
The Provably Total Search Problems

of Bounded Arithmetic

Alan Skelley∗ Neil Thapen†

December 15, 2007

Abstract

We give combinatorial principles GIk, based on k-turn games, which are

complete for the class of NP search problems provably total at the kth

level T k
2 of the bounded arithmetic hierarchy and hence characterize the

∀Σ̂b
1 consequences of T k

2 , generalizing the results of [20]. Our argument

uses a translation of first order proofs into large, uniform propositional

proofs in a system in which the soundness of the rules can be witnessed

by polynomial time reductions between games.

We show that ∀Σ̂b
1(α) conservativity of of T i+1

2 (α) over T i
2(α) already

implies ∀Σ̂b
1(α) conservativity of T2(α) over T i

2(α). We translate this into

propositional form and give a polylogarithmic width CNF GI3 such that if

GI3 has small R(log) refutations then so does any polylogarithmic width

CNF which has small constant depth refutations. We prove a resolution

lower bound for GI3.

We use our characterization to give a sufficient condition for the total-

ity of a relativized NP search problem to be unprovable in T i
2(α) in terms

of a non-logical question about multiparty communication protocols.

1 Introduction

In the first two sections we give some background, our main result and some
applications. The technical proofs follow.

1.1 Background

Bounded arithmetic is a name for a collection of fragments of Peano arithmetic
in which exponentiation is not a total function and in which the induction

∗Google, 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA,

alanoman@google.com. Supported in part by Eduard Čech Center grant LC505 and

NSERC PDF-313650-2005. This work was partly carried out while the author was at the

Institute of Mathematics of the Academy of Sciences of the Czech Republic in Prague and at

the Dipartimento di Informatica of the Università degli Studi di Roma “La Sapienza”.
†Institute of Mathematics, Academy of Sciences of the Czech Republic, Žitná 25, 115 67

Prague 1, Czech Republic, thapen@math.cas.cz. Supported in part by grant AV0Z10190503

and by Eduard Čech Center grant LC505.

1

Preprint, Institute of Mathematics, AS CR, Prague. 2008-2-12 IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic



axiom is only applied to bounded formulas. We give an overview of the relevant
definitions here; for a full introduction see for example [4], [16] or [7]. See
[13] for our language and the precise connection between PV and T 0

2 . We use
the language {0, 1,+, ·, <, |x|, x#y, b x

2y c} where |x| ∼ log2 x is the length of
the binary expression for the number x and the function # is a weak form of
exponentiation with x#y = 2|x|·|y|, guaranteeing that the set of lengths in a
model is closed under multiplication. We take an algebraic theory BASIC fixing
the simple properties of this language.

In a bounded formula all quantifiers are bounded by terms in the language.
In a sharply bounded formula all quantifiers are bounded by terms of the form |t|;
such quantifiers are called sharply bounded. The bounded and sharply bounded
quantifers play the roles in bounded arithmetic that unbounded and bounded
quantifiers respectively play in classical theories. A Σ̂b

i formula consists of i
alternating blocks of bounded quantifiers, with the first one existential, followed
by a sharply bounded formula. Π̂b

i formulas are defined dually. We are usually
interested in bounded formulas of this strict form, where all the sharply bounded
quantifiers come at the end. This strictness is what the ˆ in Σ̂b

i denotes.
For i ≥ 0 the theory T i

2 is BASIC together with the axiom IND(φ),

[φ(0) ∧ ∀x<a (φ(x) → φ(x+ 1))] → φ(a),

for each Π̂b
i formula φ or, equivalently, for each Σ̂b

i formula φ. The theory Si
2 is

defined similarly but with induction only up to |a|.
This presentation (or rather, a sequent calculus version of it) is what we

will use when doing formal proof theory. In practice, however, we will work
with an equivalent theory in a richer language. It is possible to define the
polynomial time functions on N as the closure of some basic functions under
composition, projection and a kind of polynomial time recursion. The set LPV

of PV function symbols contains a name for each function defined in this way,
and the (first order) theory PV contains the natural defining axioms for these
symbols, together with induction for open formulas. T 0

2 is conservative with PV
and over this theory, for i ≥ 1, we may freely use LPV symbols in Σ̂b

i formulas
without increasing their expressive power or the power of our induction axioms.
We will use PV as our base theory. We will also use PV as a name for the set of
atomic formulas in the language LPV. When we talk about a polynomial time
relation or function in a formal setting, the intended meaning is a PV formula
or function symbol.

If α is a new, undefined relation or function symbol, or a tuple of such
symbols, then formulas from the relativized classes Σ̂b

i (α), Π̂b
i (α) or PV(α) are

allowed to use symbols from α freely. We will sometimes write, say, a PV(α)
formula in the form φ(x, α) if we want to emphasize the symbol α or have the
possibility of substituting a different symbol or formula for it. The relativized
theories T i

2(α) or PV(α) have axioms for induction or polynomial time recursion
for formulas or functions containing the new symbols (as well as axioms bound-
ing the size of any new function symbol by some term in the original language).
The new symbols behave analogously to oracles in complexity theory – in par-

2



ticular, the presence of these symbols allows us to prove some separation results
for the relativized theories. Our main theorems and their proofs in Sections 3
and 4 are presented in an unrelativized form but relativize without any prob-
lems because, from our point of view, all that relativization does is enrich the
language and the details of the language are not important for these arguments.
We will need the relativized versions for our applications in Section 2.

The main open problem in the area is to show that full bounded arithmetic
T2 =def

⋃
i T

i
2 does not collapse to some finite level T j

2 . This is equivalent to
showing that bounded arithmetic does not prove that the polynomial hierar-
chy collapses [19, 6, 33] (it is known that the relativized bounded arithmetic
hierarchy does not collapse [19]). A natural conjecture is that the theories T i

2

are already separated by ∀Π̂b
1 formulas, by analogy with the classical theories

IΣi which are separated by Π1 consistency statements. However direct consis-
tency arguments will not work, since even strong bounded arithmetic theories
are known not to prove the consistency of weak ones [32, 28].

This paper is concerned with what seems to be the most tractable approach
to getting more information about the hierarchy, which is to look for a ∀Σ̂b

1

separation between the bounded arithmetic theories in the relativized setting.
The witnessing theorem method is available to study such sentences: first show
that if a ∀Σ̂b

1(α) sentence is provable in a theory, then witnessing it is reducible to
finding a witness to some NP property of a combinatorial structure built up out
of polynomial time oracle machines; then show a limit to how much information
such a witness can give about the oracle [9]. The problem of finding a witness
to an NP predicate when one is known to exist is called an NP search problem.
TFNP is the class of all such problems. There is a rich variety of subclasses of
TFNP, often characterized by the combinatorial lemma which guarantees that
solutions to the problems in the class exist. See, for example, [24, 14, 2] for
discussions of some of these.

Well-known examples of this connection in bounded arithmetic are S1
2 and

polynomial time functions [4] and T 1
2 and polynomial local search or PLS prob-

lems [8]. In [9] the PLS characterization was used to show that T 1
2 (α) is not

∀Σ̂b
1(α) conservative over T 2

2 (α). This is still the highest ∀Σ̂b
1(α) separation

known; in particular it is unknown whether or not T 2
2 (α) already proves all the

∀Σ̂b
1(α) consequences of the complete hierarchy. Improving this is closely con-

nected with the problem of finding nice lower bounds for R(log) in propositional
proof complexity (see Section 2.2 below).

Various characterizations of search problems corresponding to theories higher
in the hierarchy are known, based on reflection principles or on different kinds of
Herbrandization [18, 22, 11, 9, 12, 29, 20, 27]. In this paper we generalize and
simplify the characterization in [20] and give natural combinatorial principles
capturing the ∀Σ̂b

1 consequences of the whole hierarchy, which we are able to
use in some small applications. We are not able to prove any new separation
but we include the resolution lower bound in Section 5 as a partial result in this
direction.

3



Formally we define an NP search problem or just search problem to be a
true ∀Σ̂b

1 sentence. Such a sentence, say ∀x∃y < t(x) θ(x, y) where θ is in PV,
represents the problem of finding, given x, a solution or witness y < t(x) such
that θ(x, y) is true.

A search problem ∀x∃y<t(x) θ(x, y) is reducible to a search problem ∀u ∃v<
s(u)φ(u, v) if there are polynomial time functions f and g such that for all x
and v, if v < s(f(x)) ∧ φ(f(x), v) then g(x, v) < t(x) ∧ θ(x, g(x, v)). If Γ and ∆
are classes of search problems then Γ is reducible to ∆, written Γ ≤ ∆, if every
problem in Γ is reducible to a problem in ∆. We write Γ ≡ ∆ if both classes
are reducible to each other.

In this paper, a combinatorial principle will mean a class of search problems
arising in a uniform way. It will be given by tuples x̄ and ȳ of variables called
respectively size parameters and witnesses, a language λ of new relation and
function symbols and a PV(λ) formula θ(λ, x̄, ȳ). The search problems in the
class are all the sentences of the form ∀x̄∃ȳ<t(x̄) θ(λ, x̄, ȳ) where we substitute
in polynomial time machines (or oracle machines, in the relativized setting) for
the symbols λ and let t range over PV functions. By an instance of a principle
we mean a particular assignment to x̄, λ and t. We will also use it to mean
the formula ∃ȳ<t(x̄) θ(λ, x̄, ȳ) under this assignment. The machines are always
given access to the size parameters as extra inputs and “polynomial time” will
always mean polynomial in the total length of the size parameters. We will
usually describe a combinatorial principle by describing a typical instance.

This is a rather ad hoc way of formalizing search problems. Alternatives
would be to place more emphasis on problems being given by oracles (see for ex-
ample [2]) or by circuits. With our definitions the set ∀Σ̂b

1(T k
2 ) of ∀Σ̂b

1 sentences
provable in T k

2 is formally a class of search problems. To give an axiomatization
of this set of sentences over our base theory PV it is enough to give a class of
search problems to which ∀Σ̂ b

1(T k
2 ) is reducible, with each reduction provable

in PV.

The propositional proofs we consider will be refutations, or pieces of refu-
tations, using fragments of the propositional calculus PK. A refutation is a
sequence of cedents, which are sets of formulas that are interpreted as disjunc-
tions; the initial cedents come from the formula we want to refute; each cedent
follows from earlier ones by a sound rule; the last cedent is empty and thus
unsatisfiable. Sometimes we will also allow the introduction of new cedents as
axioms. In Sections 3 and 4 we give formal definitions of the systems we need
for our main result.

A clause is a cedent which contains only literals, that is, propositional vari-
ables or their negations. A CNF formula is a set of clauses, which we can think
of as a conjunction of disjunctions of literals. We will usually deal with families
φ1, φ2, . . . or π1, π2, . . . of formulas or refutations, rather than single ones. The
size of a formula or refutation is the total number of symbols it contains. For a
formula φa this will always be quasipolynomial in a, that is, bounded by 2|a|

O(1)
.

Hence we think of the index a as a size parameter. A narrow family of CNFs is

4



one where the size of the clauses is polylogarithmic in the size parameter.

1.2 Main theorem

Our characterization will be in terms of games with two players and a fixed
finite number k of turns. The two players A and B take alternate turns, with A
going first. Formally a game is given by a k-ary relation G and a size parameter
b. The moves are numbers smaller than b and G(x1, . . . , xk) holds if the second
player wins in the game with the sequence of moves x1, . . . , xk.

Definition 1 Suppose G and H are two k-turn games. We say that G is poly-
nomial time reducible to H if there are polynomial time functions f1, . . . , fk

such that for all possible sequences of moves x̄ in G and ȳ in H, if yi =
fi(x1, . . . , xi, y1, . . . , yi−1) for every odd i and xi = fi(x1, . . . , xi−1, y1, . . . , yi)
for every even i, then H(ȳ) implies G(x̄).

We can draw a picture of this, here for even k:

H : y1 y2 y3 . . . yk

f1 ↑ f2 ↓ f3 ↑ . . . fk ↓
G : x1 x2 x3 . . . xk

The functions f1, . . . , fk give a reduction if, whenever x̄ and ȳ are matched
as in the picture and Player B wins in H with these moves, then Player B
also wins in G. Notice that for k = 2, “B has a winning strategy for G” and
“B has a winning strategy for H” can be thought of as search problems and
our definition of reducibility between games coincides with the definition of
reducibility between search problems.

In the previous paragraph by “B has a winning strategy for G” we simply
mean that for every x1 there is some x2 such that B wins with these moves,
and in general a statement like this is a sentence with one quantifier for each
turn in the game. In contrast a polynomial time strategy for a k-turn game is a
sequence of functions which gives moves explicitly in terms of the other player’s
past moves. We will often treat strategies and reductions, which are formally
sequences of functions, as coded by a single function. The details of the coding
will not matter.

In the following definition a “uniform” sequence means that, for example,
the sequence of k-ary relations G1, . . . , Ga is really a single (k + 1)-ary relation
G with the extra parameter written as an index. Recall also, from the definition
of a combinatorial principle, that G and all other polynomial time objects also
have access to the size parameters as unwritten inputs.

Definition 2 An instance of the k-game induction principle GIk is given by size
parameters a and b, a uniform sequence G1, . . . , Ga of polynomial time relations,
polynomial time functions U and V and a uniform sequence W1, . . . ,Wa−1 of
polynomial time functions.

