi, Πi+1)). Finally,
the 2-3-trees of preemptions are concatenated and the tree of machines is updated, in time
O(log m) or total O(m log m) for all occurrences of this case.

It remains to bound the total of the contributions O(log Πi log Πi+1 + min(Πi, Πi+1)).
We claim that the total of these contributions until a virtual machine with a non-zero real
machines is created is at most T (a) = C · a log2 a, for some constant C. When merging
adjacent machines with a and b real machines, a ≥ b ≥ 1, the number of preemptions on
them is at most a and b and thus the new contribution is, for some sufficiently large C ′,
C ′′ and C, at most

C ′(b+log2 b log2 a) = C ′(b+log2 b log2 b+log2 b log2
a
b
) ≤ C ′′ ·b(1+log2

a
b
) ≤ C ·b log2(1+ a

b
)

This shows that the total time for creating a virtual machine with a + b real machines by
merging two virtual machines with a and b real machines is at most

T (a) + T (b) + C · b log2(1 + a
b
) = C ·

(

a log2 a + b log2 b + b log2

(

a+b
b

))

= C · (a log2 a + b log2(a + b))

≤ C · (a + b) log2(a + b),

and the induction is complete. The algorithm possibly ends with more than one non-zero
virtual machine, but T (a) + T (b) ≤ T (a + b) and there are only m non-zero real machines,
thus the total contribution is at most T (m) = O(m logm).

9

Summarizing, the total time complexity of the algorithm is O(n + m log m).

3.4 Generalizations

Our algorithm can be generalized so that the real machines change their speeds over time
arbitrarily. In fact, this is what our virtual machines do. It is necessary to preprocess the
speed profiles so that at each time the machines are sorted according to their speeds; this is
easy to do using additional preemptions to “glue” the initial virtual machines from pieces
of different real machines. The same lower bounds (1) and (2) then hold for the optimum
and the algorithm gives a matching schedule. Naturally, the running time and the number
of preemptions depend on the speed profiles of the machines.

4 Doubling online algorithms

When the optimal makespan is not known in advance, we guess it and if the guess turns
out to be too small, we double it. It is well known that this technique can be improved by
initial random guess with an exponential distribution; it is also not hard to optimize the
multiplicative constants. The proofs below are standard.

Algorithm Double()
Initialization:

G := p1/s1; B := 0; InitInT ime(B, G)
Step j:

while not DoInT ime(pj) do

B := B + G; G := 2 · G; InitInT ime(B, G)

Theorem 4.1 The algorithm Double is a 4-competitive deterministic online algorithm for
preemptive scheduling on uniformly related machines.

Proof: We divide the run of the algorithm in phases so that every phase begins with
a call to InitInT ime(B, G). This ensures that the algorithm schedules the jobs in the
interval [Bp, Bp + Gp) in phase p. Intervals do not overlap because Bp+1 = Bp + Gp.

The algorithm stops at the latest when G ≥ Opt because DoInT ime(pj) does not fail
then (every subsequence of J can be scheduled in time Opt). Let Gf be the last value of

G. This yields Gf ≤ 2 ·Opt and Bf =
∑f−1

p=1 Gp <
∑∞

i=1 2−i ·Gf = Gf . All jobs end before
the time Bf + Gf < 2 · Gf ≤ 4 · Opt.

Algorithm DoubleRand()
Initialization:

r := rand([0, 1]); (r is uniformly distributed in [0, 1])
G := er · p1/s1; B := 0; InitInT ime(B, G)

Step j:
while not DoInT ime(pj) do

B := B + G; G := e · G; InitInT ime(B, G)

10

Theorem 4.2 The algorithm DoubleRand is an e-competitive randomized algorithm for
preemptive scheduling on uniformly related machines.

