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Abstract. Let rj , j = 0, 1, . . . be the Rademacher functions on
[0, 1]. We prove that for every measurable subset E of [0, 1] with
|E| > 0 and for each λ > 1 there exists a positive integer N such
that for all real-valued sequences {aj} there exists a subset J of

[0, 1] such that
∑∞

j=N |aj |2 ≤ λ
|J|
∫

J∩E

∣∣∣∑∞
j=0 ajrj(t)

∣∣∣2 dt.

1. Introduction

The jth Rademacher function rj on [0, 1), j = 0, 1, 2, . . . is defined
as follows: r0 = 1, r1 = 1 on [0, 1/2) and r1 = −1 on [1/2, 1), r2 = 1
on [0, 1/4) ∪ [1/2, 3/4) and r2 = −1 on [1/4, 1/2) ∪ [3/4, 1), etc.

In this article we investigate a local property of the Rademacher
functions related to Khintchine’s inequality. The following is a classical
result that can be found in Zygmund [9] (page 213): For every subset
E of [0, 1] and every λ > 1, there is a positive integer N such that for
all complex-valued square-summable sequences {aj} we have

(1)
∑
j≥N

|aj|2 ≤ λ sup
t∈E

∣∣∣∑
j≥N

ajrj(t)
∣∣∣2 .

The next statement is contained in Lemma 2 of Stein [8] (page 147):
For every subset E of [0, 1] there is a positive integer NE and a constant
CE such that for all complex-valued square-summable sequences {aj}
we have

(2)
∑

j≥NE

|aj|2 ≤ CE sup
t∈E

∣∣∣∑
j≥0

ajrj(t)
∣∣∣2 .
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Estimate (2) has been referred to in the literature as Stein’s lemma and
has been found to be a useful tool in applications concerning almost ev-
erywhere convergence, see for instance [1], [8], [6]. Unpublished versions
of Stein’s lemma have been independently obtained by several authors,
including D. Burkholder A. M. Garsia, R. F. Gundy, P. A. Meyer, S.
Sawyer, and G. Weiss (c.f. [2], [3]). A version of this lemma in the
context of independent sequences of random variables with very good
control of the constants has been published by Burkholder [2]. Other
authors have published related results. Sagher and Zhou [4] published
a version of inequality (1) in which the supremum is replaced by the Lp

average over E. In [5] the same authors proved analogous inequalities
for lacunary series. Carefoot and Flett [3] have obtained a version of in-
equality (2) in which the `2 norm on the left is replaced by a supremum
of truncated `1 norms. Recently, Slavin and Volberg [7] have obtained
a profound local version of the Chang-Wilson-Wolff inequality which
may be thought as analogous to the aforementioned local versions of
Khintchine’s inequality.

In this note we discuss yet another generalization of Stein’s lemma.
The inequality we prove is of L2 nature and presents certain quantita-
tive advantages: as in (1) there is a near-optimal constant λ > 1 but the
supremum in (1) and (2) is replaced by the sharper quadratic average
over a certain set J of the truncated Rademacher series localized on E.
This set J has small measure and is contained in a dyadic interval with
twice its measure, hence it precisely pinpoints the part of E on which
the Rademacher series is largest. Moreover, the truncated Rademacher
series may start at any point less than N . The exact formulation of
the result is as follows.

Theorem 1.1. For every measurable subset E of [0, 1] with |E| > 0
and each λ > 1 there exists a positive integer N = N(E, λ) such that
for any n ∈ {0, 1, . . . , N} and for any real-valued square-summable
sequence aj there is a subset J = J(n, {aj}) of [0, 1] of measure 2−N−1

such that

(3)
∑
j≥N

|aj|2 ≤
λ

|J |

∫
J∩E

∣∣∣∑
j≥n

ajrj(t)
∣∣∣2dt .

Naturally, estimate (3) implies both estimates (1) and (2) for real-
valued sequences. It also yields (1) with an additional factor of 2 on the
right for complex-valued sequences and it implies (2) with a constant
CE independent of the set E; in fact, it follows from (3) that the
constant CE in (2) can be taken to be 1 + δ for real-valued sequences
and CE = 2 + 2δ for complex-valued sequences, for any δ > 0.
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2. Two lemmata

It is an easy fact to check that the system {rk r`}k 6=` indexed by all
nonnegative integers k and ` satisfying k 6= ` is orthonormal in L2[0, 1].
In particular we have the inequality

(4)
∑
k,`≥0
k 6=`

|〈f, rkr`〉|2 ≤ ‖f‖2
L2

for all f ∈ L2[0, 1].
We will need the following two auxiliary results:

Lemma 2.1. For every square-summable complex sequence {aj}∞j=0

and every measurable subset E ⊆ [0, 1] with positive measure, we have:∫
E

∣∣∣∑
j≥0

ajrj

∣∣∣2 ≤ (|E|+√|E|
)∫ 1

0

∣∣∣∑
j≥0

ajrj

∣∣∣2 .