5



The instance GIk(G,U, V,W, a, b) states that, interpreting each Gi as a k-
turn game in which the moves are bounded by b, the following things cannot all
be true:

1. U is a winning strategy for B in G1;

2. V is a winning strategy for A in Ga;

3. For each i, Wi gives a reduction of Gi+1 to Gi.

Often we will not distinguish the parameters a and b and will use a single
size parameter for the number of games and the bound on the moves.

The principle is ∀Σ̂b
1. It is provable in T k

2 by induction up to a on i in the for-
mula “Player B has a winning strategy in game Gi” which is Π̂b

k. Hence for fixed
polynomial time G,U, V,W we have GIk(G,U, V,W ) ∈ ∀Σ̂b

1(T k
2 ), immediately

giving one direction of our main result:

Theorem 3 For all k ≥ 1, GIk ≡ ∀Σ̂b
1(T k

2 ) provably in PV.

“Provably” here means, for example, that for each search problem σ in the class
on the left there is a search problem τ in the class on the right such that the
sentence expressing the reduction of σ to τ is provable in PV.

The bulk of the paper is a proof of the other direction. It goes via a reflection
principle 1−Ref(PK0

k) for a certain propositional proof system. The idea is that
the first order T k+2

2 proof that a search problem is total is used as a recipe for
building a “program” that witnesses the problem. The program is in fact a
complicated sequence of game reductions, which we think of as something like
the diagram in Section 1.3 below. We use our propositional proof system as a
convenient notation for describing this sequence.

In Sections 3 and 4 we show respectively:

Theorem 4 For all k ≥ 0, 1−Ref(PK0
k) ≤ GIk+2 provably in PV.

Theorem 5 For all k ≥ 0, ∀Σ̂b
1(T k+2

2 ) ≤ 1−Ref(PK0
k) provably in PV.

This leaves the case of T 1
2 . We can do this directly using the existing charac-

terization of ∀Σ̂b
1(T 1

2 ) in terms of PLS problems:

Theorem 6 ∀Σ̂b
1(T 1

2 ) ≤ GI1 provably in PV.

Proof GI1 is more naturally thought of as a kind of iteration principle than
as a statement about one turn games. An instance is given by a sequence of
predicates Hi (standing for “A wins game a+ 1− i”), a sequence of functions fi

(standing for the function comprising the reduction Wa−i) and a single number
e (standing for A’s winning strategy in game a). The principle states that if
H1(e) and Hi(x) → Hi+1(fi(x)) for all i and x, then Ha(x) for some x (all
suitably bounded).

Consider an instance (N,C, a) of PLS with domain [0, a), neighbourhood
function N and cost function C, where the costs lie in [1, a). This is reducible
to our iteration principle by defining Hi(x) to be C(x) ≤ a− i, fi(x) to be N(x)
and e to be 0. �

6



1.3 Discussion

We can draw a suggestive picture of our principle, here for the case k = 4.

G1 : x1
1 → x1

2 x1
3 → x1

4

↑ ↓ ↑ ↓
G2 : x2

1 x2
2 x2

3 x2
4

↑ ↓ ↑ ↓
...

...
...

...
...

↑ ↓ ↑ ↓
Ga : → xa

1 xa
2 → xa

3 xa
4

Each arrow represents a polynomial time function. The horizontal arrows at
the top represent B’s strategy in G1, the horizontal arrows at the bottom rep-
resent A’s strategy in Ga and each row of vertical arrows represents a game
reduction. It is tempting to try to understand our search problems in terms of
iterating a polynomial time function along the arrows in the diagram, in the
spirit of the characterization of the provably recursive functions of fragments of
Peano arithmetic in terms of iterating a primitive recursive function using an
ordinal below ε0. In this way PV or S1

2 would correspond to iterations of length
polylogarithmic in the parameters; T 1

2 would somehow correspond to iterations
of length quasipolynomial in the parameters; the extra strength of T 2

2 over T 1
2

would come not from the iteration being longer, but from being allowed to re-
visit, in a controlled way as you follow the arrows back down the structure, the
values calculated on the first upwards pass (it is not possible simply to remem-
ber all the past values, because of the bound on the size of the moves); and so
on. However, actually iterating a polynomial time function a times, represented
by just the arrows going up the first column, is already equivalent to computing
something in PSPACE, which is certainly stronger than PLS (at least in the
relativized case). Nevertheless the connection seems to be worth exploring. See
for example the characterization in Section 2.3 below, or [3] where low bounded
arithmetic theories are characterized in terms of the lengths of the intervals on
which they can prove a well-foundedness principle.

In [20] it was shown that ∀Σ̂b
1(T 2

2 ) can be characterized by the principles
CPLS, VR-totality and 2VR(log)-totality and ∀Σ̂b

1(T 3
2 ) by 2VR-totality. Our

results here generalize these to higher levels in the hierarchy; however there are
some things from there which we do not explore further. One is that instances of
CPLS seem to correspond to instances of GI2 with the extra property that the
second function f2 in all the game reductions is the identity. We do not know
whether any generalization of this can hold for GIk. Also, while VR-totality
and 2VR-totality are similar to GI2 and GI3, a natural definition of 2VR(log)-
totality in our new setting would be: like GI3, except that now there are only
|a| many games and that where in GI3 we produce moves for the game Gi+1

by querying moves in Gi, now we are allowed to query moves in two instances
of Gi. We do not know how to generalize this characterization. One problem
is that, for games with several turns, it seems to be important in which order

7



we query the two instances at each turn; but it is not clear what a good order
should be. This situation appears to be connected to the “schedules” of [27].

2 Applications

2.1 A “no gap” theorem

We can apply our characterization to give a strengthening of a theorem of Chiari
and Kraj́ıček [10].

Theorem 7 For i ≥ 1 and k ≥ 1, if T i+1
2 (α) is ∀Σ̂b

k(α) conservative over T i
2(α)

then full bounded arithmetic T2(α) is ∀Σ̂b
k(α) conservative over T i

2(α).

Proof The case for k ≥ 2 was proved in [10] so we just need to deal with
the case k = 1. It is enough to show that, for all i, conservativity of T i+1

2 (α)
over T i

2(α) implies conservativity of T i+2
2 (α) over T i+1

2 (α), since the result then
follows by induction. So suppose that T i+1

2 (α) is ∀Σ̂b
1(α) conservative over

T i
2(α). We will show that GIi+2 is provable in T i+1

2 (α) for instances involving
α. We will do the case for even i. The argument for odd i is dual to this.

Let (G,U, V,W, a, b) be an instance of GIi+2, which may involve our unde-
fined relation α. We will use this to define an “instance” (G′, U ′, V ′,W ′, a, b) of
GIi+1: for each j, G′

j(x1, . . . , xi+1) is ∃xi+2<bGj(x1, . . . , xi+2) and the func-
tions U ′, V ′,W ′ are given by the natural restrictions of strategies or reductions
for i+ 2 turn games to the first i+ 1 turns.

Treating G′, U ′, V ′ and W ′ as undefined symbols, by our conservativity
assumption GIi+1(G′, U ′, V ′,W ′) is provable in T i

2(G′, U ′, V ′,W ′). Substituting
the definitions of (G′, U ′, V ′,W ′) into this proof will increase the quantifier
complexity by at most one (here we are relying on the fact that sharply bounded
collection is provable in T 1

2 (α), so non-strict Σb
1(α) formulas are equivalent to

Σ̂b
1(α) formulas). Hence GIi+1(G′, U ′, V ′,W ′) is provable in T i+1

2 (α).
To complete the proof it is enough to show (over our base theory PV(α))

that if there is a witness to GIi+1 for (G′, U ′, V ′,W ′, a, b) then there is a witness
to GIi+2 for (G,U, V,W, a, b).

Suppose that (x1, . . . , xi+1) is a sequence of moves in G′
1 in which B plays

according to the strategy U ′ but loses, so that ¬G′
1(x1, . . . , xi+1). U ′ is a re-

striction of U , so we can extend the sequence to (x1, . . . , xi+2) in which B plays
according to U . But by the definition of G′

1, B must lose G1 with these moves.
Hence (x1, . . . , xi+2) witnesses our instance of GIi+2.

Suppose that (x1, . . . , xi+1) is a sequence of moves in G′
a in which A plays

according to the strategy V ′ but loses, so that G′
a(x1, . . . , xi+1). Then by the

definition of G′
a we can extend the sequence by one move xi+2 for B such

that Ga(x1, . . . , xi+2). But in this sequence A is playing according to V , but
nevertheless loses Ga. Hence (x1, . . . , xi+2) witnesses our instance of GIi+2.

Suppose that (x1, . . . , xi+1) and (y1, . . . , yi+1) are sequences of moves in G′
j

and G′
j+1 which are matched by the reduction W ′

j , with G′
j(x1, . . . , xi+1) but

8



¬G′
j+1(y1, . . . , yi+1). This looks like

G′
j : x1 x2 . . . xi+1

f1 ↑ f2 ↓ . . . fi+1 ↑
G′

j+1 : y1 y2 . . . yi+1

where f1, . . . , fi+1 comprise the reduction W ′
j , which is a restriction of the re-

duction Wj . Say Wj extends W ′
j with one more function fi+2. By the def-

inition of G′
j there is xi+2 such that Gj(x1, . . . , xi+2). But if we let yi+2 =

fi+2(x1, . . . , xi+2, y1, . . . , yi+1) then by the definition of G′
j+1 we must have

¬Gj+1(y1, . . . , yi+2). But the xs and ys are matched by Wj , so again we have a
witness to our instance of GIi+2. �

2.2 A candidate principle hard for R(log)

The depth of a propositional refutation is the maximum number of alternations
of connectives in any formula in it. We can also say that a refutation has
depth k + 1

2 if there are k alternations of connectives with arbitrary fan-in
and then an innermost level of connectives with “small” fan-in. Here “small”
means logarithmic in the size of the refutation; we are usually dealing with
quasipolynomial size refutations, so small will mean polylogarithmic in our size
parameter. PKk is PK restricted to depth k. Resolution is then PK0 and R(log)
is PK 1

2
, except that we will also allow axioms of the form {p,¬p} to appear in

R(log) refutations, since these seem to be necessary for our translation in this
section. R(log) was introduced in [17] as a strengthening of resolution to a
system corresponding to the theory T 2

2 (α) via the Paris-Wilkie translation of
first order proofs into propositional proofs. In general, depth k+ 1

2 corresponds
to T k+2

2 (α) [15, 17]; we come back to this in Section 4.
A current problem in proof complexity is to prove lower bounds on the size of

R(log) refutations of some family of CNFs which have small refutations of some
constant depth (it is known for example that there is no small R(log) proof
of the pigeonhole principle, but this is because it has no small proofs of any
constant depth [21, 26]). A super-quasipolynomial lower bound for a narrow
family of such CNFs would imply a ∀Σ̂b

1(α) separation of T2(α) from T 2
2 (α).

Recent work has looked at lower bounds for the weak pigeonhole principle from
2n to n. It was shown in [31] that this requires exponential size to refute if we
restrict our conjunctions to size

√
log n/ log log n, and this was improved in [30]

to ε log n/ log log n; but it is known to be refutable with quasipolynomial size in
R(log) [23].

The narrow CNF GI3(a) is a propositional translation of the negation of
a size a instance of GI3. We write it out explicitly at the start of Section 5
below. It is straightforward to translate the proof of GI3 using Π̂b

3 induction
into a quasipolynomial size PK1+ 1

2
refutation of GI3. But by the next theorem

it is unlikely that GI3 has small R(log) refutations. We are able to prove an
exponential lower bound on the size of resolution refutations of GI3, which we
include as Section 5 of the paper.

9



We should remark that the role GI3 is playing in the current section is really
that of a reflection principle for PK1. We believe that an advantage of our
principle is that it has a more transparent combinatorial meaning than straight
PK1 reflection, which we exploit in our lower bound argument and which may
be useful for proving lower bounds in stronger systems. However resolution
lower bounds for reflection for resolution itself are already known [1] (using a
different method); resolution is a subsystem of PK1, so this already implies a
lower bound for PK1 reflection.

Theorem 8 If GI3 has quasipolynomial size R(log) refutations, then so does
any narrow CNF with quasipolynomial size bounded depth refutations.

The proof is essentially by Kraj́ıček’s correspondence between propositional
lower bounds and expansions of non-standard models [17] together with a version
of Theorem 7. However we give the outline of a proof-theoretic argument, since
this paper already contains most of the necessary machinery.

Lemma 9 Let Φ(π) be ∀Π̂b
1(π) and let i ≥ 1. If T i+1

2 (α) is ∀Σ̂b
1(α) conservative

over T i
2(α, π) + Φ(π) then T j

2 (α) is ∀Σ̂b
1(α) conservative over T i

2(α, π) + Φ(π)
for all j > i.