Proof: Define k = ln(Opt · s1/p1), note that k is a constant and k ≥ 1. The algorithm
multiplies G no more than ⌈k−r⌉ times, because er+⌈k−r⌉ ·p1/s1 ≥ ek ·p1/s1 = Opt. Denote
z = ⌈k− r⌉− (k − r), i.e., the fractional part of k− r. Then z ∈ [0, 1] is a random variable
with the uniform distribution. The algorithm stops with Gf ≤ er+⌈k−r⌉ · p1/s1 = ez ·Opt.
The expected makespan of the produced schedule is at most E[Bf +Gf] ≤

∑∞
0 e−i ·E[Gf] ≤

e
e−1

· E[ez] · Opt = e · Opt.

5 Greedy algorithms

The greedy rule for scheduling on related machines instructs us to schedule each coming
job so that it ends as soon as possible. With preemptions, this is achieved by scheduling
the job from time 0 on the fastest idle machine (if there is any), for every time t, until it is
completed. Thus the first job is scheduled on the fastest machine. The second job on the
second fastest, with a preemption at the end of first job (if it is not completed earlier), and
then on the fastest machine, etc. See Fig. 2 for an example. This algorithm is called List

scheduling. If, in addition, the jobs arrive ordered so that their sizes are non-increasing,
the algorithm is called Lpt (Largest Processing Time first).

We prove that List and Lpt have asymptotically the same competitive and approxima-
tion ratio as in the non-preemptive case. However, note that this is not a straightforward
consequence of the non-preemptive case, as the preemptive and non-preemptive versions
of List can generate different schedules on the same instance.

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

����
����
����
����
����
����
����

����
����
����
����
����
����
����

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��������
��������
��������
��������

��������
��������
��������
��������

�����
�����
�����

�����
�����
�����

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
��
��
��

��
��
��

��������
��������
��������

��������
��������
��������

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
������������

��������
��������
��������
��������

��������
��������
��������
��������
��������

����
����
����
����
����
����
����

����
����
����
����
����
����
����

t

0
M1 M2 M3 M4

Figure 2: An example of a schedule generated by the List algorithm. Similarly shaded
regions correspond to the same job.

Notation. For a given instance, Nopt denotes a non-preemptive optimal schedule and
its makespan. It is known that Nopt ≤ 2 · Opt. This is proved as an upper bound

11

on the non-preemptive Lpt algorithm in [23]; a refined version of this proof is used in
Theorem 5.7.

For input sequences J and J ′, J ′ ⊆ J denotes that J ′ is a subsequence of J (an arbitrary
subset of jobs in the same order, not necessarily a contiguous segment). We say that J
dominates J ′ if pj ≥ p′j for all j. In both cases trivially Opt(J ′) ≤ Opt(J).

5.1 Analysis of List

List is a simple online algorithm. However, we show that its competitive ratio is Θ(log m)
and thus it is not very good. Let List(J) denote both the schedule generated by List on
the input sequence of jobs J and its makespan.

We start by the upper bound. First we show that decreasing the size of jobs can only
improve the schedule. This implies that removing short jobs decreases the makespan by
a constant multiple of Opt; doing this in a logarithmic number of phases we obtain the
desired bound.

Lemma 5.1 Suppose that J dominates J ′. Then List(J) ≥ List(J ′).

Proof: For the purpose of this proof, to cover the case n > m, assume that there are
infinitely many machines with zero speed (similarly as in our algorithm).

Consider the schedule after scheduling job pj. Let ti,j , i ≤ j, denote the ith smallest
completion time of a job and let Tj = (ti,j)

j
i=1 be the sequence of all the completion times

after scheduling pj . Note that the sequence Tj is non-decreasing. Define t0,j = 0. The
job pj+1 is scheduled on machine Mj+1−i in the interval [ti,j , ti+1,j) and on M1 after tj,j; of
course this holds only until it is completed (the job may be too short to reach M1 or even
slower machines). The corresponding times for J ′ are denoted by t′i,j and the sequences T ′

j .
We prove by induction on j that for all i, t′i,j ≤ ti,j, i.e., T ′

j is point-wise smaller than
or equal to Tj. The induction assumption for j = 0 is trivial. The induction step from j
to j + 1 says that if p′j+1 ≤ pj+1 and t′i,j ≤ ti,j for all i, then t′i,j+1 ≤ ti,j+1 for all i.

