On the equivalence of ball conditions for simplicial finite elements in \mathbf{R}^{d}

Jan Brandts ${ }^{1}$, Sergey Korotov ${ }^{2, *}$, Michal Křížek ${ }^{3, \dagger}$

June 4, 2008

${ }^{1}$ Korteweg-de Vries Institute, University of Amsterdam
Plantage Muidergracht 24, 1018 TV Amsterdam, Netherlands
e-mail: brandts@science.uva.nl
${ }^{2}$ Institute of Mathematics, Helsinki University of Technology
P.O. Box 1100, FI-02015 TKK, Finland
e-mail: sergey.korotov@hut.fi
${ }^{3}$ Institute of Mathematics, Academy of Sciences
Žitná 25, CZ-115 67 Prague 1, Czech Republic
e-mail: krizek@math.cas.cz

Abstract

We prove that the inscribed and circumscribed ball conditions, commonly used in finite element analysis, are equivalent in any dimension.

Keywords: finite element method, inscribed ball, circumscribed ball, regular family of simplicial partitions, Cayley-Menger determinant

Mathematics Subject Classification: 65N12, 65N30
A simplex S in $\mathbf{R}^{d}, d \in\{1,2,3, \ldots\}$, is the convex hull of $d+1$ vertices $A_{1}, A_{2}, \ldots, A_{d+1}$ that do not belong to the same $(d-1)$-dimensional hyperplane. We denote by h_{S} the length of the longest edge of S. Let F_{i} be the facet of S opposite to A_{i} for $i \in\{1, \ldots, d+1\}$. Assume that $\bar{\Omega} \subset \mathbf{R}^{d}$ is a closed domain (i.e. the closure of a domain). If its boundary $\partial \bar{\Omega}$ is contained in a finite number of ($d-1$)-dimensional hyperplanes, we say that $\bar{\Omega}$ is polytopic.

Next we define a simplicial partition \mathcal{T}_{h} over a bounded closed domain $\bar{\Omega} \subset \mathbf{R}^{d}$ as follows. We subdivide $\bar{\Omega}$ into a finite number of simplices (called elements), so that their union is $\bar{\Omega}$, any two simplices have disjoint interiors and any facet of any simplex is a facet of another simplex from the partition or belongs to the boundary $\partial \bar{\Omega}$. The maximal diameter of all elements $S \in \mathcal{T}_{h}$ is the so-called discretization parameter h.

[^0]The set $\mathcal{F}=\left\{\mathcal{T}_{h}\right\}_{h \rightarrow 0}$ is called a family of partitions if for any $\varepsilon>0$ there exists $\mathcal{T}_{h} \in \mathcal{F}$ with $h<\varepsilon$.

In this paper we generalize recent results for triangular and tetrahedral elements (see [4]) to simplicial elements of arbitrary dimension. We were inspired by the paper [7], where the ball conditions were actually replaced by a simpler condition on the measure of every element to guarantee convergence of the finite element method. By meas ${ }_{d}$ we denote the d-dimensional measure. In what follows, all constants C_{i} are independent of S and h, but can depend on the dimension d.
Condition 1: There exists $C_{1}>0$ such that for any $\mathcal{T}_{h} \in \mathcal{F}$ and any $S \in \mathcal{T}_{h}$ we have

$$
\begin{equation*}
\text { meas }_{d} S \geq C_{1} h_{S}^{d} . \tag{1}
\end{equation*}
$$

