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Abstract We assume thatBt is a closed ball inR3
+ := {(x1,x2,x3) ∈ R3; x3 > 0},

striking the wall (= thex1,x2–plane) at timetc ∈ (0,T). The speed of the ball at the
instant of the collision need not be zero. Although a weak solution to the Navier–
Stokes equation with Dirichlet’s no–slip boundary condition in(R3

+rBt)× (0,T)
does not exist if the speed of the stroke is non–zero, we prove that such a solution
may exist if Dirichlet’s boundary condition is replaced by Navier’s slip boundary
condition.

1 Motivation, introduction and notation

The existence of a weak solution to the Navier–Stokes equation in a fixed domain
Ω ⊂ R3 on a given time interval(0,T) belongs to fundamental results of the qual-
itative theory of the Navier–Stokes equation. (See e.g. J. Leray 1934 [17], E. Hopf
1952 [15], O. A. Ladyzhenskaya 1969 [16], J. L. Lions 1969 [18], R. Temam 1977
[26] or G. P. Galdi 2000 [10].)

Of all results on the existence of the weak solution in domains with given moving
boundaries, we cite the papers by H. Fujita and N. Sauer 1970 [7] (the boundary of a
variable domainΩ t consists of a finite number of moving simple closed surfaces of
the classC3, the distance of any two of these surfaces is never less thand0 > 0) and
J. Neustupa 2007 [19] (Ω t has an arbitrary shape and smoothness, the assumptions
on Ω t involve simulation of collisions of bodies moving in a fluid).
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There exists a series of other works dealing with flows in time varying domains
that concern the motion of one or more bodies in a fluid. The fluid and the bodies are
studied as an interconnected system so that the position of the bodies in the fluid is
not apriori known. The weak solvability of such a problem, provided the bodies do
not touch each other or they do not strike the boundary, was proved by B. Desjardins
and M. J. Esteban 1999 [3], 2000 [4], K. H. Hoffmann V. N. Starovoitov 1999 [13]
(the 2D case), C. Conca, J. San Martı́n and M. Tucsnak 2000 [2] and M. D. Gun-
zburger, H. C. Lee, G. Seregin 2000 [12]. The analogous result, without the assump-
tion on the lack of collisions, was proved by J. San Martı́n, V. N. Starovoitov and
M. Tucsnak 2002 [20] (the 2D case), K. H. Hoffmann, V. N. Starovoitov 2000 [14]
(the motion of a “small” ball in a fluid filling a “large ball”) and E. Feireisl 2003
[6] (in a 3D bounded domain, the author uses the contact condition that once two
bodies touch one another, they remain stuck together forever).

All the mentioned authors consider the homogeneous Dirichlet boundary condi-
tion for velocity on the boundary ofΩ t . The motion of the so called “self–propelled
bodies” (which produce certain velocity profile on their surface), together with the
motion of the fluid around them, was studied except others by G. P. Galdi, see the
survey paper [11].

None of the mentioned papers provides the existence of a weak solution to the
Navier–Stokes equation at the geometrical configuration when the fluid fills a do-
mainΩ t around a solid ball striking a wall with a finite non–zero speed. Moreover,
it follows from results of V. N. Starovoitov 2003 [21] that the weak solution with
the no–slip Dirichlet boundary condition in such a situation cannot exist. Paper [19],
where the no–slip boundary condition is also considered, provides the weak solution
only if the ball strikes the wall with the speed that tends to zero as time approaches
the instant of the collision. (With a non–zero speed, the body must have another
shape than the ball, see [19].)

This state motivated us to study the Navier–Stokes equation in the described
domainΩ t with boundary conditions that enable the fluid to slip on the boundary.
We assume that the motion of the ball is given. We use Navier’s boundary condition
and we prove the global in time existence of a weak solution under the restriction
that the speed of the ball is “sufficiently small” at times close to the instant of the
collision – see Theorem 1. The considered case of a ball moving in a fluid and
striking perpendicularly the wall represents a sample example. We actually prepare
a generalization concerning flow around moving bodies of various shapes which
may collide one with another. Nevertheless, the basic techniques is developed in the
present paper. It is based on the construction of Rothe approximations.