By the induction assumption, the job p′j+1 in List(J ′) is, at every time t, processed by
a machine that is at least as fast as the machine that processes the job pj in List(J) at
the same time. Moreover, p′j+1 ≤ pj+1. So the job p′j+1 must be completed earlier than
or at the same time when pj+1 is. The sequence T ′

j+1 is obtained from T ′
j by inserting the

completion time of p′j , while Tj+1 is obtained from Tj by inserting the completion time of
pj. Since a smaller or equal number is inserted into a point-wise smaller or equal sorted
sequence T ′

j , it necessarily remains point-wise smaller than or equal to Tj and the inductive
claim follows.

Lemma 5.2 Let J ′ ⊆ J . Let t be a time such that all jobs j ∈ J \J ′ are completed at time
t in List(J). Then List(J) ≤ t + List(J ′).

12

Proof: Let J ′′ be obtained from J ′ by replacing each job pj by p′j which is equal to the part
of pj not processed in List(J) by time t. Then the schedule List(J ′′) is exactly the same as
the interval [t,List(J)) of the schedule List(J), except for the shift by t. By its definition,
J ′′ is dominated by J ′. Using Lemma 5.1 we get List(J) = t+List(J ′′) ≤ t+List(J ′).

Lemma 5.3 All jobs j with pj ≤ pmax/m are completed by time 3 ·Opt in List(J).

Proof: First we claim that all jobs are started in List by the time Opt. Otherwise
all machines are busy until some time t > Opt, the total work processed is

∑n
j=1 pj ≥

t ·
∑m

i=1 sj > Opt ·
∑m

i=1 sj, a contradiction with (1).
Second, we claim that all machines with speed s ≤ s1/m are idle at and after time 2 ·

Opt. Let I be the indices of the slow machines, I = {i | si ≤ smax/m}. The total capacity
of them is small, namely

∑

i∈I si ≤ (m−1)s1/m < s1 ≤
∑

i6∈I si and thus 2
∑

i6∈I si >
∑m

i=1 si.
Suppose some machine from I is not idle at time 2 · Opt. Then all machines from M \ I
are busy for all the time from 0 till 2 ·Opt and the total size of jobs processed on them is
at least 2 · Opt ·

∑

i6∈I si > Opt ·
∑m

i=1 si, which is a contradiction with (1) as well.
It follows that after time 2 · Opt, each job is scheduled and moreover it is scheduled

only on machines faster than s1/m. If pj ≤ pmax/m, then the job pj is completed by time
2 · Opt + pj/(s1/m) ≤ 2 · Opt + pmax/s1 ≤ 3 · Opt.

Lemma 5.4 All the jobs with pj ≤ 2pmin are completed by time 3 · Nopt.

Proof: Let Mk denote the slowest machine used in a non-preemptive optimal schedule
Nopt. Then pmin/sk ≤ Nopt. We also know that Mk is idle in List at time Nopt, as
otherwise List would schedule larger total work of jobs than Nopt. Then any job with
pj ≤ 2pmin is completed by time Nopt + pj/sk ≤ Nopt + 2pmin/sk ≤ 3 · Nopt.

Theorem 5.5 List is a (9+6 log2 m)-competitive algorithm for preemptive scheduling on
related machines.

Proof: Let J be the input sequence, let k = ⌈log2 m⌉. We define job sequences Jk ⊆

· · · ⊆ J1 ⊆ J0 ⊆ J ; p
(i)
j and p

(i)
min then refer to the processing times in the sequence Ji.

Define J0 as the sequence J without jobs with pj ≤ pmax/m. Define Ji+1 as the sequence Ji

without jobs with p
(i)
j ≤ 2p

(i)
min. It follows that Jk is an empty sequence and List(Jk) = 0.