Proof First, by a similar argument to the proof of Theorem 7, from the as-
sumption we can show inductively that T k+1

2 (α) is ∀Σ̂b
1(α) conservative over

T k
2 (α, π)+Φ(π) for all k > i. Then we prove inductively that T j

2 (α) is conserva-
tive over T i

2(α, π)+Φ(π) for all j > i, as follows. Suppose it is true for j and let
σ(α) be any ∀Σ̂b

1(α) consequence of T j+1
2 (α). Then already T j

2 (α, π) + Φ(π) `
σ(α), hence T j

2 (α, π) ` ¬Φ(π) ∨ σ(α) and so, since we can code two oracles by
one, and since using Parikh’s theorem we may treat the RHS as a ∀Σ̂b

1(α, π) sen-
tence, by the inductive hypothesis we have T i

2(α, π, π′) + Φ(π′) ` ¬Φ(π) ∨ σ(α)
which gives our result. �

Lemma 10 Let ∀b φ(πb) express that the oracle π gives a uniform sequence of
quasipolynomial size R(log) refutations of instances of GI3(b), where φ is Π̂b

1(π)
(for how we can think of the structure of a family of proofs or formulas as being
given by oracles, see Sections 3 and 4). Then for any problem Γ in GI3 in which
the polynomial time functions and relations are allowed to use oracles α,

T 2
2 (α, π) ` ∀a [φ(πa) → GI3(Γ, a)].

Hence T 2
2 (α, π) + ∀b φ(πb) proves all ∀Σ̂b

1(α) consequences of T 3
2 (α) and thus,

by the previous lemma, also of T j
2 (α) for any j.

Proof Fix a. Our instance (Γ, a) of GI3 defines an assignment β to the vari-
ables of GI3(a). This assignment is polynomial time with oracle α.

Suppose that φ(πa) is true and GI3(Γ, a) is false, so that every clause in
GI3(a) is satisfied by β. Then we can prove by induction on i that for every i

lines 1, . . . , i of πa are satisfied by β, since this inductive hypothesis is Π̂b
2(β, π)

10



and the inductive step follows from the soundness of the rules of R(log). But
this is a contradiction when we get to the empty clause at the end of πa. �

Proof of Theorem 8 Let k ∈ N. Let ∀aφ(πa) express that the oracle π gives
a uniform sequence of quasipolynomial size R(log) refutations of GI3(a), with
φ ∈ Π̂b

1(π). Let ∀bψ(ρb, τb) express that the oracle ρ gives a uniform sequence of
quasipolynomial size PKk refutations of a uniform sequence of narrow formulas
τb given by an oracle τ , with ψ ∈ Π̂b

1(ρ, τ). Let α be an assignment to all the
variables of τ1, τ2, . . .. By a standard reflection argument, as in Lemma 10,

T k
2 (ρ, τ, α) ` ∀b [ψ(ρb, τb) → (τb has a false clause under α)].

Because the formulas τb are narrow, the formula “τb has a false clause under α”
is Σ̂b

1(τ, α) and so by Lemma 10,

T 2
2 (ρ, τ, α, π) + ∀aφ(πa) ` ∀b [¬ψ(ρb, τb) ∨ (τb has a false clause under α)].

Rewriting and applying Parikh’s theorem, for some term t(b),

T 2
2 (ρ, τ, α, π) ` ∀b [¬∀a<t(b)φ(πa)∨¬ψ(ρb, τb)∨(τb has a false clause under α)].

Now we translate this T 2
2 (ρ, φ, α, π) proof into a R(log) refutation whose vari-

ables correspond to the bits of our oracles. This can be done by a version of
Theorem 19 below, except that rather than using sharply bounded sentences
directly as propositional variables, we translate such sentences into statements
about |b|O(1) depth decision trees in the bits of the oracles. The statement that
such a tree accepts or rejects can be written as a clause of small conjunctions.
Rather than introducing auxiliary clauses, we derive the required relationships
between translations of sharply bounded sentences using the rules and axioms of
R(log). Hence, for each b, there is a quasipolynomial size (in b) R(log) refutation
Π of the translation

〈∀a<t(b)φ(πa)〉+ 〈ψ(ρb, τb)〉+ 〈 all clauses of τb are true under α 〉.

Now suppose we actually have, in the standard model, quasipolynomial size
R(log) refutations πa of GI3(a) and quasipolynomial size PKk refutations ρb

of our formulas τb. We use these to assign 0/1 values to the variables in Π
arising from π, ρ and τ . This will satisfy the first two sets of clauses above and
will simplify the last set of clauses into a CNF, in variables from α, which is
isomorphic to τb. This gives the required R(log) refutation of τb. �

2.3 A non-logical characterization

We can use our characterization to give a sufficient condition for the unprovabil-
ity of a search problem in the relativized version of T k

2 in terms of a problem in
multiparty communication complexity. We define the problem using polynomial
time machines, but it would be as interesting to consider machines of unlimited

11



power but which can only send polynomially many bits as messages and can
only query, adaptively, polynomially many bits of their oracle.

We are interested in the following situation. Fix a size parameter a and a
number of rounds k. Polynomial time will mean polynomial in |a|. We are given
an exponential length (in |a|) sequence of polynomial time machines M1, . . . ,Mb.
Each machine Mi has access to its own oracle αi. The machines trust each
other, but we can think of all oracles α1, . . . , αb as being controlled by a single
adversary. Each machine Mi can communicate only with its neighbours Mi−1

and Mi+1. Each message can contain polynomially many bits, but messages
can only be passed according to strict rules. First M1 sends one message down
to M2, who then processes it and sends a message down to M3, and so on until
Mb−1 sends a message to Mb. This is the first round. In the second round
Mb sends a message up to Mb−1, who processes it and then sends a message
up to Mb−2, and so on. There are k rounds of communication in total; each
odd numbered round consists of a series of messages being sent down from one
machine to the next, in order; each even numbered round is similar, but going
up. The polynomial bound on the running time of the machines only applies to
time spent processing messages, not to time spent waiting for a message.

We say that a communication protocol for this system witnesses an instance
∃v<aφ(a, v, α) of a relativized search problem if some machine Mi eventually
shows either that its own oracle satisfies the search problem or that its oracle is
different from one of its neighbours’ oracles. That is, if some Mi either outputs
a witness v such that φ(a, v, αi) or outputs a place where αi is different from
αi+1 or αi−1.

For example, there is a protocol that witnesses the pigeonhole principle “α
is not an injection from a + 1 into a” in polynomially many (in |a|) rounds
(the idea for the protocol comes from the development of counting in Frege
systems and the related theory U1

1 [5, 16]). For simplicity suppose that a is
a power of 2. There are a + 1 machines, one for each pigeon, and the key
observation is that machine Mi is always able to answer the question “what is
|{j ≤ i : αj(j) ∈ [c, d]}|?” for any interval [c, d] by asking the same question,
with i−1 in the place of i, to machine Mi−1 and then adding one to the answer
or not depending on the value of αi(i). So in two rounds Ma+1 can ask “what is
|{j ≤ a+1 : αj(j) ∈ [1, a]}|?” and necessarily get the answer a+1. It then asks
about the intervals [1, a/2] and [a/2 + 1, a] and the two answers must add up
to a+ 1, so one of the intervals must have more than a/2 pigeons mapping into
it. Ma+1 chooses that interval and then continues by binary search. Eventually
this locates a hole c such that for at least two is we have αi(i) = c. There is now
one final round of communication. This first passes along the question “Does
your pigeon map to c?” until it finds one such i. Then it continues, passing
along the question “I think pigeon i maps to c. Does your pigeon also map to
c?” This must eventually find either a collision between pigeons in one oracle,
or two neighbouring oracles which disagree about pigeon i.

Theorem 11 Suppose that T k
2 (α) proves that ∀u ∃v < t(u)φ(u, v, α) is a total

search problem. Then the problem can be witnessed by a protocol as described

12



above, in k rounds.

Proof Suppose we want to witness ∃v<t(a)φ(a, v, α). By our characterization
this problem is reducible to an instance of GIk in which all polynomial time
machines have access to an oracle for α. Say the instance consists of games
G1, . . . , Gb, strategies U and V and reductions W . We will do the case where k
is even, the case for odd k is similar. Our protocol will differ from the description
above in that the first message is passed “up” rather than “down”, but this is
unimportant.

We will describe the protocol for a machine Mi with 1 < i < b. It will make
use of the reduction of Gi to Gi−1:

Gi−1 : x1 x2 . . . xk

f1 ↑ f2 ↓ . . . fk ↓
Gi : y1 y2 . . . yk

All relations and functions are given by polynomial time oracle machines. We
wil write the oracle being used as a superscript. The protocols for M1 and Mb

will be similar, but rather than sending messages respectively up or down they
will use the strategies U and V to obtain replies to these messages.

In the first round Mi gets a message y1 from Mi+1. It calculates x1 :=
fαi
1 (y1), using its own oracle αi to answer queries made by f1. It then sends x1

to Mi−1. In the second round Mi gets a message x2 from Mi−1. It calculates
y2 := fαi

2 (x1, x2, y1), again using αi, and sends y2 to Mi+1.
The protocol carries on like this for all rounds up to and including round

k − 1. Then in the last round Mi gets a pair (xk, r) of messages from Mi−1,
where r is a record of the replies that αi−1 gave when Mi−1 ran a computation of
G

αi−1
i−1 (x1, . . . , xk). Mi then itself runs a computation of Gαi

i−1(x1, . . . , xk), using
the oracle αi. The answer must be the same as the one Mi−1 got; otherwise Mi

has found a place where αi is different from αi−1 and can halt and output this.
Mi calculates yk := fαi

k (x1, . . . , xk, y1, . . . , yk−1). Mi then runs a computa-
tion of Gαi

i (y1, . . . , yk), recording the replies made by αi as a string s.
Now if Gαi

i−1(x1, . . . , xk) is true and Gαi
i (y1, . . . , yk) is false then Mi has a

solution to an instance (G,U, V,W, b)αi of GIk. So by our assumption Mi is
able to compute from this some v < t(a) such that φ(a, v, αi) and can halt and
output this. Otherwise, Mi sends (yk, s) to Mi+1.

If no machines ever finds a difference between neighbouring oracles, then
by induction down the sequence of machines there must be some i for which
Gαi

i−1(x1, . . . , xk) is true and Gαi
i (y1, . . . , yk) is false. So the protocol always

succeeds. �

3 Witnessing soundness with game reductions

We define a propositional proof system PK0. We will show that the soundness
of the inferences in this system can be witnessed by a polynomial time reduction
between games representing the lines in a proof. For this reason, the important

13



thing about the way the system is defined is that some of the rules involve
manipulating formulas by adding or removing only one literal at a time, as we
will be able to check the truth of a literal as part of a polynomial time strategy
where we could not check an arbitrary formula. The superscript 0 is meant to
indicate the importance of literals, that is, of level 0 formulas.

Definition 12 PK0 is a Tait-style calculus (see e.g. [7]). That is, a PK0 proof
consists of a sequence of cedents and the cedents are formally sets of formulas
rather than sequences or multisets.

Every formula has a level. Level 0 formulas are propositional variables or
their negations. A level i+ 1 disjunction is a pair consisting of a label “disjunc-
tion” and a set of level i conjunctions. Conjunctions are similar. Because of
this strict way in which the levels formally operate, we will write (φ) as short-
hand to indicate a formula that has been padded out by singleton disjunctions
and conjunctions to raise it to the level we need.

We list the rules of the system. Below, p always stands for a single literal,
F for a single formula and X, Y , Γ and ∆ for sets of formulas. The principal
or auxiliary formulas of a rule are allowed to occur also in the set Γ of side
formulas.

1. Padding introduction

Γ, p
Γ, (p)

That is, given any level i, we can raise a single literal p to a level i con-
junction or disjunction by padding out with singleton conjunctions and
disjunctions.

2. Padding elimination

Γ, (p)
Γ, p

3. Internal
∧

-introduction

Γ,Φ[
∧
X] Γ, p

Γ,Φ[
∧
X ∧ (p)]

The square bracket notation here indicates that, thinking of formulas as
trees, we take a particular subtree

∧
X of the tree representing the formula

Φ and replace this single subtree with the tree for
∧
Y where Y is the set

X ∪ {(p)}, where (p) represents the literal p padded out to the same level
as the disjunctions in X (recall that for Φ to be well-formed, X must be a
set of disjunctions, all of the same level).

4. Internal
∨

-elimination

Γ,Φ[
∨
X ∨ (p)]

Γ,Φ[
∨
X], p

14



5. Internal weakening

Γ,Φ[
∨
X]

Γ,Φ[
∨
Y ]

where X ⊆ Y

6. Internal
∧

-elimination

Γ,Φ[
∧
X]

Γ,Φ[
∧
Y ]

where X ⊇ Y

7. Weakening

Γ
∆

where Γ ⊆ ∆

8.
∧

-introduction

Γ, F
Γ,

∧
{F}

That is, a level i disjunction F can be padded to a singleton level i + 1
conjunction.

9.
∧

-elimination

Γ,
∧
{F}

Γ, F

10. Resolution

Γ, p Γ,¬p
Γ

Now fix k ∈ N. We define PK0
k to be PK0 with all formulas limited to

literals, conjunctions of level k or below and disjunctions of level k−1 or below.
So PK0

0 is just resolution (if we think of cedents as clauses) and PK0
1 is similar

to the system of resolution with unbounded conjunctions.