A series of steps require a different approach than in the case of homogeneous
Dirichlet’s boundary condition. For instance, Sobolev’s imbedding inequalities can-
not be used in a standard fashion because the constants in these inequalities now de-
pend on time. Other difficulties appear in the part where we treat the limit transition
in the nonlinear term and we therefore need an information on a strong convergence
of a sequence of approximations in an appropriate norm. (The argument based on
the Lions–Aubin lemma cannot be used in a usual way – see Section 6.)
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The time–variable domainΩ t . We suppose that(0,T) is a bounded time interval
andtc ∈ (0,T). We denote byR3

+ the half–space{x = (x1,x2,x3) ∈ R3; x3 > 0}, by
R+

3 the closure ofR3
+ and by∂R3

+ the boundary ofR3
+ (= thex1, x2–plane).

Further, we denote byBt the closed ball inR+
3 with radiusR and centerSt =

(0, 0, δ t + R). We suppose thatδ t (the distance of the ballBt from ∂R3
+) is a con-

tinuous function oft for t ∈ [0,T] such thatδ tc = 0 and

(i) δ t is decreasing on[0, tc] and increasing on[tc,T],

(ii) δ̇ t (the derivative ofδ t ) is bounded on the intervals[0, tc) and(tc,T],

(iii) δ̈ t (the second derivative ofδ t ) is integrable on(0,T).

We putΩ t := R3
+rBt . The boundary ofΩ t is denoted byΓ t . Ω t represents the

space filled by the fluid andBt represents a solid ball which moves in the fluid and
strikes the fixed wall∂R3

+ at timet = tc. We assume, for simplicity, that ballBt does
not rotate and all its particles have only the translational velocity. Thus, the velocity
of the “material points” on the boundaryΓ t of Ω t is

Vt(x) :=

{
(0,0, δ̇ t) for t 6= tc andx ∈ ∂Bt ,

0 for t 6= tc andx ∈ ∂R3
+.

Notation of norms and function spaces.

• ( . , .)2;Ω t is the scalar product and‖ .‖2;Ω t is the norm inL2(Ω t) or in L2(Ω t)3

or in L2(Ω t)9, respectively. The meaning of( . , .)2;Γ t and‖ .‖2;Γ t is analogous.

• ‖ .‖q;Ω t is the norm inLq(Ω t) or in Lq(Ω t)3 or in Lq(Ω t)9, respectively.
• C∞

σ (Ω t) is the space of infinitely differentiable divergence–free vector–functions
in Ω t

with a compact support inΩ t
and zero normal component onΓ t .

• W1,2
σ (Ω t) is the closure ofC∞

σ (Ω t) in W1,2(Ω t)3.
• C∞

0,σ (Ω t) is a subspace ofC∞
σ (Ω t), containing functions with a compact support

in Ω t .
• Lq

σ (Ω t) is the closure ofC∞
0,σ (Ω t) in Lq(Ω t)3 (for 1≤ q<+∞).

If t ∈ (0,T)r {tc} thenW1,2
σ (Ω t) ↪→ Lq(Ω t)3 for 2 ≤ q ≤ 6. Using the charac-

terization ofLq
σ (Ω t) (see [8, p. 111]), we can verify thatW1,2

σ (Ω t) ↪→ Lq
σ (Ω t).

The initial–boundary value problem. PutQ(0,T) :=
{

(x, t); 0< t < T, x ∈ Ω t
}

andΓ(0,T) :=
{

(x, t); 0< t < T, x ∈ Γ t
}

.

Our aim is to prove the existence of a weak solution of the problem

∂tv+v ·∇v+ ∇p = ν∆v+ f in Q(0,T), (1)

divv = 0 in Q(0,T), (2)

v ·n = Vt ·n in Γ(0,T), (3)

[Td(v) ·n]τ +K (v−Vt) = 0 in Γ(0,T), (4)

v = v0 in Ω 0×{0}. (5)
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The equations (1), (2) describe the motion of a viscous incompressible fluid in do-
main Ω t . The symbolsv, p, ν , f, n andTd(v) successively denote the velocity of
the fluid, the pressure, the kinematic coefficient of viscosity, the specific external
body force, the outer normal vector on the boundary ofΩ t and the dynamic stress
tensor associated with the flowv. The density of the fluid is supposed to be one.
The subscriptτ denotes the tangential component toΓ t . Since the considered fluid
is Newtonian, the dynamic stress tensor has the formTd(v) = 2ν (∇v)s where(∇v)s

is the symmetrized gradient ofv. Condition (3) expresses the impermeability ofΓ t .
Condition (4) is due to H. Navier, who proposed in 1824 that the tangential compo-
nent of the stress acting on the boundary should be proportional to the velocity of
the fluid (relative with respect to the material boundary). We suppose (in accordance
with physical arguments) thatK ≥ 0.