Condition 2: There exists $C_{2}>0$ such that for any $\mathcal{T}_{h} \in \mathcal{F}$ and any $S \in \mathcal{T}_{h}$ we have

$$
\begin{equation*}
\operatorname{meas}_{d} b \geq C_{2} h_{S}^{d}, \tag{2}
\end{equation*}
$$

where $b \subset S$ is the inscribed ball of S.
Condition 3: There exists $C_{3}>0$ such that for any $\mathcal{T}_{h} \in \mathcal{F}$ and any $S \in \mathcal{T}_{h}$ we have

$$
\begin{equation*}
\operatorname{meas}_{d} S \geq C_{3} \text { meas }_{d} B, \tag{3}
\end{equation*}
$$

where $B \supset S$ is the circumscribed ball about S.
Throughout the paper, we denote by r and R the radii of the inscribed and circumscribed ball of S, respectively.
Lemma: For any simplex S and any $i \in\{1, \ldots, d+1\}$ we have

$$
\begin{equation*}
\text { meas }_{d} S \leq h_{S}^{d}, \quad \text { meas }_{d-1} F_{i} \leq h_{S}^{d-1} . \tag{4}
\end{equation*}
$$

Proof: Relations (4) follow from the fact that the distance between any two points of S is not larger than h_{S}. Thus, S and any of its facets F_{i} are contained in a hypercube of the corresponding dimension d or $d-1$ with edges of length h_{S}.
Theorem: Conditions 1, 2, and 3 are equivalent.
Proof:(1) $\Longrightarrow \mathbf{(2) : ~ L e t ~ o ~ b e ~ t h e ~ c e n t e r ~ o f ~ t h e ~ i n s c r i b e d ~ b a l l ~} b$ of S. We decompose S into $d+1$ subsimplices $S_{i}=$ conv $\left\{o, F_{i}\right\}, i \in\{1, \ldots, d+1\}$. All of them have the same altitude r with respect to the facet F_{i}. Using the formula

$$
\operatorname{meas}_{d} S_{i}=\frac{1}{d} r \text { meas }_{d-1} F_{i}
$$

for the volume of each subsimplex S_{i}, we find that

$$
r \sum_{i=1}^{d+1} \operatorname{meas}_{d-1} F_{i}=d \text { meas }_{d} S .
$$

Hence, by (4) and (1) we obtain

$$
r(d+1) h_{S}^{d-1} \geq d \text { meas }_{d} S \geq C_{1} d h_{S}^{d},
$$

which implies that

$$
r \geq \frac{C_{1} d}{d+1} h_{S}
$$

From this and the formula for the volume of a d-dimensional ball, we finally get

$$
\text { meas }_{d} b=C_{4} r^{d} \geq C_{2} h_{S}^{d},
$$

where

$$
\begin{equation*}
C_{4}=\frac{\pi^{d / 2}}{\Gamma\left(\frac{d}{2}+1\right)} \tag{5}
\end{equation*}
$$

$\mathbf{(2)} \Longrightarrow(3):$ By [2], [6], or [8, p. 125], the volume of S can be computed in terms of lengths of its edges using the so-called Cayley-Menger determinant of size $(d+2) \times(d+2)$

$$
D_{d}=(-1)^{d+1} 2^{d}(d!)^{2}\left(\text { meas }_{d} S\right)^{2}=\operatorname{det}\left[\begin{array}{cccccc}
0 & 1 & 1 & \cdots & 1 & 1 \tag{6}\\
1 & 0 & a_{12}^{2} & \cdots & a_{1 d}^{2} & a_{1, d+1}^{2} \\
1 & a_{21}^{2} & 0 & \cdots & a_{2 d}^{2} & a_{2, d+1}^{2} \\
\vdots & \vdots & \vdots & & \ddots & \vdots \\
1 & a_{d+1,1}^{2} & a_{d+1,2}^{2} & \cdots & a_{d+1, d}^{2} & 0
\end{array}\right],
$$

where $a_{i j}$ is the length of the edge $A_{i} A_{j}$ for $i \neq j$.
The radius of the circumscribed ball satisfies (see [1])

$$
\begin{equation*}
R^{2}=-\frac{1}{2} \frac{\Delta_{d}}{D_{d}} \tag{7}
\end{equation*}
$$

where

$$
\Delta_{d}=\operatorname{det}\left[\begin{array}{ccccc}
0 & a_{12}^{2} & \cdots & a_{1 d}^{2} & a_{1, d+1}^{2} \\
a_{21}^{2} & 0 & \cdots & a_{2 d}^{2} & a_{2, d+1}^{2} \\
\vdots & \vdots & & \ddots & \vdots \\
a_{d+1,1}^{2} & a_{d+1,2}^{2} & \cdots & a_{d+1, d}^{2} & 0
\end{array}\right] .
$$