Definition 13 A k-formula table is given by a relation Q and parameters
a0, . . . , ak. We use the interval [0, 2a0) as a set of names for a0 many propo-
sitional variables and their negations. We use the interval [2a0, 2a0 + a1) as a
set of names for a1 many level 1 conjunctions. The relation Q, given names
for a level 1 conjunction and a literal, tells you whether the literal belongs to
the conjunction or not. Similarly with the interval [2a0 + a1, 2a0 + 2a1) and the
level 1 disjunctions, and so on for higher level conjunctions and disjunctions.

15



Definition 14 A polynomial time PK0
k derivation is given by a tuple (Q,R,

S, T, f) of polynomial time relations and functions and a size parameter a.
Strictly speaking, (Q,R, S, T, f) by themselves define a polynomial time uniform
family of PK0

k derivations; we supply a parameter a and then the relations and
functions, taking the parameter as an extra, unwritten input, define the struc-
ture of a derivation (of size exponential in |a|, or equivalently quasipolynomial
in a) as follows:

Q gives a k-formula table, giving the structure of all the formulas which
appear in the derivation. Q also comes with polynomial time functions giving
the parameters a0, . . . , ak of the table.

R gives a binary relation, which can be thought of as a table with rows
R1, . . . , Rr where each Ri is a set of formulas representing an initial cedent
of the derivation. R comes with a polynomial time function giving the param-
eter r. Similarly for S and the internal cedents and T and the final cedents of
the derivation.

f gives the structure of the proof. For each internal cedent, it gives the
cedent or cedents from which it was derived. It gives the rule used in the deriva-
tion, and the principal and auxiliary formulas (except in the case of the normal
weakening rule, which has no auxiliary formulas). If a rule refers to a partic-
ular subformula of a formula, it gives a path down through the formula to that
subformula (thinking of a formula as a tree). Note that a literal that has been
padded out is a special case of this: if it is part of the definition of a rule that
a subformula (p) is a padded literal, then f should describe the path from (p)
down to p.

The formula expressing that the derivation (Q,R, S, T, f, a) is well-formed
is Π̂b

1(Q,R, S, T, f, a).
We will give a very simple example, a derivation that contains a single in-

ternal
∧

-introduction inference.

R1 Γ,Φ[
∧
X]

R2 Γ, p
S1 Γ,Φ[

∧
X]

S2 Γ, p
S3 Γ,Φ[

∧
X ∧ (p)]

T1 Γ,Φ[
∧
X ∧ (p)]

Here f(“S1”) and f(“S2”) will say that these cedents are copies of the initial
cedents R1 and R2. f(“S3”) will say S3 is derived by

∧
-introduction from S1

and S2; it will say that the principal formula is Φ[
∧
X ∧ (p)] and the auxiliary

formulas are Φ[
∧
X] in S1 and p in S2; it will give, as a list of subformulas, the

path from the root of the formula-tree of Φ[
∧
X] to the subformula

∧
X; and

it will give, as lists of subformulas, the path from the root of the formula-tree
of Φ[

∧
X ∧ (p)] to its subformula

∧
X ∧ (p) and the path from

∧
X ∧ (p) to its

subformula p. f(“T1”) will say that T1 is a copy of the internal cedent S3.
Recall that a narrow CNF is a set of clauses (i.e. of sets of single literals)

where each clause only contains polynomially many literals (in |a|). The state-

16



ment that such a CNF is false is Σ̂b
1, if the clauses can be listed by a polynomial

time function. The index 1 here is the reason for the 1 in 1−Ref(PK0
k). We

could define 2−Ref(PK0
k) as a similar reflection principle for CNFs of arbitrary

width.

Definition 15 1−Ref(PK0
k) is a combinatorial principle in the language

(F, α,Q,R, S, T, f) with a size parameter a. The principle states that there
is always a witness that one of the following things is false:

1. F is a narrow CNF, given by a polynomial time function which, given the
number of a clause, lists the contents of that clause;

2. (Q,R, S, T, f, a) is a well-formed PK0
k refutation – that is, a derivation

where the set T of final clauses consists of a single, empty cedent;

3. The number r of clauses in F is the same as the number of cedents in R,
and for each i ≤ r the ith clause of F is a subset of the ith clause of R;

4. Every clause in F is satisfied by the assignment α.

Note that this defines a ∀Σ̂b
1 principle.

We want to reduce 1−Ref(PK0
k) to GIk+2, so will need to describe several

reductions between games to give our instances of GIk+2. It is convenient to
think of the functions fi that form a reduction of a game G to a game H as
components of an explicit winning strategy for the second player D in a certain
2k-turn, two player reduction game played between D and an adversary C. We
can draw the schedule for the game like this (our notation here is inspired by
Pudlák’s work on matches made up of several games [27]):

H : D C D . . . C

↑ ↓ ↑ . . . ↓
G : C D C . . . D

First C plays at the bottom of the first column, as the first move in G; then D
plays at the top of the first column, as the first move in H; then C plays at the
top of the second column, as the second move in H; then D plays at the bottom
of the second column, as the second move in G; and so on.

D wins this game if either all the moves played by both players in the top
row satisfy ¬H (i.e. constitute a win for Player A in H), or all the moves played
in the bottom row satisfy G (i.e. constitute a win for the Player B in G). In
other words, D wins this reduction game if he wins either the top or the bottom
row. Hence a polynomial time winning strategy for D is the same thing as a
reduction of G to H, and to show that one game is reducible to another we will
usually do it by describing such a strategy.

We can now prove Theorem 4, that 1−Ref(PK0
k) is reducible to GIk+2. We

give a proof that can be formalized in PV.

Proof of Theorem 4 Let a be the total length of the refutation and let b be
an upper bound on the total number of formulas that appear in it (recall that

17



the structure of the formulas is completely given by Q). Necessarily a and b are
quasipolynomial in the size parameter of our instance of 1−Ref(PK0

k). We will
think of the refutation as consisting of a sequence C1, . . . , Ca of cedents, where
Ca is the empty cedent.

We will uniformly define games G1, . . . , Ga. The moves will be numbers
< b, representing formulas. The idea of the game Gi is that in the first turn
Player A names a cedent Cx with x ≤ i; in the second turn Player B names a
formula y that appears in Cx and claims that y is true (in the assignment α);
and the remaining turns consist of a back-and-forth between the players, with
A trying to show that y is false and B trying to maintain that it is true. Player
B can always win Gi for small i, since it is easy to find a true formula in an
initial clause; Player A can always win Ga because it is impossible to find a
true formula in the final, empty cedent; and the reduction between Gi+1 and
Gi comes from soundness and the form of the rules.

To define game Gi formally, we describe what the players have to do at
each turn. If at any turn one fails to do this then the other player immediately
wins. We state in brackets the informal claim that a player makes about his
turn. These claims have high quantifier complexity and the following turns of
the game represent checking their truth value.

After turn 2, the game can continue in two different ways, depending on
whether y is a conjunction or a disjunction. We describe the case for a conjunc-
tion first.

1. A names a cedent Cx with x ≤ i (claiming it contains no true formulas)

2. B names a formula y ∈ Cx (claiming it is true)

3. A names a disjunction z1 ∈ y (claiming it is false)

4. B names a conjunction z2 ∈ z1 (claiming it is true)

etc.

The game continues in this way, with the level of the named formula dropping
by one each turn, until one of the players names a single (unpadded) literal.
Then B wins if this literal is true and A wins if it is false. Note that the game
must have finished after k + 2 turns.

If the first formula y named by B is a disjunction, then the game proceeds
like this:

3. A misses his turn (waiting for B to substantiate his claim that y is true
by naming a true disjunct)

4. B names a conjunction z1 ∈ y (claiming it is true)

then the game continues as before. We include this missed turn, rather than
just combining B’s turns 2 and 4 into one turn, because the way the turns in
successive games match up with each other will be important for our reductions

18



between games. Note that again the game must have finished after k+ 2 turns,
since we only allow disjunctions of level k−1 or lower to appear in a PK0

k proof.
We must now give the strategies U, V,W1, . . . ,Wa−1 and show that, from

any witness that condition 1, 2 or 3 of the definition of game induction is false,
we can derive in polynomial time a witness to our instance of 1−Ref(PK0

k).
U is the following strategy for Player B in G1. Player A can only name the

initial cedent C1 in his first turn (otherwise he loses immediately). B then looks
at the first clause of the CNF F . Recall that this is narrow, that is, contains
only polynomially many literals (in the length of the size parameter) and that
these are listed by a polynomial time function. B goes through these literals
and plays the first true such literal (under the assignment α) as his move y. If
there is no such literal, he surrenders the game by playing an illegal move.

Suppose that this strategy is unsuccessful. Then either there is no true
literal in the first clause of F , in which case the first clause of F is falsified by α,
yielding a witness to condition 4 of the definition of 1−Ref(PK0

k); or B played a
true literal y from the first clause of F but lost because y is not a member of C1,
in which case we have a witness to condition 3 of the definition of 1−Ref(PK0

k),
since C1 is just the initial cedent R1.

V is the following strategy for Player A in Ga. A plays the final cedent Ca of
the refutation. If B is able to play anything successfully in the next turn, then
B’s move must witness that Ca is not the empty cedent and that the refutation
is not well-formed.

The reduction Wi of Gi+1 to Gi is more complicated. We will describe it
in the form of a strategy for D in a reduction game against C. When we talk
about C or D playing in the “top row” or “bottom row” we are referring to
the schedule of the reduction game. We suppose that C has named a cedent
x ≤ i+ 1 in his first turn. Then D’s strategy will depend on the rule by which
Cx was derived.

Case 0: Cx is an initial clause. In this case D ignores the top row of the
reduction game and plays on the bottom row as B does in the strategy U .

Case 1: Cx is derived from some Cx′ by padding introduction,

Cx′ : Γ, p
Cx : Γ, (p)

.

D’s first move is to play x′ in the top row, to which C replies with some y ∈ Cx′ .
Now D’s strategy will depend on whether p is true or false. This is checkable in
polynomial time, since p is just a single literal.

Suppose p is true. Then D ignores the top row from now on and plays “(p)”
in the bottom row. We use quotation marks here because the players cannot
know at this point whether the formula picked out by the function f to play the
role of “(p)” actually has the form that (p) should have, since this property is
Π̂b

1. However, by the definition of the inference rule, f should provide a sequence
of names of formulas “(p)”= φ1, φ2, . . . , φl = p where each formula is the unique
element of the previous formula, since otherwise the proof is not well-formed.

19



So if C responds (on the bottom row) with an element of (p) which is not φ2

then we have a witness that the proof is not well-formed. Otherwise D responds
to φ2 with φ3; and so on. Eventually either we get a witness to 1−Ref(PK0

k) or
D wins the bottom row.

If p is false, then C’s reply y must be a side formula from Γ (that is, some
non-auxiliary formula), since he loses the top immediately if he replies with p.
From this point, D can copy C’s moves in every column (in the schedule) and
will thus win either the top or the bottom. The only way this can fail is if C
played a side formula on the top which does not exist on the bottom, in which
case we have a witness that the proof is not well-formed.

Case 2: Padding elimination,

Cx′ : Γ, (p)
Cx : Γ, p

.

Similar to case 1.

Case 3: Internal
∧

-introduction,

Cx′ : Γ,Φ[
∧
X] Cx′′ : Γ, p

Cx : Γ,Φ[
∧
X ∧ (p)]

.

If p is false, then D plays x′′ at the top and then copies C’s moves, as above. If
p is true, then the interesting case of D’s strategy looks like this:

⊥ > > ⊥
Gi : x′ Φ[

∧
X] . . .

∧
X z . . .

↑ ↓ ↓ ↑
Gi+1 : x Φ[

∧
X ∧ (p)] . . .

∧
X ∧ (p) z ∈ X . . .

We have marked each column with ⊥ or > to remind the reader what claims
the players are making in those turns.

We will describe this strategy in detail. C claims that the cedent Cx contains
no true formula. D responds that, in that case, the cedent Cx′ contains no true
formula. C replies that, in fact, the auxiliary formula “Φ[

∧
X]” is true in Cx′

(alternatively C replies that some side formula is true; but then either the proof
is not well-formed, or D can copy C’s moves from now on and thus win). D says
that this means that the principal formula “Φ[

∧
X ∧ (p)]” is true in Cx.

Now f should list sequences “Φ[
∧
X]”= φ1,φ2, . . . , φl =“

∧
X” and “Φ[

∧
X∧

(p)]”= φ′1, φ
′
2, . . . , φ

′
l =“

∧
X ∧ (p)” through these formulas to the relevant sub-

formulas. As long as C sticks to naming formulas from these paths (φjs on the
top and φ′js on the bottom), D replies with the corresponding formula from
the other side. These paths should lead to the only place where the auxiliary
formula and the principal formula differ. So if C names a subformula off the
path, then either D can copy C’s moves from that point or the proof is not
well-formed.

In the last column shown, C must name a member of
∧
X ∧ (p), claiming

it is false. He cannot name “(p)”, because then D could go on to win at the

20



bottom as in case 1, since p is true. But if C names any z ∈ X, then D can
reply with the same z, as shown (otherwise z is a witness that the proof is not
well-formed), and go on to copy C’s moves from that point.