Introduction of function a t . In order to transform the inhomogeneous boundary
condition (3) to the homogeneous one, we look for the solutionv in the formv =
at +u whereat is considered to be a known function satisfying the condition

at ·n = Vt ·n a.e. inΓ(0,T) (6)

andu is a new unknown function. The construction of an appropriate functionat is
presented in Section 2. We shall see that functionat can be defined a.e. inR3

+× [0,T]
so that it is divergence–free and, in addition to the condition (6), it also satisfies the
series of estimates

‖∇at‖22;Ω t ≤ c1 (δ̇ t)2 ln
(

1+
R
δ t

)
, (7)∣∣(∂ta

t , φ
)

2;Ω t

∣∣ ≤ c2 (δ̇ t)2‖∇φ‖2;Ω t +c3 |δ̈
t |‖φ‖2;Ω t , (8)∣∣(at ·∇at , φ

)
2;Ω t

∣∣ ≤ c4 (δ̇ t)2‖∇φ‖2;Ω t , (9)

‖at‖5;Ω t ≤ c5
|δ̇ t |

(δ t)1/10
, (10)∣∣(φ ·∇at , φ

)
2;Ω t

∣∣ ≤ c6 |δ̇ t |‖∇φ‖22;Ω t , (11)

K
∣∣(at −Vt , φ

)
2;Γ t

∣∣ ≤ 1
16ν ‖∇φ‖22;Ω t +c7 (12)

for t 6= tc, all φ ∈W1,2
σ (Ω t), with constantsc1–c7 which are independent ofφ andt.

Obviously, the right hand side of (7) is integrable on(0,T) with any powerα ≥ 0
and the right hand side of (10) is integrable on(0,T) with any powerα ∈ [1,10).

Using the continuous imbeddingL6(Ω t) ↪→W1,2(Ω t), we can also derive the
estimate ∣∣(φ ·∇at , φ

)
2;Ω t

∣∣ ≤ ‖∇at‖2;Ω t ‖φ‖1/22;Ω t ‖φ‖3/26;Ω t

≤ c8a(t)‖φ‖22;Ω t + 1
16ν ‖∇φ‖22;Ω t (13)
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wherea(t) := ‖∇at‖2;Ω t + ‖∇at‖42;Ω t . Inequality (13) holds at timest 6= tc when

domainΩ t has the cone property andW1,2(Ω t)3 is therefore continuously imbedded
into L6(Ω t)3. Constantc8 depends onν and it also generally depends ont through
the cone parameters appearing in the definition of the cone property ofΩ t , see
e.g. [1, p. 103]. However, if we use (13) only at timest such that|t− tc| > κ0 then
c8, although dependent onκ0, can be considered to be independent oft. The value
of κ0 will be fixed by condition (iv) in Theorem 1.

We shall also see in Section 2 that the initial–value problem

d
dt

X(t; t0,x0) = at(X(t; t0,x0)
)
, X(t0; t0,x0) = x0 (14)

has a unique solutionX(t; t0,x0), defined for a.a.t0 ∈ (0,T), all t ∈ [0,T] and all
x0 ∈ R3

+. The mappingx0 7→ X(t; t0,x0) is a 1–1 transformation ofΩ t0r `t0 onto
Ω t
r `t (where`t0 and`t are certain sets of measure zero), whose Jacobian equals

one due to the incompressibility of the flowat . This mapping can be used in order
to transform volume integrals onΩ t0 to volume integrals onΩ t .

2 A formal study of the initial–boundary value problem (1)–(5)
and the main theorem

A formal derivation of the weak formulation. The weak formulation of the prob-
lem (1)–(5) can be formally derived from the classical formulation if we multiply
equation (1) by an appropriate test functionφ , integrate inQ(0,T) and use all the
conditions (2)–(5). Thus, assume thatφ is an infinitely differentiable divergence–
free vector–function inR+

3× [0,T] that has a compact support inR+
3× [0,T) and

satisfies the conditionφ ·n = 0 onΓ(0,T). Assume thatv is a “sufficiently smooth”

solution of (1)–(5) of the formv = at + u whereat has all the properties named
in the last paragraph of Section 1 andu ∈ L2

σ (Ω t) for a.a.t ∈ (0,T). The product
{∂tv+(vt ·∇)v}·φ equals the sum of{∂tv+(at ·∇)v}·φ andu ·∇v ·φ . The integral
of the first term can be treated as follows:∫ T

0

∫
Ω t

{
∂tv(x, t)+at(x) ·∇v(x, t)