By Lemmata 5.3 and 5.2, List(J) ≤ 3 · Opt + List(J0). By Lemmata 5.4 and 5.2,
List(Ji) ≤ 3 ·Nopt + List(Ji+1) ≤ 6 ·Opt + List(Ji+1). Putting this together, we have
List(J) ≤ 3 · Opt + List(J0) ≤ 3 · Opt + 6k · Opt + List(Jk) ≤ (9 + 6 log2 m) · Opt.

Now we turn to the lower bound. The instance uses groups of machines with geometri-
cally decreasing speeds, but the number of machines increases even faster so that the total
capacity of slow machines is larger than the capacity of the fast machines.

Theorem 5.6 The competitive ratio of List is Ω(log m).

13

Proof: Let us construct the hard instance. Choose integers a, b, g such that a ≥ 2b > 4
and g is arbitrary. The set of machines consists of groups G0, . . . , Gg, where the group
Gi consists of ai machines with speed b−i. The jobs are in similar groups named Ji, each
containing ai jobs of length b−i. The input sequence is a concatenation of these groups
starting with the smallest job, that is, J = Jg, . . . , J0. We name the phases by the groups
of jobs processed in each phase (i.e., we start by phase Jg, note that the indices of the
groups are decreasing).

By scheduling each Jk to Gk we get Opt = 1, so it remains to prove that List ≥
Ω(log m).

For k = 1, . . . , g, let ik =
∑k−1

l=0 al be the total number of processors in groups G0, . . . , Gk−1.
The choice of a guarantees that the number of jobs in Jk is ak ≥ 2ik.

To prove a lower bound on List(J), we construct a sequence J ′ dominated by J . Each
group Jk, for k = g, . . . , 1, is replaced by a corresponding group J ′

k, defined inductively
below. The last group J0 with a single job is unchanged, so the sequence J ′ is defined as
the concatenation of the groups J ′

g, . . . , J
′
1, J0.

To modify the group Jk, consider the schedule List(J ′
g, . . . , J

′
k+1, Jk). All the jobs in

Jk have the same length, thus their completion times are non-decreasing. We construct
a group J ′

k by shortening the last ik jobs in Jk so that their completion times are equal.
Denote this common completion time τk. For k = 0, the sequence is not modified and τ0

is the completion time of the single job in J0. Define also τg+1 = 0.
We prove by induction that, for each k = g, . . . , 0, (i) 1 ≥ τk − τk+1 ≥ Ω(1) and (ii) in

the schedule List(J ′
g, . . . , J

′
k+1, J

′
k), all the ik processors in groups G0, . . . , Gk−1 are busy

until time τk and all the machines are idle after time τk.
To start, note that (ii) for k = g + 1 holds trivially. Using (ii) for k + 1, it is feasible

to schedule all jobs in Jk on machines Gk starting from time τk+1 without preemptions
and completing at time 1 + τk+1. The greedy schedule may schedule the jobs on faster
processors which can only decrease their completion times and thus the first inequality of
(i) holds. Using (ii) for l > k, it follows that the work done on any job in Jk before time
τk+1 is at most

∑g
l=k+1 (τl − τl+1) b−l ≤

∑∞
l=k+1 b−l = b−k/(b − 1). Consequently, all the

completion times of jobs in Jk are larger than τk+1; thus τk > τk+1 and (ii) holds for k by
the structure of the List schedule. Since the first ik jobs from Jk are not shortened, the
work done on the machines in G0, . . . , Gk−1 between τk+1 and τk is at least

ik

(

b−k −
1

b − 1
b−k

)

≥
b − 2

b − 1
b−kak−1.

The total capacity of the machines in G0, . . . , Gk−1 is
∑k−1

l=0 alb−l < akb−k, using a/b ≥ 2.
Thus

τk − τk+1 ≥
b−2
b−1

b−kak−1

akb−k
=

(b − 2)

a(b − 1)
= Ω(1);

this finishes the proof of (i) and the whole induction.
Using Lemma 5.1, List(J) ≥ List(J ′) = τ0 =

∑g
k=0(τk − τk+1) ≥ g · Ω(1) = Ω(log m).