Proof. Expanding out the square on the left we obtain∫
E

∣∣∣∑
j≥0

ajrj

∣∣∣2 ≤ |E|
∞∑

j=0

|aj|2 +
∑
j 6=k

ajak

∫
E

rjrk dt

≤ |E|
∞∑

j=0

|aj|2 +
(∑

j 6=k

|ajak|2
) 1

2

(∑
j 6=k

∣∣∣ ∫
E

rjrk dt
∣∣∣2) 1

2

≤ |E|
∞∑

j=0

|aj|2 +
( ∞∑

j=0

|aj|2
)(∑

j 6=k

∣∣∣ ∫
E

rjrk dt
∣∣∣2) 1

2

≤ (|E|+ |E|1/2)
∞∑

j=0

|aj|2 ,

making use of (4). This completes the proof since
∫ 1

0

∣∣∑
j≥0 ajrj

∣∣2 =∑
j≥0 |aj|2. �

For a dyadic subinterval IN = [m2−N , (m + 1)2−N) of [0, 1) and a
real sequence {aj}j∈N define sets depending on {aj}

I++
N =

{
t ∈ IN :

∑
j≥N

ajrj(t) > 0
}

,

I−−N =
{

t ∈ IN :
∑
j≥N

ajrj(t) < 0
}

,

I0
N =

{
t ∈ IN :

∑
j≥N

ajrj(t) = 0
}

.
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It is easy to see that the sets I++
N and I−−N have equal measure. Next, we

find disjoint subsets I0,+
N and I0,−

N of I0
N of equal measure whose union

is I0
N and we define I+

N = I++
N ∪ I0,+

N and I−N = I−−N ∪ I0,−
N Then we

have I+
N ∪ I−N = IN and by construction we have |I+

N | = |I−N | = |IN |/2.
Moreover we have that

∑
j≥N ajrj ≥ 0 on I+

N and
∑

j≥N ajrj ≤ 0 on

I−N . Next we have the following:

Lemma 2.2. For any real-valued square-summable sequence {aj}, for
any positive integer N , for every dyadic interval IN ⊆ [0, 1) with |IN | =
2−N , and any measurable subset E ⊆ [0, 1] satisfying

|Ec ∩ IN |
|IN |

+

√
|Ec ∩ IN |
|IN |

<
1

2
,

we have∫
IN

∣∣∣∑
j≥N

ajrj

∣∣∣2 ≤ 1(
1
2
− |Ec∩IN |

|IN |
−
√

|Ec∩IN |
|IN |

) ∫
I′N∩E

∣∣∣∑
j≥N

ajrj

∣∣∣2
where I ′N = I+

N or I ′N = I−N .

Proof. First take I ′N = I+
N . We write∫
IN

∣∣∣∑
j≥N

ajrj

∣∣∣2 =∫
I+
N∩E

∣∣∣∑
j≥N

ajrj

∣∣∣2 +

∫
I−N∩E

∣∣∣∑
j≥N

ajrj

∣∣∣2 +

∫
IN∩Ec

∣∣∣∑
j≥N

ajrj

∣∣∣2(5)

but obviously

(6)

∫
I−N∩E

∣∣∣∑
j≥N

ajrj

∣∣∣2 ≤ ∫
I−N

∣∣∣∑
j≥N

ajrj

∣∣∣2
and, since the system of Rademacher functions {rj}j≥N on IN has the
same properties as the system {rj}j≥0 on [0, 1], we have that

(7)

∫
I−N

∣∣∣∑
j≥N

ajrj

∣∣∣2 =
1

2

∫
IN

∣∣∣∑
j≥N

ajrj

∣∣∣2 .

On the other hand, by a simple change of variables we get

(8)

∫
IN∩Ec

∣∣∣∑
j≥N

ajrj

∣∣∣2 = |IN |
∫

F

∣∣∣∑
j≥0

rjaj+N

∣∣∣2



A RADEMACHER FUNCTION INEQUALITY 5

for some F ⊆ [0, 1] with measure |F | =
|IN ∩ Ec|
|IN |

. By Lemma 2.1 we

obtain

|IN |
∫

F

∣∣∣∣∣∑
j≥0

rjaj+N

∣∣∣∣∣
2

≤ |IN |(|F |+
√
|F |)

∫ 1

0

∣∣∣∑
j≥0

rjaj+N

∣∣∣2
= |IN |(|F |+

√
|F |) 1

|IN |

∫
IN

∣∣∣∑
j≥N

rjaj

∣∣∣2 .

Combining (5), (6), (7), and (8) yields∫
IN

∣∣∣∑
j≥N

ajrj

∣∣∣2 ≤∫
I+
N∩E

∣∣∣∑
j≥N

ajrj

∣∣∣2 +
1

2

∫
IN

∣∣∣∑
j≥N

ajrj

∣∣∣2 + (|F |+
√
|F |)

∫
IN

∣∣∣∑
j≥N

ajrj

∣∣∣2
which implies(

1

2
− |IN ∩ Ec|

|IN |
−

√
|IN ∩ Ec|
|IN |

)∫
IN

∣∣∣∑
j≥N

ajrj

∣∣∣2 ≤ ∫
I+
N∩E

∣∣∣∑
j≥N

ajrj

∣∣∣2.
Obviously we can repeat the proof replacing I−N with I+

N and the
claimed result follows.