}
·φ(x, t) dxdt +

∫
Ω0

v0(x0) ·φ(x0,0) dx0

=
∫ T

0

∫
Ω0

d
dt

v
(
X(t; 0,x0), t

)
·φ
(
X(t; 0,x0), t

)
dx0dt +

∫
Ω0

v0(x0) ·φ(x0,0) dx0

= −
∫ T

0

∫
Ω t

{
∂tφ(x, t)+at(x) ·∇φ(x, t)

}
·v(x, t) dxdt. (15)

The integral ofu ·∇v ·φ in Ω t can be transformed to the negative integral ofu ·∇φ ·v
by means of the integration by parts. Further, we have∫

Ω t
ν∆v ·φ dx =

∫
Ω t

ν∆at ·φ dx+
∫

Γ t
ν

∂u
∂n
·φ dS−

∫
Ω t

ν ∇u : ∇φ dx
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=
∫

Γ t
ν
[
2n · (∇u)s−n ·∇u

]
·φ dS+

∫
Ω t

[
ν∆at ·φ −ν ∇u : ∇φ

]
dx

=
∫

Γ t
n · [2ν (∇v)s−2ν (∇at)s] ·φ dS+

∫
Ω t

[
ν∆at ·φ −2ν (∇u)s : ∇φ

]
dx

= −
∫

Γ t
K (v−Vt) ·φ dS−

∫
Ω t

2ν (∇v)s : ∇φ dx. (16)

We have used the identities∫
Γ t

n ·2ν (∇v)s ·φ dS =
∫

Γ t
[n ·Td(v)]τ ·φ dS = −

∫
Γ t

K (v−Vt) ·φ dS,∫
Γ t

n ·∇u ·φ dS =
∫

Ω t
(∇u)T : ∇φ dx,∫

Ω t
ν∆at ·φ dx =

∫
Γ t

2ν n · (∇at)s ·φ dS−
∫

Ω t
2ν (∇at)s : ∇φ dx,

the first of whose follows from (4). The integral of∇p·φ onΩ t equals zero because
the subspace of gradients of scalar functions is orthogonal toL2

σ (Ω t) in L2(Ω t)3.
Thus, using (15) and (16), we obtain the integral identity∫ T

0

∫
Ω t

{
−v ·∂tφ −v ·∇φ ·v+2ν (∇v)s : ∇φ

}
dxdt +

∫ T

0

∫
Γ t

K (v−Vt) ·φ dSdt

=
∫ T

0

∫
Ω t

f ·φ dxdt +
∫

Ω0
v0 ·φ(. ,0) dx.

Replacingv by the sumat +u, we arrive at the definition:

Definition (the weak solution of (1)–(5)).Suppose thatu0 ∈ L2
σ (Ω0) and f ∈

L2(0,T; L2(Ω t)3). The functionv ≡ at + u is called aweak solutionof the prob-
lem (1)–(5) if u ∈ L2(0,T; W1,2

σ (Ω t))∩L∞(0,T; L2
σ (Ω t)) satisfies∫ T

0

∫
Ω t

{
−(at +u) ·∂tφ − (at +u) ·∇φ · (at +u)+2ν [∇(at +u)]s : ∇φ

}
dxdt

+
∫ T

0

∫
Γ t

K (at +u−Vt) ·φ dSdt =
∫ T

0

∫
Ω t

f ·φ dxdt +
∫

Ω0
[a0 +u0] ·φ(. ,0)dx

(17)

for all divergence–free vector–functionsφ ∈C∞
0

(
R+

3× [0,T)
)
, that satisfy the con-

dition φ ·n = 0 onΓ(0,T).

The readers can verify that this definition enables us the “backward calculation”,
i.e. to show that if the weak solutionv is “sufficiently smooth” and all other input
data are also “sufficiently smooth” then there exists a pressurep so that the pairv,
p is a classical solution of (1)–(5).

We shall refer to the problem defined above as to the weak problem (17).

A formal derivation of the energy inequality. The energy inequality is a funda-
mental apriori estimate of a solution of the problem (1)–(5). An analogous estimate
can be rigorously derived for appropriate approximations of the solution. However,
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in order to abstract from technical details connected with the approximations and
to explain how we use the boundary conditions and apply estimates (7)–(13), we
include the formal derivation of the energy inequality already in this section.

Lemma 1. Suppose that

(iv) there existsκ0 > 0 so that c6 |δ̇ t |< 1
4 ν for tc−κ0 < t < tc + κ0.