From this, (7), (6), and (2) we find that

$$
R^{2}=\frac{1}{2}\left|\frac{\Delta_{d}}{D_{d}}\right|=\frac{\left|\Delta_{d}\right|}{2^{d+1}(d!)^{2}\left(\operatorname{meas}_{d} S\right)^{2}}<\frac{\left|\Delta_{d}\right|}{2^{d+1}(d!)^{2}\left(\operatorname{meas}_{d} b\right)^{2}} \leq \frac{C_{5} h_{S}^{2 d+2}}{2^{d+1}(d!)^{2} C_{2}^{2} h_{S}^{2 d}} .
$$

Thus, there exists $C_{6}>0$ such that for any S from any $\mathcal{T}_{h} \in \mathcal{F}$ we have

$$
\begin{equation*}
R \leq C_{6} h_{S} . \tag{8}
\end{equation*}
$$

Using (2) once again, (8), and (5), we immediately see that

$$
\begin{equation*}
\text { meas }_{d} S>\text { meas }_{d} b \geq C_{2} h_{S}^{d} \geq C_{2} \frac{R^{d}}{C_{6}^{d}}=\frac{C_{2}}{C_{6}^{d} C_{4}} \text { meas }_{d} B . \tag{9}
\end{equation*}
$$

$(3) \Longrightarrow(1):$ Since $B \supset S$, we obtain $2 R \geq h_{S}$. Hence, in view of (3) and (5) we observe that

$$
\begin{equation*}
\text { meas }_{d} S \geq C_{3} \text { meas }_{d} B=C_{3} C_{4} R^{d} \geq \frac{C_{3} C_{4}}{2^{d}} h_{S}^{d} \tag{10}
\end{equation*}
$$

which implies Condition 1.
Definition: A family of simplicial partitions is called regular if Condition 1 or 2 or 3 holds.
Remark 1: From (4) and (3) it follows that

$$
\text { meas }_{d} B \leq C_{3}^{-1} h_{S}^{d} .
$$

This condition is equivalent to (3) if (1) holds.
Remark 2: Formula (1) seems to be simpler than the ball conditions (2) and (3) from $[5,3]$ and therefore, it may be preferred in theoretical finite element analysis and also in computer implementations.

References

[1] Berger, M., Geometry, vol. 1, Springer-Verlag, Berlin, 1987.
[2] Blumenthal, L. M., Theory and Applications of Distance Geometry, Clarendon Press, Oxford, Chelsea, Publishing Co., New York, 1953, 1970.
[3] Brandts, J., Křížek, M., Gradient superconvergence on uniform simplicial partitions of polytopes, IMA J. Numer. Anal. 23 (2003), 489-505.
[4] Brandts, J., Korotov, S., Křížek, M., On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions, Comput. Math. Appl. 55 (2008), 2227-2233.
[5] Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
[6] Ivanoff, V. F., The circumradius of a simplex, Math. Magazine 43 (1970), 71-72.
[7] Lin, J., Lin Q., Global superconvergence of the mixed finite element methods for 2-d Maxwell equations, J. Comput. Math. 21 (2003), 637-646.
[8] Sommerville, D. M. Y., An Introduction to the Geometry of n Dimensions, Dover Publications, Inc., New York, 1958.

[^0]: * The second author was supported by the Academy Research Fellowship no. 208628 and project no. 124619 from the Academy of Finland.
 \dagger The third author was supported by the Grant IAA 100190803 of the Grant Agency of the Academy of Sciences of the Czech Republic and the Institutional Research Plan AV0Z 10190503.