Note that if Φ[
∧
X] and Φ[

∧
X ∧ (p)] are disjunctions rather than conjunc-

tions then, by the rules of Gi and Gi+1, both players skip their turns in the
third column. Otherwise the strategy is the same.

Case 4: Internal
∨

-elimination,

Cx′ : Γ,Φ[
∨
X ∨ (p)]

Cx : Γ,Φ[
∨
X], p

.

If p is true then D can win the bottom by playing p. If p is false, then the
interesting case of D’s strategy looks like this

⊥ > ⊥ >
Gi : x′ Φ[

∨
X ∨ (p)] . . .

∨
X ∨ (p) z ∈ X . . .

↑ ↓ ↑ ↓
Gi+1 : x Φ[

∨
X] . . .

∨
X z . . .

and is similar to the previous case. If C plays any other move before the last
column shown, then D can go on to win by copying C’s moves. If C had played
(p) in the last column shown, then C would be claiming that (p) is true and D
could go on to win the top.

Case 5: Internal weakening,

Cx′ : Γ,Φ[
∨
X]

Cx : Γ,Φ[
∨
Y ]

where X ⊆ Y . D’s strategy looks like:

⊥ > ⊥
Gi : x′ . . .

∨
X z ∈ X . . .

↑ ↑ ↓
Gi+1 : x . . .

∨
Y z . . .

Case 6: Internal
∧

-elimination,

Cx′ : Γ,Φ[
∧
X]

Cx : Γ,Φ[
∧
Y ]

where X ⊇ Y . D’s strategy is dual to case 5.

Case 7: Weakening,

Cx′ : Γ
Cx : ∆

where Γ ⊆ ∆. Trivial.

21



Case 8:
∧

-introduction,

Cx′ : Γ, F
Cx : Γ,

∧
{F}

where by the rules about levels, F must be a disjunction, say
∨
X. D’s strategy

looks like:

⊥ > ⊥ >
Gi : x′

∨
X skip z ∈ X . . .

↑ ↓ ↑ ↓
Gi+1 : x

∧
{
∨
X}

∨
X z . . .

Case 9:
∧

-elimination,

Cx′ : Γ,
∧
{F}

Cx : Γ, F
.

Again F must be a disjunction
∨
X. D’s strategy looks like:

⊥ > ⊥ >
Gi : x′

∧
{
∨
X}

∨
X z ∈ X . . .

↑ ↓ ↑ ↓
Gi+1 : x

∨
X skip z . . .

Case 10: Resolution,

Cx′ : Γ, p Cx′′ : Γ,¬p
Cx : Γ

.

If p is false then D plays x′ in the first column, otherwise he plays x′′. The rest
of the strategy is trivial. �

4 Translation into a polynomial time refutation

In this section we show that the ∀Σ̂b
1 consequences of T k+2

2 are reducible to
1−Ref(PK0

k). We first show how to translate a T k+2
2 proof into a polynomial

time PKk refutation. Then we show how this translation can be changed to give
a polynomial time PK0

k refutation, by simulating the usual rules for connectives
using the rules of PK0

k. Throughout, k is a fixed natural number.
Just for this section, we define Σ̃b

i and Π̃b
i formulas to be formulas of precisely

the complexity Σ̂b
i or Π̂b

i and not of lower complexity, unless we say so explicitly,
when for example “of complexity Π̃b

i or lower” will mean Π̃b
j for j ≤ i or Σ̃b

j for
j < i. Furthermore the quantifiers in such a formula must alternate; we do not
allow blocks of the same quantifier, repeated. Finally the terms appearing as
the bounds on quantifiers can only contain free variables, not bound variables.

22



Definition 16 Given a Π̃b
i formula φ and an assignment b̄ to the free vari-

ables in φ, the propositional translation 〈φ〉b̄ is formally a tuple recording the
complexity of φ (i.e. “Π̃b

i”), the bounds on all the quantifiers (evaluated using
b̄), the Gödel number of the sharply bounded part θ of φ, and the parameters
from b̄ matching the free variables of θ. We think of the quantifiers as having
been translated into connectives and the sharply bounded matrix as having been
translated into a family of propositional variables, one for each choice of param-
eters arising from the connectives. Similarly for Σ̃b

i formulas. We will normally
abuse notation and either not write the parameters at all or write the formula
as 〈φ(b̄)〉 rather than 〈φ〉b̄.

We call a propositional formula full if it arises in this way, as a translation
of a bounded first order formula.

For d ∈ N we write Qd
t for the polynomial time k-formula table that encodes

the structure of all full propositional formulas arising from first order formulas
of complexity Π̃b

k or lower and with sharply bounded parts smaller than d and
parameters and bounds smaller than t.

For a formula σ of complexity Π̃b
k+2 or lower, a term t and a natural number

d, we say that t and d dominate σ if d is bigger than the Gödel number of the
sharply bounded part of σ and t dominates the bounds on all quantifiers in σ.

Given such a σ, t and d and a set of parameters for the free variables in σ,
we will translate σ into a polynomial time table of cedents σ◦. Formally this
is a polynomial time binary relation defining a r × |Qd

t | table which takes the
parameters as an extra set of arguments. The height r is given as a polynomial
time function of the parameters. Each column represents a formula from Qd

t

and each row represents a cedent. The original first order formula will be true
if and only if in every row at least one formula is true.

It is easy to replace such a table with one with a larger d or t, representing
having a larger set of formulas to draw upon. We do this implicitly in the
constructions in this section.

We will usually write a singleton cedent of the form {〈σ〉} just as 〈σ〉.

Definition 17 If σ is Π̃b
k or of lower complexity then σ◦ is the single, singleton

cedent 〈σ〉.
If σ is Σ̃b

k+1 or Σ̃b
k of the form ∃x < r φ(x) then σ◦ is the single cedent

{〈φ(i)〉 : i < r}.
If σ is Π̃b

k+2 or Π̃b
k+1 of the form ∀x<r ∃y < sφ(x, y), then σ◦ is the table

of cedents ({〈φ(i, j)〉 : j < s})i<r.
If k = 0 and σ is Π̃b

1 of the form ∀x<r φ(x), then σ◦ is the table of singleton
cedents (〈φ(i)〉)i<r.

Definition 18 Let A and B be polynomial time tables of cedents, with r and
s rows respectively. Then A + B is the r + s row table made by concatenating
A and B. A ∗B is the rs row table whose rows are the unions of pairs of rows
from A and B. Precisely, the (r(i − 1) + j)th row of A ∗ B is the union of the
ith row of A and the jth row of B. Note that these operations are associative
and that these new tables are still polynomial time.

23



The translation Γ◦ of a first order cedent Γ = (γ1, . . . , γm) is the table γ◦1 +
. . .+ γ◦m. The translation Γ∗ is the table γ◦1 ∗ . . . ∗ γ◦m. A first order cedent only
contains finitely many formulas, so these tables are still polynomial time.

Our translation from first order into propositional proofs is essentially that of
Paris and Wilkie [25]. Kraj́ıček showed using this translation that T k+2

2 proofs
could in fact be translated into depth k+1/2, quasipolynomial size propositional
proofs [15, 17]. In [20] it was shown that these proofs can have polynomial time
structure (in our sense) for k = 0 or 1. The construction in this section is a
generalization of this last result.

The next proof constructs a polynomial time PKk derivation. This is defined
similarly to a polynomial time PK0

k derivation, except that the rules allowed are:
weakening; resolution;

∧
-introduction, i.e. if φ is Σ̃b

j for j < k then from the
table (Γ ∪ 〈φ(i)〉)i<r we can derive the cedent Γ ∪ 〈∀x<r φ(x)〉;

∧
-elimination,

i.e. the reverse of this;
∨

-introduction, i.e. if φ is Π̃b
j for j < k − 1 then from

the cedent Γ ∪ {〈φ(i)〉 : i < r} we can derive the cedent Γ ∪ 〈∃x<r φ(x)〉; and∨
-elimination, i.e. the reverse of this.

We follow [7] in our formulation of the first order sequent calculus for
bounded arithmetic.

Theorem 19 Suppose Π is a proof in the sequent calculus for T k+2
2 in which

every formula is of complexity Π̃b
k+2 or lower, and which ends with the sequent

Γ −→ ∆.
Then there exist a constant d and a term t, dominating every formula in

Π, and a polynomial time table A of auxiliary clauses, such that there is a
polynomial time PKk derivation of ∆∗ from Γ◦ + A where all formulas in the
derivation come from the table Qd

t . Here the auxiliary clauses A are cedents
containing only literals; they are narrow, meaning that the table comes with a
polynomial time function listing the polynomially many literals in each clause;
and every clause is true, under the natural truth assignment to literals.

Everything takes as parameters an assignment to the free variables in Γ and
∆. The statement that the derivation and the auxiliary clauses are well-formed,
for all choices of parameters, is provable in PV.

Proof The proof is by induction on the number of steps in Π. The induction
step splits into cases depending on the way in which the final sequent in Π is de-
rived. In each case the new bounding term t and constant d are straightforward
and we will not give details.

BASIC axioms, equality axioms, propositional rules, sharply bounded
quantifier rules
Every formula in Π is Π̃b

k+2 and in particular is strict, with propositional con-
nectives and sharply bounded quantifiers only occurring in the sharply bounded
part of a formula. So the associated rules are only applied to sharply bounded
formulas, corresponding to level 0 formulas in our translation. Furthermore,

24



instances of the BASIC and equality axioms translate directly into level 0 for-
mulas. Hence all these things can be taken care of by adding an appropriate
table of auxiliary clauses and some resolution steps.

We give one example (the same one as in [20]), for the right sharply bounded
universal quantifier introduction rule, which has the form:

x < |s|,Γ −→ ∆, φ(x)
Γ −→ ∆,∀y< |s|φ(y)

where our assumption tells us that φ must be sharply bounded.
By the inductive hypothesis we have, uniformly in an assignment r to x

(and assignments to any other free variables), a derivation πr of ∆∗ ∗ 〈φ(r)〉
from 〈r < |s|〉 + Γ◦ + Ar where Ar is a table of auxiliary clauses. Let s′ be
the value of |s| − 1 and let A be the table of auxiliary clauses A0 + . . .+As′ +
〈0 < |s|〉+ . . .+ 〈s′ < |s|〉+{¬〈φ(0)〉, . . . ,¬〈φ(s′)〉, 〈∀y< |s|φ(y)〉} (first padding
out all tables A0, . . . , As′ to the same length so that their concatenation has a
uniform internal structure).

Then for each r < |s| using πr we can derive ∆∗ ∗ 〈φ(r)〉 from Γ◦ +A. Then
we can derive each cedent in ∆∗ ∗ 〈∀y< |s|φ(y)〉 by resolving the last clause in
A with the corresponding cedent in ∆∗ ∗ 〈φ(r)〉 for every r in turn.

Weak structural rules
The exchange and contraction rules just require easy changes of the cedents
pointed to by the function f .

Left weakening is trivial. Right weakening

Γ −→ ∆
Γ −→ ∆, φ

requires the introduction of some new weakening steps at the end of our propo-
sitional derivation, one for each pair of a cedent from ∆∗ and a cedent from φ◦.

Cut rule
Suppose the last inference in Π has the form

Γ −→ ∆, φ φ,Γ −→ ∆
Γ −→ ∆

.

By the inductive hypothesis, we have uniform derivations πL, πR and uniform
tables of auxiliary clauses AL, AR for respectively the left and right upper se-
quents. We can write these as:

πL : Γ◦ +AL ` ∆∗ ∗ φ◦ and πR : φ◦ + Γ◦ +AR ` ∆∗.

A polynomial time proof is a table of cedents (with some extra structure
given by the function f), so it makes sense to use our operator ∗ on proofs and
to write ∆∗ ∗ πR for the object obtained by taking, for each cedent C in ∆∗, a
copy of πR with C added (by union) to every cedent. Allowing for some simple

25



changes to this object to add initial and final clauses in the right places and to
extend f appropriately, we have

∆∗ ∗ πR : ∆∗ ∗ φ◦ + ∆∗ ∗ Γ◦ + ∆∗ ∗AR ` ∆∗ ∗∆∗

which, if we tidy up the conclusion and add some weakening steps to derive
∆∗ ∗ Γ◦ from Γ◦ and ∆∗ ∗AR from AR, yields a polynomial time derivation

∆∗ ∗ φ◦ + Γ◦ +AR ` ∆∗.

Finally, by preceding this with πL we can form a polynomial time derivation

Γ◦ +AL +AR ` ∆∗

as required.

Induction rule
We may assume that the induction rule occurs in the form

Γ, φ(s), r = s+ 1 −→ φ(r),∆
Γ, φ(0) −→ φ(w),∆

.

This is because we can derive the normal induction rule

Γ, φ(s) −→ φ(s+ 1),∆
Γ, φ(0) −→ φ(w),∆

from our new rule without increasing the quantifier complexity of the proof, by
first deriving r = s+ 1, φ(s+ 1) −→ φ(r) using equality and quantifier axioms,
then cutting with the upper sequent of the normal induction rule, then applying
our new induction rule.

The treatment of it is similar to that of the cut rule. By the inductive
hypothesis, for the upper sequent for each s < w we have derivations πs and
tables of auxiliary clauses As, uniform in s, with

πs : Γ◦ + φ(s)◦ +As ` φ(s+ 1)◦ ∗∆∗.