(Recall that c6 is the constant from inequality (1.11).) Then there exist non–negative
integrable functionsω and G on(0,T) such that if(v, p)≡ (at + u, p) is a smooth
solution of the initial–boundary value problem (1)–(5) and t∈ (0,T) then

‖u(. , t)‖22;Ω t + ν
∫ t

0
‖∇u(. ,s)‖22;Ωs ds+2K

∫ t

0
‖u(. ,s)‖22;Γ s ds

≤ ‖u0‖
2
2;Ω0 +

∫ t

0
ω(s)‖u(. ,s)‖22;Ωs ds+G(t). (18)

Proof. Assume thatt 6= tc, multiply equation (1) (wherev = at + u) by u and inte-
grate inΩ t . We obtain∫

Ω t

{
[∂t(a

t +u)+at ·∇(at +u)] ·u+u ·∇at ·u−ν∆v ·u
}

dx =
∫

Ω t
f ·u dx. (19)

Now we estimate or rewrite the terms in (19):

• Following (16), we have

−ν
∫

Ω t
∆v ·u dx = K

∫
Γ t
|u|2dS+K

∫
Γ t

(at −Vt) ·u dS+ ν
∫

Γ t
n ·∇u ·u dS

+ ν
∫

Ω t
|∇u|2dx+2ν

∫
Ω t

(∇at)s : ∇u dx.

• Using the identity∇(u · n) · u = 0 (valid a.e. onΓ t ) and the negative semi–
definiteness of the tensor∇n a.e. onΓ t (following from the special geometry
of Ω t ), we observe that

∫
Γ t n ·∇u ·u dS≥ 0. Therefore, using (12), we get∫

Γ t
n ·∇u ·u dS+K

∫
Γ t

(at −Vt) ·u dS ≥ − 1
16ν ‖∇u‖22;Ω t −c7,

−ν
∫

Ω t
∆v ·u dx ≥ K ‖u‖22;Γ t + 14

16ν
∫

Ω t
|∇u|2dx−16ν

∫
Ω t
|∇at |2dx−c7. (20)

• Due to (8) and (9), we obtain (withc9 = [8(c2
2 +c2

4)/ν ] ·esssup(δ̇ t)4)∣∣∣∣∫Ω t
[∂ta

t +at ·∇at ] ·u dx

∣∣∣∣ ≤ c3 |δ̈
t | ‖u‖22;Ω t + 1

4 c3 |δ̈
t |+ 1

16ν ‖∇u‖22;Ω t +c9.

• Using the transformationx 7→ y = X(t + h; t,x) of Ω t
r `t ontoΩ t+h

r `t+h, we
can rewrite the next integral as follows:
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[
∂tu+at ·∇u

]
·u dx =

[∫
Ω t

d
dϑ

1
2

∣∣u(X(ϑ ; t,x),ϑ
)∣∣2dx

]
ϑ=t

= lim
h→0

1
2h

[∫
Ω t

(∣∣u(X(t +h; t,x), t +h
)∣∣2− ∣∣u(X(t; t,x), t

)∣∣2) dx
]

= lim
h→0

1
2h

[∫
Ω t+h
|u(y, t +h)|2dy−

∫
Ω t
|u(x, t)|2dx

]
=

d
dt

1
2

∫
Ω t
|u|2dx.

• Now, due to the inequalities (11) and (13) and denoting byχ0 the characteristic
function of the interval(tc−κ0, tc + κ0), we can estimate∣∣∣∣∫Ω t

u ·∇at ·u dx

∣∣∣∣ ≤ c6 χ0(t) |δ̇ t | ‖∇u‖22;Ω t + 1
16ν ‖∇u‖22;Ω t +c8a(t)‖u‖22;Ω t .

• Finally, by means of condition (iv) of the smallness of|δ̇ t | on the interval
(tc − κ0, tc + κ0), the termc6 χ0(t) |δ̇ t | ‖∇u‖22;Ω t can also be absorbed by
14
16ν ‖∇u‖22;Ω t (see (20)).

• Substituting now all previous estimates or identities to (19), using inequality (7)
and denotingω(t) = 2c3 |δ̈ t |+2c8a(t)+1, we obtain

d
dt
‖u‖22;Ω t + ν ‖∇u‖22;Ω t +2K ‖u‖22;Γ t ≤ ‖f‖22;Ω t + ω(t)‖u‖22;Ω t

+ 1
2c3 |δ̈

t |+16c1 (δ̇ t)2 ln
(

1+
R
δ t

)
+c7 +c9.

To complete the proof, we integrate this inequality on the time interval(0, t). �

Our main theorem, whose proof is given in Sections 4–6, reads:

Theorem 1.Suppose that functionδ t satisfies conditions (i)–(iii) and also the con-
dition of smallness (iv). Then the weak problem (17) has a solution.