14

5.2 The analysis of Lpt

Lpt is a simple approximation algorithm (no longer online), thus it is interesting to know
its performance. We show that the approximation ratio of Lpt for the preemptive variant
is 2−2/(m + 1). The proof of the upper bound follows the analysis of non-preemptive Lpt

from [23]. Non-preemptive Lpt is there used as an upper bound on Nopt in comparison to
Opt. We need to analyze the preemptive version of Lpt, which possibly gives a different
schedule than the non-preemptive Lpt. Examining the proof shows that the properties
of the non-preemptive Lpt used in [23] are satisfied by the preemptive Lpt as well. To
improve the ratio from 2−1/m, we need to refine the analysis in the case when the number
of jobs is equal to the number of machines.

Theorem 5.7 The approximation ratio of preemptive Lpt is equal to 2−2/(m + 1) times
(preemptive) Opt.

Proof: We start by giving an input on which this ratio is tight. Consider an instance
consisting of m identical machines and m + 1 identical jobs. Assuming unit jobs and
machines, Lpt produces a schedule of makespan 2 (no preemptions are used), while the
optimal preemptive makespan is (m + 1)/m. This yields a lower bound of 2 − 2/(m + 1)
on the approximation ratio.

Given an arbitrary α > 1, consider an instance with Lpt ≥ α · Opt such that the
number of jobs n is minimal. We may assume that m ≤ n as otherwise removing the m−n
slowest machines leads to the same schedules. Let Li be the load of the machine Mi (the
sum of processing times of jobs assigned to it) before scheduling the last job pn. We have
pn +

∑m
i=1 Li =

∑n
j=1 pj ≥ npn, since pn is the smallest job. From the minimality of the

counterexample we know that scheduling pn on any machine leads to its completion no
earlier than at time α · Opt. Thus, for all i = 1, . . . , m,

Li + pn ≥ siα · Opt. (3)

Summing over all i = 1, . . . , m, we get

(m − 1)pn +
n

∑

j=1

pj =
m

∑

i=1

(Li + pn) ≥ α · Opt ·
m

∑

i=1

si ≥ α
n

∑

j=1

pj

and thus (m−1)pn ≥ (α−1)
∑n

j=1 pj ≥ (α−1)npn. For n ≥ m+1 this implies the required
bound α ≤ 2 − 2/(m + 1).

It remains to handle the case n = m, i.e., the number of jobs equals the number of
machines. For m ≥ 3 we prove a stronger version of equation (3), namely we claim that

L1 + L2 + 2pn ≥ (s1 + s2 + sm)α · Opt. (4)

We can schedule pn either at Mm until time L2/s2 and then on M2, or at Mm until time
L1/s1 and then on M1. From the minimality of the counterexample we know that in both

15

of these schedules, pn is completed no earlier than at time α ·Opt. Thus we have

L2 + pn ≥ s2α · Opt + sm

L2

s2
(5)

L1 + pn ≥ s1α · Opt + sm

L1

s1
. (6)

After time L2/s2, only machine M1 is busy. Thus by time L2/s2 some job is completed,
and in particular, this amount of time is sufficient to complete pn at M1, which gives

L2

s2
≥

pn

s1
. (7)

Adding together (7) multiplied by sm, (6) multiplied by (1+sm/s1), and (5), and dropping
one positive term, we obtain (4).

Now summing (4) with (3) for i = 3, . . . , m − 1, we get

(m − 2)pn +
n

∑

j=1

pj =
m−1
∑

i=1

(Li + pn) ≥ α · Opt ·
m

∑

i=1

si ≥ α
n

∑

j=1

pj

and thus (m−2)pn ≥ (α−1)
∑n

j=1 pj ≥ (α−1)npn. Using n = m, this implies the required
bound α ≤ 2 − 2/m < 2 − 2/(m + 1).

Finally, for m = 2, the full analysis of Lpt given in [19] gives the worst case bound of
4/3 = 2 − 2/(m + 1). (Alternatively, the case of m = n = 2 can be easily analyzed.)