By similar manipulations to those for cut, we can obtain derivations π′s with

π′s : Γ◦ +As + φ(s)◦ ∗∆∗ ` φ(s+ 1)◦ ∗∆∗.

Finally by padding all these proofs out to the same length, concatenating
them and connecting them by extending the function f , we get a polynomial
time derivation

Γ◦ +A+ φ(0)◦ ∗∆∗ ` φ(w)◦ ∗∆∗,

where A is the concatenation of all the tables of auxiliary clauses As. Adding a
few more weakening steps at the start gives us the required derivation.

Bounded left ∃ introduction

26



Suppose the last inference in Π has the form

x < s, φ(x),Γ −→ ∆
∃y<sφ(y),Γ −→ ∆

.

We first consider the case when φ is a Π̃b
k or Π̃b

k−1 formula. For each r we have

πr : (r < s)◦ + φ(r)◦ + Γ◦ +Ar ` ∆∗.

For r < s we can let A′
r be Ar with {〈r < s〉} added as an extra auxiliary clause,

giving

π′r : φ(r)◦ + Γ◦ +A′
r ` ∆∗.

Now by a similar manipulation to the case of cut, by premultiplying the proof
by the table ∆∗ ∗ (∃y < r φ(y))◦ and then doing some tidying up and some
weakening, we can obtain a derivation

∆∗ ∗ (∃y<r φ(y))◦ ∗ φ(r)◦ + Γ◦ +A′
r ` ∆∗ ∗ (∃y<r φ(y))◦.

But by the definition of our translation, (∃y < r φ(y))◦ ∗ φ(r)◦ is precisely the
cedent (∃y<r+1φ(y))◦. So for each x < r we have a polynomial time derivation

π′′r : ∆∗ ∗ (∃y<r + 1φ(y))◦ + Γ◦ +A′
r ` ∆∗ ∗ (∃y<r φ(y))◦.

By padding all the proofs π′′s−1, . . . , π
′′
0 out to the same length, concatenating

them, extending f suitably, observing that (∃y<0φ(y))◦ is the empty sequent,
and adding some extra weakening at the start to obtain ∆∗ ∗ (∃y<sφ(y))◦ from
(∃y<sφ(y))◦, we get the required derivation

(∃y<sφ(y))◦ + Γ◦ +A ` ∆∗.

In the case when φ is Π̃b
k−2 or lower we do the same construction as above,

simply replacing cedents of the form (∃y < r φ(y))◦ with the (in this case, dif-
ferent) cedent {〈φ(i)〉 : i < r}. This gives a derivation

{〈φ(i)〉 : i < s}+ Γ◦ +A ` ∆∗

and we can obtain the desired derivation by adding an
∨

-elimination step at
the start to derive {〈φ(i)〉 : i < r} from (∃y < r φ(y))◦ (which, in this case, is
just the cedent {〈∃y<r φ(y)〉}).

Bounded left ∀ introduction
Suppose the last inference in Π has the form

φ(r),Γ −→ ∆
r < s,∀x<sφ(x),Γ −→ ∆

.

We may assume r < s. Otherwise we do not need the inductive hypothesis
since we can derive the empty clause from (r < s)◦ if we add {¬〈r < s〉} as an

27



auxiliary clause, so we can easily get a derivation for the bottom sequent using
weakening.

We first consider the case when φ is Σ̃b
k+1 or Σ̃b

k. In this case (∀x<sφ(x))◦

is a table of cedents. This table already includes the cedent φ(r)◦ and it is easy
to form the derivation for the bottom sequent from the derivation for the top
sequent.

If φ if Σ̃b
k−1 or below then we use a similar construction, with the difference

that at the beginning we need an
∧

-elimination step to derive a table of cedents
({〈φ(j)〉})j<s from (∀x<sφ(x))◦.

Bounded right ∃ introduction
Suppose the last inference in Π has the form

Γ −→ ∆, φ(r)
r < s,Γ −→ ∆,∃x<sφ(x)

.

As above we may assume r < s.
The construction is to take the derivation for the top sequent, and then add

to the end a derivation of ∆∗ ∗ (∃x<sφ(x))◦ from ∆∗ ∗ φ(r)◦. Similarly to the
earlier cases, if φ is Π̃b

k or Π̃b
k−1 then this just needs some weakening steps; if φ

is of lower complexity then it needs some weakening and some
∨

-introduction
steps.

Bounded right ∀ introduction
Suppose the last inference in Π has the form

x < s,Γ −→ ∆, φ(x)
Γ −→ ∆,∀y<sφ(y)

Using the inductive hypothesis we can make a derivation which starts with Γ◦

and derives ∆∗ ∗φ(r)◦ for each r < s. If φ is Σ̃b
k or Σ̃b

k+1 then this is exactly the
derivation required. Otherwise, we need to add some

∧
-introduction steps. �

All propositional formulas appearing so far are full. For our PK0
k proof,

however, we will need formulas from a more general class.

Definition 20 Level 0 almost-full formulas are the same as level 0 full formu-
las. For each i < k, a level i + 1 almost-full conjunction A is specified by a
level i+ 1 full conjunction B and a level i almost-full disjunction C; the set of
conjuncts of A is {X : X is a conjunct of B} ∪ {C}. Almost-full disjunctions
are defined similarly. As in the case of full formulas, the almost-full formulas
can be given by a polynomial time k-formula table with a bound d on complexity
and a bound t on the size of the parameters.

Theorem 21 Theorem 19 also holds for the system PK0
k.

Proof We will show that we can derive PKk’s rules for connectives using
polynomial time PK0

k derivations made up of almost-full formulas.

28



The proof is by induction on the level of a formula. The hypothesis is that
for every almost-full level i formula F , and every almost-full formula Φ with a
full subformula (that is, a node in the tree for Φ) Z of level i+ 1 or higher, we
can derive the following generalizations of rules 1–4 of PK0

k by polynomial time
PK0

k derivations (using the parameters that define the formulas):

F

(F )
and

(F )
F

where padding can be to any level;

Φ[Z] F

Φ[Z ∧ (F )]
if Z is a conjunction;

Φ[Z ∨ (F )]
Φ[Z], F

if Z is a disjunction.

Side formulas are allowed but we will not write them here; we will also leave
out weakening steps. Our hypothesis is true for level 0. Suppose it is true for
level i.

Padding introduction and elimination
The construction for padding introduction is similar to the one given below
for internal

∧
-introduction. Similarly for padding elimination and internal

∨
-

elimination.

Internal
∧

-introduction
We will derive the rule

Φ[
∧
X] F

Φ[
∧
X ∧ (F )]

for
∧
X a full formula. First suppose F is a level i + 1 conjunction∧

{G1, . . . , Gn,H} of level i disjunctions, where
∧
{G1, . . . , Gn} is full. Our

derivation is

Φ[
∧
X]∧

{G1, . . . , Gn,H}∧
{G1} internal

∧
-elimination

G1

∧
-elimination

...
H as for G1

Φ[
∧
X ∧ (

∧
{G1})] level i internal

∧
-introduction (ind. hyp.)

Φ[
∧
X ∧ (

∧
{G1, G2})] level i internal

∧
-introduction

...
Φ[

∧
X ∧ (

∧
{G1, . . . , Gn,H})].

Notice that the level i internal
∧

-introduction steps, except for the first one,
are of the form

Φ′[
∧
{G1, . . . , Gm}] I

Φ′[
∧
{G1, . . . , Gm, I}]

29



for some m ≤ n. We have derivations for these by the inductive hypothesis and
the fact that {G1, . . . , Gm} is full.

Now suppose F is a level i+ 1 disjunction
∨
{G1, . . . , Gn,H} of level i con-

junctions, where
∨
{G1, . . . , Gn} is full. Our derivation is

Φ[
∧
X]∨

{G1, . . . , Gn,H}∨
{G1, . . . , Gn},H level i internal

∨
-elimination

...∨
{G1}, G2, . . . , Gn,H

G1, . . . , Gn,H level i padding elimination
Φ[

∧
X ∧ (

∨
{G1})], G2, . . . , Gn,H level i internal

∧
-introduction

Φ[
∧
X ∧ (F )], G2, . . . , Gn,H internal weakening

Φ[
∧
X ∧ (F )],Φ[

∧
X ∧ (

∨
{G2})], level i internal

∧
-introduction

G3, . . . , Gn,H

Φ[
∧
X ∧ (F )], G3, . . . , Gn,H internal weakening

...
Φ[

∧
X ∧ (F )]

Internal
∨

-elimination
We will derive the rule

Φ[
∨
X ∨ (F )]

Φ[
∨
X], F

for
∨
X a full formula. First suppose F is a level i + 1 conjunction∧

{G1, . . . , Gn,H} of level i disjunctions, where
∧
{G1, . . . , Gn} is full. Our

derivation is

Φ[
∨
X ∨ (

∧
{G1, . . . , Gn,H})]

Φ[
∨
X ∨ (

∧
{G1})] internal

∧
-elimination

Φ[
∨
X], G1 level i internal

∨
-elimination

...
Φ[

∨
X],H as for G1

Φ[
∨
X],

∧
{G1}

∧
-introduction

Φ[
∨
X],

∧
{G1, G2} level i internal

∧
-introduction

...
Φ[

∨
X],

∧
{G1, . . . , Gn,H}

Now suppose F is a level i+ 1 disjunction
∨
{G1, . . . , Gn,H} of level i conjunc-

30



tions, where
∨
{G1, . . . , Gn} is full. Our derivation is

Φ[
∨
X ∨ (

∨
{G1, . . . , Gn,H})]

Φ[
∨
X ∨ (

∨
{G1, . . . , Gn})],H level i internal

∨
-elimination

...
Φ[

∨
X ∨ (

∨
{G1})], G2, . . . , Gn,H

Φ[
∨
X], G1, . . . , Gn,H level i internal

∨
-elimination

Φ[
∨
X],

∨
{G1}, G2, . . . , Gn,H level i padding introduction

Φ[
∨
X],

∨
{G1, G2}, G3, . . . , Gn,H level i internal

∨
-introduction

...
Φ[

∨
X],

∨
{G1, . . . , Gn,H}

This concludes the inductive construction of our derivations.
Now we can easily derive the rules of PKk. For example

∨
-introduction is

G1, . . . , Gn∨
{G1}, G2, . . . , Gn padding introduction∨
{G1, G2}, G3, . . . , Gn internal

∨
-introduction

...∨
{G1, . . . , Gn}

�

We can now prove Theorem 5 that, for k ≥ 0, ∀Σ̂b
1(T k+2

2 ) is reducible to
1−Ref(PK0

k) by reductions that work provably in PV.

Proof of Theorem 5 Suppose T k+2
2 proves ∀x∃y < xφ(x, y) where φ is

sharply bounded. We may assume that the calculus for T k+2
2 uses the induction

rule only for Π̃b
k+2 or lower formulas. Hence by free-cut elimination (see for

example [7]; note that our class of formulas is closed under taking subformulas
and freely substituting terms for variables) there is a first order derivation, in
our calculus for T k+2

2 , of the sequent ∀y < x¬φ(x, y) −→ ∅ in which every
formula is Π̃b

k+2 or lower.
Then by the constructions above there is a polynomial time PK0

k refutation
which is well-formed provably in PV and where the initial cedents R′ consist of
(∀y<a¬φ(a, y))◦ together with a table A of auxiliary clauses.

If k ≥ 1 we add a
∧

-introduction step at the beginning to replace the initial
cedent (∀y < a¬φ(a, y))◦ in the refutation with the table (〈¬φ(a, r)〉)r<a. Let
this new refutation be (Q,R, S, T, f, b) (we may assume that A is unchanged
and that |b| is polynomial in |a|). If k = 0 then, by definition, the translation
(∀y<a¬φ(a, y))◦ already has this form.

Let F be a polynomial time function listing all the clauses of the CNF we
are refuting. That is, for each r < a, F (r) outputs 〈¬φ(a, r)〉 as the complete
rth clause; if r ≥ a, then F (r) lists the contents of the (r − a + 1)st auxiliary
clause. Let α be the polynomial time assignment that maps each literal to its
truth value.