3 Construction of the auxiliary function at and its properties

The purpose of this section is to define a divergence–free functionat in R3
+× [0,T]

which has the properties named and used in Section 1: identity (6), essentially
at ·n = (0,0, δ̇ t) ·n in ∂Bt for t 6= tc, and inequalities (7)–(13).

Except for the Cartesian coordinatesx1, x2, x3, we shall also use the cylindrical
coordinatesr, ϕ and x3. Thus,r2 = x2

1 + x2
2. The lower half of the surface ofBt

coincides with the graph of the function

x3 = gt(r) := δ t +R−
√

R2− r2; 0≤ r ≤ R.

Domains Ω t(r0), Ωext and Ωint. Let us fix r0 := 3
4 R. The crucial sub–domain of

Ω t , where the collision occurs, is (see Fig. 1)
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Ω t(r0) :=
{

x = (r,ϕ,x3) ∈Ω t ; r < r0, x3 < gt(r)
}
. (21)

We also denote byΩext the set of pointsx = (r,ϕ,x3) ∈R3
+ such that eitherr > 21

20R
or x3 >max{δ 0;δ T}. The complementary setΩint is defined asR3

+rΩ ext.
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6x3

r
O≡ (0,0,0)

Ω t(r0)r
r = r0

r
Bt

St

x1, x2-

� R

6

?

δ t

?
6R−

√
R2− r2

0

x3 = gt(r)

Ωext Ωint

Fig. 1: Ω t

An auxiliary function b t . Suppose thatt ∈ (0,T)r{tc}. We define

β t = (β t
r ,β

t
ϕ ,β

t
3) :=

(
0,

rx3

2gt(r)
, 0
)

δ̇ t ,

bt = (bt
r ,b

t
ϕ ,b

t
3) := curl β t =

(
− r

2gt(r)
, 0, −

x3r ∂rgt(r)
2gt(r)2 +

x3

gt(r)

)
δ̇ t (22)

in the cylinderr < r0, 0< x3 < δ t + R. The derivative ofgt(r) with respect tor
is ∂rgt(r) = r/

√
R2− r2. The functionbt is divergence–free and it satisfies the

conditions of impermeability,bt ·n =−bt
3 = 0 for x3 = 0, and forx3 = gt(r),

bt ·n =
(
− r

2gt(r)
, 0, − r ∂rgt(r)

2gt(r)
+1
)

δ̇ t ·
(
−∂rgt(r), 0, 1

)√
[gt(r)]2 +1

= (0, 0, δ̇ t) ·n

Thus,bt ·n = Vt ·n on the lower and upper parts of the boundary ofΩ t(r0).

Two auxiliary cut–off functions. We shall use two cut–off functions:η1 is an
infinitely differentiable cut–off function of one variable such that

η1(s) :=


1 for s< R,

0 for 21
20R< s,

∈ [0,1] for R≤ s≤ 21
20R
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andη t
2 is an infinitely differentiable cut–off function inR+

3 whose support is a subset
of {x = (r,ϕ,x3); r ≤ r0, x3≤ δ t +R} andη t

2(x) = 1 for r < 1
2Rand 0≤ x3< gt(r).

Let eϕ denote the unit vector in the direction ofϕ. Then curl
[

1
2r δ̇ t eϕ

]
=

(0,0, δ̇ t). Furthermore,curl
[
η1

(
|x−St |

)
1
2r δ̇ t eϕ

]
coincides with(0,0, δ̇ t) in Bt and

it equals zero if|x−St |> 21
20R.

Definition of function at . We put

at(x) := curl
[
η t

2(x)β t(x)+
[
1−η t

2(x)
]

η1(|x−St |) 1
2r δ̇ t eϕ

]
. (23)

Then, in the important regions,

at(x) =


bt(x) for x ∈Ω t(r1) with r1 := 1

2 R= 2
3 r0,

(0,0, δ̇ t) for x ∈ Bt
+ :=

{
x ∈ R3

+; |x−St | ≤ R, x3 > R+ δ t
}
,

0 for x ∈Ωext.

Obviously,at is divergence–free and satisfies the identity (6). It can be proved
all the estimates (7)–(13) named in Section 1: Sinceat is smooth outside the critical
regionΩ t(r1), where the collision of the ballBt with the x1,x2–plane occurs, and
at = 0 in Ωext, we can focus only on the behavior ofat in Ω t(r1), whereat = bt .