Acknowledgments

We are grateful to Yossi Azar, Leah Epstein, and Gerhard Woeginger for useful discussions
and to anonymous referees for helpful comments.

References

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing with
applications to machine scheduling and virtual circuit routing. J. ACM, 44:486–504,
1997.

[2] A. Bar-Noy, A. Freund, and J. Naor. New algorithms for related machines with
temporary jobs. J. Sched., 3:259–272, 2000.

[3] P. Berman, M. Charikar, and M. Karpinski. On-line load balancing for related ma-
chines. J. Algorithms, 35:108–121, 2000.

[4] B. Chen, A. van Vliet, and G. J. Woeginger. An optimal algorithm for preemptive
on-line scheduling. Oper. Res. Lett., 18:127–131, 1995.

16

[5] Y. Cho and S. Sahni. Bounds for list schedules on uniform processors. SIAM J.
Comput., 9:91–103, 1980.

[6] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. McGraw-Hill,
New York, NY, 1990.

[7] G. Dobson. Scheduling independent tasks on uniform processors. SIAM J. Comput.,
13:705–716, 1984.

[8] T. Ebenlendr, W. Jawor, and J. Sgall. Preemptive Online Scheduling: Optimal Algo-
rithms for All Speeds. In Proc. 14th European Symp. on Algorithms (ESA)), volume
4168 of Lecture Notes in Comput. Sci., pages 327–339. Springer, 2006.

[9] T. Ebenlendr and J. Sgall. Optimal and online preemptive scheduling on uniformly
related machines. In Proc. 21st Symp. on Theoretical Aspects of Computer Science
(STACS), volume 2996 of Lecture Notes in Comput. Sci., pages 199–210. Springer,
2004.

[10] L. Epstein. Optimal preemptive scheduling on uniform processors with non-decreasing
speed ratios. Oper. Res. Lett., 29:93–98, 2001.

[11] L. Epstein. Bin stretching revisited. Acta Inform., 39:97–117, 2003.

[12] L. Epstein and L. M. Favrholdt. Optimal preemptive semi-online scheduling to mini-
mize makespan on two related machines. Oper. Res. Lett., 30:269–275, 2002.

[13] L. Epstein, J. Noga, S. S. Seiden, J. Sgall, and G. J. Woeginger. Randomized on-line
scheduling for two related machines. J. Sched., 4:71–92, 2001.

[14] L. Epstein and J. Sgall. A lower bound for on-line scheduling on uniformly related
machines. Oper. Res. Lett., 26(1):17–22, 2000.

[15] D. K. Friesen. Tighter bounds for LPT scheduling on uniform processors. SIAM J.
Comput., 16:554–560, 1987.

[16] T. F. Gonzales and S. Sahni. Preemptive scheduling of uniform processor systems. J.
ACM, 25:92–101, 1978.

[17] E. Horwath, E. C. Lam, and R. Sethi. A level algorithm for preemptive scheduling.
J. ACM, 24:32–43, 1977.

[18] A. Kovács. New approximation bounds for LPT scheduling. Manuscript, 2007.

[19] P. Mireault, J. B. Orlin, and R. V. Vohra. A parametric worst case analysis of the
LPT heuristic for two uniform machines. Oper. Res., 45:116–125, 1997.

17

[20] H. Shachnai, T. Tamir, and G. J. Woeginger. Minimizing makespan and preemption
costs on a system of uniform machines. In Proc. 10th European Symp. on Algorithms
(ESA), volume 2461 of Lecture Notes in Comput. Sci., pages 859–871. Springer, 2002.

[21] D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines on-line.
SIAM J. Comput., 24:1313–1331, 1995.

[22] J. Wen and D. Du. Preemptive on-line scheduling for two uniform processors. Oper.
Res. Lett., 23:113–116, 1998.

[23] G. J. Woeginger. A comment on scheduling on uniform machines under chain-type
precedence constraints. Oper. Res. Lett., 26:107–109, 2000.

18