31



Then any witness to the instance (F, α,Q,R, S, T, f, b) of 1−Ref(PK0
k) must

be a witness to part 4 of the definition of 1−Ref(PK0
k), namely it must be some

clause F (r) which is not satisfied by the assignment α. All the auxiliary clauses
are true in α, so we must have r < a. Hence 〈¬φ(a, r)〉 must be false and r is a
witness to our instance of ∀Σ̂b

1(T k+2
2 ). �

5 A lower bound for GI3

We translate the negation of GI3(a) into propositional form. For simplicity we
will assume that a = 2n. Below, i ranges over [1, a] and x, y, z, x′, y′, z′ range
over [0, a). Our propositional variables are:

1. (U(x))1, . . . , (U(x))n for all x, representing the bit graph of a function
U : a → a, that is, the interpretation of the variable (U(x))j is “the jth
bit of the value of U(x)”;

2. (V (y))1, . . . , (V (y))n for all y, similarly for a function V ;

3. (Ri(x))1, . . . , (Ri(x))n for all i < a and all x, for a family of functions Ri;

4. (Six(y′))1, . . . , (Six(y′))n for all i < a and all x and y′, for a family of
functions Six;

5. (Tixy′(z))1, . . . , (Tixy′(z))n for all i < a and all x, y′ and z, for a family of
functions Tixy′ ;

6. Gixy(z) for all i, x, y and z, for a family of unary relations Gixy on [0, a).

We will write, for example, U(x) = y as shorthand for the (small) conjunc-
tion

∧
j∈[1,n](U(x))j = (y)j where each (y)j is for 0 or 1 depending on the jth

bit of y. Our propositional formula GI3 is then the CNF:

1. U(x) = y → G1xy(z) for all x, y, z;

2. V (y) = z → ¬Ga0y(z) for all y, z;

3. Ri(x) = x′ ∧ Six(y′) = y ∧ Tixy′(z) = z′ ∧Gix′y′z′ → G(i+1)xyz.

We interpret Gixy(z) as expressing that the second player B wins the game
Gi played with the moves x, y, z. So the principle states that: U is a winning
strategy for B in G1; playing 0 as the first move, and then using V , is a winning
strategy for A in Ga; and the function families Ri, Si and Ti together give a
reduction of Gi+1 to Gi for all i. In pictures:

G1 : x → U → y z
...

...
...

Gi : x′ y′ z′

Ri ↑ Six ↓ Tixy′ ↑
Gi+1 : x y z

...
...

...
Ga : 0 y → V → z

32



The requirement that A’s first move in the strategy for Ga is 0 makes the
presentation simpler and makes no difference to the strength of the principle.

An alternative translation would be to use propositional variables to repre-
sent the graphs of our functions, rather than their bit graphs. We use bit graphs
because we want our CNF to be narrow. Theorem 8 also holds for the other
translation and the lower bound argument still works, if we change the definition
of “constraining” below (define, for example, Ri(x) to be constrained by a term
if either the term includes “Ri(x) = x′” for some x′ or includes “Ri(x) 6= x′”
for at least a/10 many x′s).

We take PK0
0 as the definition of the resolution system. The only rules are

resolution and weakening. For some large a, suppose that Π is a resolution
refutation of GI3(a). We will think of Π as a strategy for the Prover in a
certain Prover-Adversary game. In the game the Prover starts with an empty
term, that is, an empty conjunction of the things he knows. In each turn he
either asks the Adversary for the value of a variable and adds the answer to his
term (corresponding to a resolution step) or forgets a variable from his term
(corresponding to a weakening step). We make Π into a strategy for the Prover
in this game by thinking of it as a directed acyclic graph, replacing each clause
with its negation and reversing the direction of the arrows.

We will define a distribution ρ on partial assignments to the variables of GI3.
We then show that if Π is small then with high probability a partial assignment
ρ has several nice properties. We will choose one fixed ρ with these properties
– in particular, if the Adversary’s replies are consistent with ρ then the terms
known by the Prover are always “thin” in a certain sense. This thinness allows
the Adversary always to give answers which are consistent with GI3, and hence
the Prover is not able to win the game using the strategy Π.

In our random partial assignment ρ, and also the partial assignments α, α0

and α′ below (but not γ or γ′, which represent the partial information known
by the Prover), for each i and x either all bits of Ri(x) will be given values, in
which case we say that Ri(x) is set to x′ (where x′ is the number with these bits)
or none of the bits of Ri(x) will be given values. Similarly for S, T , U and V .
Hence we may treat all of these as partially defined (parametrized) functions.
Also for each i, x and y, either Gixy is set and has been given values for all z,
or is not set and has no value for any z.

Below exponentially high probability means > 1 − 2−aε

for some ε > 0 and
polynomially high probability means > 1− a−ε for some ε > 0.

Our distribution is determined by two parameters, a probability p and a
width w. We take p to be a−9/10 and w to be a/10. We do not try to optimize
the numbers. We define a random partial assignment ρ as follows.

1. For each pair (i + 1, x) with i < a, with probability p “select” (i + 1, x).
Then for each “row” i + 1 with i < a, suppose that distinct pairs (i +
1, x1), . . . , (i+1, xm) were selected on that row. Randomly choose distinct
numbers x′1, . . . , x

′
m (on row i) and use these to partially define Ri as a

partial injection with domain the xs and range the x′s. That is, for each
j assign the bits of Ri(xj) with the bits of x′j .

33



2. Similarly select each triple (i, x, y′) for i < a with probability p and then
randomly define Six to be a partial injection from the selected y′s on row
i to a set of ys on row i+ 1.

3. Select each four-tuple (i+ 1, x, y′, z) for i < a with probability p and then
randomly define Tixy′ to be a partial function from the selected zs on row
i + 1 to a set of z′s on row i. Here we can choose the z′s independently
since we do not insist Tixy′ is a permutation.

4. Select each triple (i, x, y) (possibly with i = a) with probability p and
then for each selected triple make each bit Gixy(z) true or false uniformly
at random, with probability 1/2.

Proposition 22 (Chernoff bound) Let X be the number of successes in a

independent random trials, each of which succeeds with probability q. Then for
any 0 < δ < 1, Pr[X > (1 + δ)qa] < e−qaδ2/3. �

Lemma 23 By the Chernoff bound, with exponentially high probability, for ev-
ery i, Ri(x) is set for at most 2pa values of x. Similarly for each function Six

and Tixy′ . We may also assume that for each i and x, Gixy is set for at most
2pa values of y, and that if Gixy is set by ρ, then it is made true for between
1/3 and 2/3 of the values z.

Hence we may assume these bounds on size in the following lemmas, since
any ρ for which they do not hold comes from an exponentially small error set
which will not make a difference to our calculations.

We now extend the partial assignment ρ to set all variables U and V in a
way which satisfies axioms 1 and 2 of GI3.

5. For each x choose y at random amongst the ≥ a − 2pa values of y for
which G1xy was not set. Set U(x) = y and set G1xy to be true for all z.

6. For each y be on row a, there are two possibilities:

Case 1: Ga0y is set. Then choose any z such that ¬Ga0y(z). Set V (y) = z.

Case 2: Ga0y is not set. Then choose z at random, set V (y) = z, make
Ga0y(z) false and make Ga0y true everywhere else.

Lemma 24 With exponentially high probability, for any x and any 1 < i < a,
for all but < 2a2p2 numbers x′ the following sets are disjoint in ρ: the domain
of Six; the set of y′ for which Gix′y′ is set.

Proof For any x′ and y′, ρ puts y′ into each of these sets independently with
probability p. So the probability that y′ is in both of them is p2. So the
probability that, for each fixed x′, there is any y′ in an intersection is ≤ ap2.
Hence for each fixed i and x, by the Chernoff bound we may assume that there
are < 2a2p2 numbers x′ for which the sets are not disjoint. �

34



Lemma 25 With exponentially high probability, for any x, for all but < 3a2p2

numbers x′ the following sets are disjoint in ρ: the domain of S1x; the set of y′

for which G1x′y′ is set. Note that this second set includes U(x′).

Proof For fixed x′, the probability that there is some y′ in the intersection
from the original definition of ρ is ≤ ap2. The probability that U(x′) is in the
domain of S1x is p < ap2. Hence by the Chernoff bound we may assume that
there are < 3a2p2 many x′s for which a bad y′ exists. �

Definition 26 We say a term t constrains Ri(x) if the term contains any vari-
able (Ri(x))j. We define constraining Six(y′), Tixy′(z) and Gixy similarly.

A term t is R-fat if |{(i, x) : t constrains Ri(x)}| > w. S-fat, T -fat and G-
fat are defined similarly, in terms of the number respectively of triples (i, x, y′),
4-tuples (i, x, y′, z) and triples (i, x, y) that are constrained by t.

Lemma 27 Any R-fat term t is falsified by ρ with exponentially high probability.
Similarly for S, T and G.

Proof A complication is that in each row the values ρ gives to each Ri(x) are
not set independently, since we insisted in the assignment that they should form
a partial permutation. However if a literal (Ri(x))j (or its negation) is in t, it
is falsified by ρ with probability at least p/4 since by Lemma 23 there were no
more than 2pa values forbidden for Ri(x), if it was set. Hence the probability
that no such literal in t is falsified is < (1− p/4)w ≤ e−pw/4 = e−a1/10/40. �

Definition 28 An R-path in a partial assignment α is a maximal sequence
(j, xj), (j − 1, xj−1), . . . , (k, xk) with j > k such that Rj−1(xj) = xj−1, . . . ,

Rk(xk+1) = xk.
Given an R-path σ of the above form, an S-path τ which matches σ is a

maximal sequence (l, xl, yl), (l+1, xl+1, yl+1), . . . , (m,xm, ym) such that k ≤ l <

m ≤ j and Slxl+1(yl) = yl+1, . . . , S(m−1)xm
(ym−1) = ym. Notice that you cannot

have an S-path without an R-path, and that an R-path may have several disjoint,
overlapping matching S-paths.

We say that (j, xj) is at the bottom of the R-path and (k, xk) is at the top,
and the length of the path is j − k. The domain of the path is [k, j]. Similarly
for S-paths. An S-path τ is full if for each i ∈ [l,m], Gixiyi is set, and for each
i ∈ [l,m− 1], Tixi+1yi

is total, and these hold in a way consistent with GI3.

Definition 29 Let γ be a partial assignment (which will eventually represent
the term remembered by the Prover at a round in the game). We say that a
partial assignment α is a completion of γ if all of the following hold.

1. In α, R and S are partial permutations for every choice of parameters.

2. ρ ⊆ α.

3. γ ⊆ α.

4. Every Ri(x) constrained in γ is set in α.

35



5. For every Six(y′) constrained in γ, Ri(x) and Six(y′) are set in α.

6. Every Tixy′(z) constrained in γ is set in α.

7. Every Gixy constrained in γ is set in α.

8. Every S-path in α is full. We call this condition fullness.

9. No variables are set in α other than those as required above.

10. If Gixy is true for all z, then i ≤ 2w+ 3 and the R-path containing (i, x),
if there is one, has all of its domain ≤ 2w + 3. We call this uselessness.

11. For no R-path in α are there more than two triples (i, x, x′) such that
(i, x′) and (i + 1, x) are in the path and Ri(x) = x′ was set in ρ (rather
than coming from γ). We call this avoiding paths from ρ.

12. α is consistent with GI3.

Lemma 30 With polynomially high probability there is a completion α0 of the
empty assignment.

Proof We need to show that we can extend ρ to make it full. The only obstacle
to this is if there is some R-path on which the Gs and T s were badly defined.

We may assume that there is no S-path in ρ of length two or more, by the
following calculation. For any i, x, x′, x′′, y, y′, y′′, the probability that (i+1, x),
(i, x′) and (i−1, x′′) form an R-path and (i−1, x′′, y′′), (i, x′, y′) and (i+1, x, y)
form a matching S-path is < (p/a)4. There are only a7 such 7-tuples, so the
probability that any of them form such a path is < (p/a)4a7 = p4a3 = a4/10/a.

We can also show that there is no S-path of length one such that G is set at
both the top and bottom of the path. For this there are three cases.

For any i, x, x′, y, y′ with 1 < i < a − 1 the probability that these give
an R-path and a matching S-path (on domain [i, i + 1]) is (p/a)2, and the
probability that G(i+1)xy and Gix′y′ are both set is p2. There are a5 such 5-
tuples, so the probability that any of them form such a bad configuration is
< (p/a)2p2a5 = p4a3 = a4/10/a.

For i = a− 1, if x 6= 0 then the calculation is as above. If x = 0, then Ga0y

is set for every y (by part 6 of the definition of ρ). But this is only a problem if
there exist x′, y′, y such that (a, 0), (a− 1, x′) is a R-path, (a− 1, x′, y′), (a, 0, y)
is a matching S-path and G(a−1)x′y′ is set, which happens with probability
< a3/10/a2.

For i = 1, the probability that Gix′y′ is set is slightly higher than p, since
G1x′U(x′) is always set, but it is no more than p+ 1/(a− 2p) so the probability
of a bad configuration is still polynomially small.

So ρ may contain several S-paths of length 1, for which G may have been
set by ρ at one end or the other, but not at both ends. Suppose (i, x′, y′), (i+
1, x, y) is such an S-path. Tixy′ is partially defined, with domain of size < 2pa.
If G(i+1)xy was set by ρ, then we can set Gix′y′ to be false everywhere and
extend Tixy′ arbitrarily to a total function; this guarantees that (a) axiom 3

36



of GI3 is satisfied and (b) Gix′y′(z′) is false for some z′, so that we do not
violate uselessness. If Gix′y′ was set by ρ and i > 1, then it is false for at
least one z′ so we can make G(i+1)xy false for one z and true everywhere else,
set Tixy′(z) = z′ and otherwise extend Tixy′ arbitrarily; if i = 1 then possibly
Gix′y′ is true everywhere so we must make G(i+1)xy true everywhere, but in this
case uselessness is not a problem. If neither is set by ρ then we make Gix′y′ and
G(i+1)xy both false everywhere.

For part 11 of the definition, “avoiding paths from ρ”, we need to bound the
probability that ρ contains any R-paths of length three or more. By a similar
calculation to the above, this is < (p/a)3a5 = p3a2 = a3/10/a. �

Theorem 31 For some ε > 0, there is no resolution refutation of GI3 of size
< 2aε

.