Using the explicit form ofbt , given by (22), one can show thatbt indeed satisfies
the same estimates as (7)–(13). We only have to consider the norms or scalar prod-
ucts inΩ t(r1) instead ofΩ t on the left hand sides of (7)–(11). Similarly,bt satisfies
an estimate analogous to (12) withΓ t ∩∂Ω t(r1) instead ofΓ t .

We verify only two of the estimates in the rest of this section.

An estimate of
∣∣(φ ·∇bt , φ

)
2;Ω t (r1)

∣∣ with φ ∈W1,2
σ (Ω t). We consider this estimate

to be crucial, because although domainΩ t(r1) is time–dependent, it provides an
estimate with constantC independent oft.

Let us begin with the integral of(∂rbt
r)φ2

r , where we can easily check that
|∂rbt

r | =
∣∣∂r
(
r δ̇ t/2gt(r)

)∣∣ ≤ C|δ̇ t |/gt(r). We put φ̃r(r,x3) :=
∫ 2π

0 φr(r,ϕ,x3)dϕ.
Since the flowφ is incompressible and it also satisfies the condition of imperme-
ability φ ·n = 0 onΓ t , we have∫ gt (r)

0
φ̃r dx3 =

∫ gt (r)

0

∫ 2π

0
φr dϕ dx3 =

∫
∂Ω t (r)

φ ·ndS=
∫

Ω t (r)
divφ dx = 0 (24)

(where 0< r ≤ r1). This implies that to eachr ∈ (0, r1) there existsx3(r) between
0 andgt(r) such thatφ̃r(r,x3(r)) = 0. Using also the inequalityr2 ≤ 2Rgt(r) and
applying Poincaŕe’s inequality (see e.g. [5, R. Dautray and J. L. Lions, p. 127]) to
the integral

∫ 2π
0 φ2

r dϕ, we obtain∣∣∣∣∫Ω t (r1)
(∂rb

t
r)φ2

r dx

∣∣∣∣ ≤ C|δ̇ t |
∫ r1

0

r dr
gt(r)

∫ gt (r)

0
dx3

(∫ 2π

0
φ2

r dϕ
)
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≤ C|δ̇ t |
∫ r1

0

r dr
gt(r)

∫ gt (r)

0
dx3

(
4π
∫ 2π

0
(∂ϕ φr)2dϕ +

1
2π

[∫ 2π

0
φr dϕ

]2)
= C|δ̇ t |

∫ r1

0

r dr
gt(r)

∫ gt (r)

0
dx3

∫ 2π

0
(∂ϕ φr)2dϕ +C|δ̇ t |

∫ r1

0

r dr
gt(r)

∫ gt (r)

0
|φ̃r |2dx3

≤ C|δ̇ t |
∫ r1

0

r3 dr
gt(r)

∫ gt (r)

0
dx3

∫ 2π

0

1
r2

[
∂ϕ φr(r,ϕ,x3)

]2
dϕ

+ C|δ̇ t |
∫ r1

0

r dr
gt(r)

∫ gt (r)

0

[∫ x3

x3(r)
∂yφ̃r(r,y)dy

]2

dx3

≤ C|δ̇ t |
∫ r1

0
r dr

∫ gt (r)

0
dx3

∫ 2π

0

1
r2

[
∂ϕ φr(r,ϕ,x3)

]2
dϕ

+ C|δ̇ t |
∫ r1

0
gt(r) r dr

∫ gt (r)

0

∣∣∂x3
φ̃r(r,x3)

∣∣2dx3 ≤ C|δ̇ t |
∫

Ω t (r1)
|∇φr |2dx.

The generic constantC is always independent oft. The integrals of(∂3bt
3)φ2

3 and
(∂rbt

3)φr φ3 can be treated similarly. (Here we can use the identityφ3(r,ϕ,0) = 0.)
Thus, we finally estimate the modulus of

(
φ ·∇bt , φ

)
2;Ω t (r1) byC|δ̇ t | ‖∇φ‖22;Ω t (r1) .