�

3. Proof of the Theorem

Proof. Given λ > 1, pick an ε > 0 small enough such that

0 <
1

1/2− ε−
√

ε
< 2λ .

By standard measure theory, we have that for every measurable subset
E ⊆ [0, 1] there exists a dyadic subinterval IN of [0, 1] of size 2−N such
that

|IN ∩ Ec|
|IN |

< ε.

Since {rj}j∈N is an orthogonal system in L2([0, 1]), by a change of
variables we obtain ∑

j≥N

|aj|2 =
1

|IN |

∫
IN

|
∑
j≥N

ajrj|2
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and an application of Lemma 2.2 gives

(9)
∑
j≥N

|aj|2 ≤
1

|IN |
1

(1/2− ε−
√

ε)

∫
I′N∩E

|
∑
j≥N

ajrj|2

where I ′N = I+
N or I ′N = I−N .

The important observation is that the functions rj, j = 0, 1, . . . , N
are constant on IN . This implies that for all n ∈ {0, 1, . . . , N}, the sum∑N

j=n ajrj is a real-valued constant on IN . We may first assume that∑N
j=n ajrj > 0 on IN . Then we have∣∣ ∞∑

j=N

ajrj

∣∣ =
∞∑

j=N

ajrj ≤
∞∑

j=n

ajrj =
∣∣ ∞∑

j=n

ajrj

∣∣ on I+
N .

Choosing I ′N = I+
N in (9) we write∑

j≥N

|aj|2 ≤ 1

|IN |
1

(1/2− ε−
√

ε)

∫
I+
N∩E

|
∑
j≥N

ajrj|2

≤ 1

|IN |
1

(1/2− ε−
√

ε)

∫
I+
N∩E

|
∑
j≥n

ajrj|2

≤ 2λ

|IN |

∫
I+
N∩E

∣∣∣∑
j≥n

ajrj

∣∣∣2
=

λ

|J |

∫
J∩E

∣∣∣∑
j≥n

ajrj

∣∣∣2
where J = I+

N . We argue likewise when
∑N

j=n ajrj is a negative constant

on IN , in which case we pick J = I−N . The theorem is proved. �

Corollary 3.1. For every measurable subset E ⊆ [0, 1] with positive
measure and for every λ > 1 there exists a positive integer N such that
for all n ∈ {0, 1, . . . , N} and all 1 ≤ p ≤ ∞ we have

(10)
∑
j≥N

|aj|2 ≤ λ 2(N+1)/p
∥∥∥∑

j≥n

rjaj

∥∥∥2

L2p(E)

for every square-summable real-valued sequence {aj}j≥0.

Proof. We write the right hand side of (3) as:

λ

|J |

∫
E

∣∣∣∑
j≥n

ajrj

∣∣∣2χJ

and we apply Hölder’s inequality to the integral with exponents p and
p′ = p/(p− 1). �



A RADEMACHER FUNCTION INEQUALITY 7

4. A Remark

We know that the constant on the right hand side of inequality (10)
must depend on N and hence on the set E. Indeed, let us illustrate
this in the case p = 1.

Remark 4.1. For all positive constants C there exists a measurable
subset E ⊂ [0, 1] such that for every natural number N and any n ∈
{0, 1, ..., N} we can find a real sequence {aj}j∈N ∈ `2 such that the
following holds:

(11)
∑
j≥N

|aj|2 > C‖
∑
j≥n

rjaj‖2
L2(E).

Proof. Let C be an arbitrary positive constant. Set

C ′ = [log2(C + 2)] + 1,

where [ ] denotes the integer part; so C ′ ∈ N. Then we just need to
choose E to be a dyadic subinterval of [0, 1] with |E| = 2−C′

. Also let
t0 be an interior point of E. For this choice of E, the following holds:
for every real sequence {aj}j∈N and every natural number n we have∥∥∥∥∥∑

j≥n

rjaj

∥∥∥∥∥
2

L2(E)

=

∫
E

∣∣∣∣∣∑
j≥n

ajrj(t)

∣∣∣∣∣
2

dt

=

∣∣∣∣∣ ∑
n≤j≤C′

ajrj(t0)

∣∣∣∣∣
2

+
∑

j>max{C′,n}

|aj|2
 |E|

(12)

where the sum
∑

n≤j≤C′ ajrj(t0) is understood to be equal to zero when
n > C ′.

Now, fix N ∈ N and define aj = 0 when j 6= max{N, C ′} and
amax{N,C′} = 1. Then for this choice of {aj}j∈N and for n ∈ {0, 1, ..., N},
(11) is a consequence of (12) since

C‖
∑
j≥n

ajrj‖2
L2(E) = C · 1 · |E|

< (C + 2)2−C′

= 2log2(C+2) · 2−C′

< 2[log2(C+2)]+1 · 2−C′

= 2C′ · 2−C′

= |amax{N,C′}|2

=
∑
j≥N

|aj|2 .
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