Proof Suppose that there is a subexponential size proof Π. Then we can treat
Π as a strategy for a Prover, as outlined above, and by Lemma 27 we can find
a single partial assignment ρ which falsifies every fat term in Π. Furthermore
we can choose ρ to satisfy all our other lemmas.

The Prover begins the game with an empty assignment γ. At each turn,
he can either forget a variable from γ or ask the Adversary for the value of a
variable and add it to γ. We have shown that, provided that the Adversary’s
replies are consistent with ρ, then the Prover’s strategy remains “thin” and γ

constrains at most w many Rs, Ss, T s and Gs.
The Adversary’s strategy is to maintain a completion α of γ. As long as he

does this, γ must be consistent with GI3 and the Prover cannot win.
The Adversary begins with α0, which is by definition a completion of the

empty assignment. We consider a turn in the game where the Prover starts with
an assignment γ and ends with an assignment γ′. The Adversary starts with a
completion α of γ. We must show there is a completion α′ of γ′.

Suppose the Prover forgets a variable, so γ′ ⊆ γ. Then the adversary can
easily find a completion α′ ⊆ α.

Suppose the Prover asks “what is (Ri(x))j)?”. If Ri(x) is set in α, then
the Adversary answers appropriately and α is still a completion. Otherwise the
Adversary choses a value x′ for Ri(x), uses that for his reply and adds it to α.
We show that a suitable x′ exists in Lemma 32 below.

Suppose the Prover asks “what is (Six(y′))j?”. Because of part 5 of Def-
inition 29, we need to keep track of whether Six(y′) is constrained in γ even
if Six(y′) is already set in ρ. So if Six(y′) is already constrained in γ, then it
must be set in α and the Adversary answers appropriately. Otherwise first the
Adversary uses Lemma 32 to set Ri(x) (if it was not set already) and then uses
Lemma 33 to set Six(y′) (if it was not set already).

If the Prover asks any bit of Tixy′(z) and it is not already set in α, the
Adversary assigns values to all bits arbitrarily. If the Prover asks any bit of
Gixy and it is not already set in α, the Adversary assigns values to all bits
arbitrarily, making at least one of them false to maintain uselessness. These
steps could lead to a contradiction with GI3 if the T s or Gs lie on some S-path;

37



but by fullness all the T s and Gs on S-paths are already set by α in a consistent
way. �

Lemma 32 There is a way to extend α to α′ which sets a value for Ri(x).

Proof We divide the lemma into cases.
Case 1: Suppose i > 1. We list the properties which we do not want our

choice x′ of a value for Ri(x) to satisfy, and give bounds on the number of x′s
with each bad property.

1. Ri(x̃) = x′ is in α for some x̃ 6= x; ≤ 2pa + 2w (2pa for Rs set by ρ, w
for Rs constrained by γ and w for Ss constrained by γ – see part 5 of
Definition 29).

2. Ri−1(x′) is set in α; ≤ 2pa+ 2w (as above).

3. Gix′y′ is set in γ for some y′; ≤ w.

4. x′ does not satisfy Lemma 24; ≤ 2a2p2.

The sum of these bounds is less than a, so some good x′ exists. We may extend
α by setting Ri(x) = x′. Notice that by item 2, this does not grow any R-paths
downwards, so uselessness is preserved; also by item 2 we continue to avoid
paths from ρ.

We now need to add some more things to α to get fullness. By 1 and 2,
(i, x′) is not on any R-path in α. Hence any Gix′y′ that is set was set either in
ρ or in γ. By item 3, it can only have been set in ρ. By part 5 of Definition 29,
since Ri(x) has not been set yet in α, Six(y′) is not constrained in γ for any y′,
so Sα

ix = Sρ
ix. Hence by item 4, there is no y′ such that y′ ∈ domSα

ix and Gix′y′

is set in α. So for every (i, x′, y′), (i + 1, x, y) that is now (part of) an S-path
in α matching our new (partial) R-path (i + 1, x), (i, x′), we can set Gix′y′ to
be all false, set G(i+1)xy to be all false if it is not set already, and extend Tixy′

arbitrarily to a total function, consistently with GI3 and with uselessness.
Case 2: Suppose i = 1. We list the properties which we do not want our

choice x′ of a value for R1(x) to satisfy, and give bounds on the number of x′s
with each bad property.

1. R1(x̃) = x′ is in α for some x̃ 6= x; ≤ 2pa+ 2w.

2. G1x′y′ is set in γ for some y′; ≤ w.

3. x′ does not satisfy Lemma 25; ≤ 3a2p2.

Fullness is preserved as in case 1.
For y′ = U(x′), G1x′y′ will be all true in ρ. But by the condition on avoiding

paths from ρ and the limit on the number of Rs constrained by γ, the R-path
containing (1, x′) has length at most 2w + 2, so uselessness is preserved. �

Lemma 33 There is a way to extend α to α′ which sets a value for Six(y′).

38



Proof Recall that this lemma is only applied once Ri(x) is set to some value
x′. Note that Ri(x) is not necessarily constrained by γ, but other than this α
is a completion of γ.

Case 1: Suppose i < a − 1 and there is some x∗ such that Ri+1(x∗) = x.
We list the properties which we do not want our choice y of a value for Six(y′)
to satisfy, and give bounds on the number of ys with each bad property.

1. G(i+1)xy is set in ρ or constrained by γ; ≤ 2pa+ w.

2. Six(ỹ) = y is in α for some ỹ 6= y′; ≤ 2pa+ w.

3. S(i+1)x∗(y) is set in α; ≤ 2pa+ w.

The sum of these bounds is less than a, so some good y exists. We may extend
α by setting Six(y′) = y.

By items 2 and 3, (i + 1, x, y) is not on any S-path in α, so together with
item 1 this means that G(i+1)xy is not set in α. Hence there is no difficulty with
extending Tixy′ , setting G(i+1)xy and possibly setting Gix′y′ to achieve fullness.
If Gix′y′ is all true, then we must set G(i+1)xy to be all true. But this does
not contradict uselessness, since the R-path containing (i, x′) does not grow
downwards.

Case 2: Suppose i < a− 1 and there is no x∗ such that Ri+1(x∗) = x. The
argument is as above, but simpler as we do not have to worry about S(i+1)x∗ .

Case 3: Suppose i = a− 1 and x = 0. Notice that by our construction of ρ
for all y, Ga0y is set in ρ and Ga0y(V (y)) is false. Again we list the ys to avoid:

1. S(a−1)0(ỹ) = y is in α for some ỹ 6= y′; ≤ 2pa+ w.

2. Ga0y was set at random in ρ, at step 4 in the definition of ρ; ≤ 2pa.

3. Ga0y was set in case 2 of step 6 in the definition of ρ, and T(a−1)0y′(V (y))
is set in ρ; ≤ 2pa (by the Chernoff bound).

4. Ga0y was set in case 2 of step 6 in the definition of ρ, and T(a−1)0y′(V (y))
is constrained in γ; ≤ w.

Again some good y exists and we may extend α by setting S(a−1)0(y′) = y.
We may assume that G(a−1)x′y′ is set and, by uselessness, that it is false for

at least one z′. By item 2 and case 2 of step 6 of the definition of ρ, Ga0y is
false for exactly one z, namely z = V (y), and true everywhere else. By items 3
and 4, T(a−1)0y′(z) is not set for this z. Hence we may set T(a−1)0y′(z) = z′ and
then extend T(a−1)0y′ arbitrarily to a total function. This gives fullness.

Case 4: Suppose i = a− 1 and x 6= 0. This is the same as case 2. �

Acknowledgments The authors would like to thank Arnold Beckmann, Emil
Jeřábek, Jan Kraj́ıček, Leszek Ko lodziejczyk and Pavel Pudlák for helpful dis-
cussions and comments on earlier versions of this material.

39



References

[1] A. Atserias and M. Bonet. On the automatizability of resolution and related
propositional proof systems. Information and Computation, 189(2):182–
201, 2004.

[2] P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi. The rela-
tive complexity of NP search problems. Journal of Computer and System
Sciences, 57(1):3–19, 1998.

[3] A. Beckmann. Dynamic ordinal analysis. Archive for Mathematical Logic,
42(4):303–334, 2003.

[4] S. Buss. Bounded Arithmetic. Bibliopolis, 1986.

[5] S. Buss. Polynomial size proofs of the propositional pigeonhole principle.
Journal of Symbolic Logic, 52(4):916–927, 1987.

[6] S. Buss. Relating the bounded arithmetic and polynomial time hierarchies.
Annals of Pure and Applied Logic, 75(1–2):67–77, 1995.

[7] S. Buss. Chapter 1: An introduction to proof theory & Chapter 2: First-
order proof theory of arithmetic. In S. Buss, editor, Handbook of Proof
Theory. Elsevier, 1998.

[8] S. Buss and J. Kraj́ıček. An application of Boolean complexity to separation
problems in bounded arithmetic. Proceedings of the London Mathematical
Society, 69:1–21, 1994.

[9] M. Chiari and J. Kraj́ıček. Witnessing functions in bounded arithmetic
and search problems. Journal of Symbolic Logic, 63(3):1095–1115, 1998.

[10] M. Chiari and J. Kraj́ıček. Lifting independence results in bounded arith-
metic. Archive for Mathematical Logic, 38(2):123–138, 1999.

[11] F. Ferreira. What are the ∀Σb
1-consequences of T 1

2 and T 2
2 ? Annals of Pure

and Applied Logic, 75(1):79–88, 1995.

[12] J. Hanika. Herbrandizing search problems in bounded arithmetic. Mathe-
matical Logic Quarterly, 50(6):577–586, 2004.

[13] E. Jeřábek. The strength of sharply bounded induction. Mathematical
Logic Quarterly, 52(6):613–624, 2006.

[14] D. Johnson, C. Papadimitriou, and M. Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, 1988.

[15] J. Kraj́ıček. Lower bounds to the size of constant-depth propositional
proofs. Journal of Symbolic Logic, 59(1):73–86, 1994.

[16] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic and Computational
Complexity. Cambridge University Press, 1995.

40



[17] J. Kraj́ıček. On the weak pigeonhole principle. Fundamenta Mathematicae,
170(1-3):123–140, 2001.

[18] J. Kraj́ıček and P. Pudlák. Quantified propositional calculi and fragments of
bounded arithmetic. Zeitschrift für Mathematische Logik und Grundlagen
der Mathematik, 36(1):29–46, 1990.

[19] J. Kraj́ıček, P. Pudlák, and G. Takeuti. Bounded arithmetic and the poly-
nomial hierarchy. Annals of Pure and Applied Logic, 52:143–153, 1991.

[20] J. Kraj́ıček, A. Skelley, and N. Thapen. NP search problems in low frag-
ments of bounded arithmetic. Journal of Symbolic Logic, 72(2):649–672,
2007.

[21] J. Kraj́ıček, P. Pudlák, and A. Woods. An exponential lower bound to the
size of bounded depth frege proofs of the pigeonhole principle. Random
Structures and Algorithms, 7(1):15–39, 1995.

[22] J. Kraj́ıček and G. Takeuti. On induction-free provability. Annals of Math-
ematics and Artificial Intelligence, 6:107–126, 1992.

[23] A. Maciel, T. Pitassi, and A. Woods. A new proof of the weak pigeonhole
principle. In Proceedings of the 32nd Annual ACM Symposium on Theory
of Computing, pages 368–377, 2000.

[24] C. Papadimitriou. On the complexity of the parity argument and other
inefficient proofs of existence. Journal of Computer and System Sciences,
48(3):498–532, 1994.

[25] J. Paris and A. Wilkie. Counting problems in bounded arithmetic. In Meth-
ods in Mathematical Logic, number 1130 in Lecture Notes in Mathematics,
pages 317–340. Springer, 1985.

[26] T. Pitassi, P. Beame, and R. Impagliazzo. Exponential lower bounds for
the pigeonhole principle. Computational complexity, 3:97–308, 1993.

[27] P. Pudlák. Fragments of bounded arithmetic and the lengths of proofs.
Preprint.

[28] P. Pudlák. A note on bounded arithmetic. Fundamenta Mathematicae,
136(2):86–89, 1990.

[29] P. Pudlák. Consistency and games - in search of new combinatorial princi-
ples. In V. Stoltenberg-Hansen and J. Väänänen, editors, Logic Colloquium
’03, number 24 in Lecture Notes in Logic, pages 244–281. ASL, 2006.

[30] A. Razborov. Pseudorandom generators hard for k-DNF resolution and
polynomial calculus resolution. Available at www.mi.ras.ru/~razborov/,
2003.

41



[31] N. Segerlind, S. Buss, and R. Impagliazzo. A switching lemma for small
restrictions and lower bounds for k-DNF resolution. SIAM Journal on
Computing, 33(5):1171–1200, 2004.

[32] A. Wilkie and J. Paris. On the scheme of induction for bounded arithmetic
formulas. Annals of Pure and Applied Logic, 35:261–302, 1987.

[33] D. Zambella. Notes on polynomially bounded arithmetic. Journal of Sym-
bolic Logic, 61(3):942–966, 1996.

42