An estimate of the surface integral of(bt −Vt) · φ . We estimate the product
(bt −Vt) · φ on the “lower part”Γ t

0 (r1) := {x = (r,ϕ,x3) ∈ Γ t ; r < r1, x3 = 0}
and on the “upper part”Γ t

1 (r1) := {x = (r,ϕ,x3) ∈ Γ t ; r < r1, x3 = gt(r)} of Γ t ∩
∂Ω t(r1). Using the explicit forms ofbt −Vt on Γ t

0 (r1) andΓ t
1 (r1) and the identity

φ3 = ∂rgt(r)φr onΓ t
1 (r1) (following from the conditionφ ·n = 0), we get∣∣∣∣∫Γ t

0 (r1)
(bt −Vt) ·φ dS+

∫
Γ t

1 (r1)
(bt −Vt) ·φ dS

∣∣∣∣
=
∣∣∣∣ δ̇ t

2

∫ r1

0

∫ 2π

0

[ r2

gt(r)
φr(r,ϕ,0)+

r2

gt(r)

(
1+
[
∂rg

t(r)
]2)φr

(
r,ϕ,gt(r)

)]
dϕ dr

∣∣∣∣
=
∣∣∣∣ δ̇ t

2

∫ r1

0

[ r2

gt(r)
φ̃r(r,0)+

r2

gt(r)

(
1+
[
∂rg

t(r)
]2) φ̃r

(
r,gt(r)

)]
dr

∣∣∣∣
≤ C

∣∣∣∣∫ r1

0

r2

gt(r)

(∫ 0

x3(r)
∂σ φ̃r(r,σ) dσ

)
dr

∣∣∣∣
+ C

∣∣∣∣∫ r1

0

r2

gt(r)

(
1+
[
∂rg

t(r)
]2)(∫ gt (r)

x3(r)
∂σ φ̃r(r,σ) dσ

)
dr

∣∣∣∣
≤
∣∣∣∣∫ r1

0
r
∫ gt (r)

0

(
ε
∣∣∂x3

φ̃r(r,x3)
∣∣2 +C(ε)

)
dx3 dr

∣∣∣∣.
The generic constant againC does not depend ont. Choosing sufficiently small
ε > 0, we obtain an inequality that further enables us to arrive at (12).

The initial–value problem (14).Suppose thatt0 ∈ [0,T] andx0 ∈Ω t0r l t0 (where
l t0 is the open line segment inΩ t0 with the end points(0,0,0) and(0,0,δ t0)). Then
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the initial–value problem (14) has a unique solutionX(t; t0,x0) defined fort ∈ [0,T]
by the Carath́eodory theorem. The trajectory of the solution stays inΩ t

r `t (where
`t is defined by analogy with̀t0) due to the conditionat · n = Vt · n satisfied by
functionat onΓ t . The mappingx0 7→ X(t; t0,x0) is a 1–1 regular mapping ofΩ t0r

`t0 ontoΩ t
r`t , whose Jacobian equals one. Note that ifx0∈Ωext thenX(t; t0,x0) =

x0 independently oft andt0 becauseat(x0, t) = 0 for all 0≤ t ≤ T.

4 The time discretized boundary value problems

The time–discretization. Let n∈N andk∈ {0; 1; . . . ; n}. We put h := T/n, tk :=
kh, Ωk := Ω tk and Γk := Γ tk. We can assume without loss of generality that the
critical timetc of the collision differs from all the time instantstk.

The stationary boundary value problems. We put U0 := u0. We successively
solve, fork = 1, . . . ,n, a sequence of these stationary boundary value problems:
givenUk−1 ∈ L2

σ (Ωk−1) andfk ∈ L2(Ωk)
3, we look forUk, Pk such that

Uk(x)−Uk−1

(
X(tk−1; tk,x)

)
+hUk(x) ·

{
[∇a]k(x)+ ∇Uk(x)

}
+h∇Pk(x)

= ν h
{

Div [∇a]k(x)+ ∆Uk(x)
}

+Ak(x)+hfk(x) in Ωk, (25)

divUk(x) = 0 in Ωk, (26)

Uk ·n = 0 in Γk, (27)[
(Td)k ·n

]
τ +K (ak +Uk−Vk) = 0 in Γk, (28)

The meaning of the functionsAk, [∇a]k, fk, ak, Vk and(Td)k is explained below:

Ak(x) := −atk(x)+atk−1
(
X(tk−1; tk,x)

)
= −

∫ tk

tk−1

d
dt

at(X(t; tk,x)
)

dt,

[∇a]k(x) :=
1
h

∫ tk

tk−1

∇at(x) dt, fk(x) :=
1
h

∫ tk

tk−1

f(x, t) dt

for x ∈ Ωk and(Td)k := 2ν
{

[∇a]k + ∇Uk

}
s on Γk. Denoting bye3 the unit vector

(0,0,1), we define forx ∈ Γ s andt, s∈ [0,T] (such thats≤ t)

Y(t; s,x) :=

{
x+
(
δ t −δ s)e3 if x ∈ ∂Bs,

x if x ∈ thex1,x2–plane.
(29)

The mappingx 7→ Y(t; s,x) represents the shift of the “material point”x on the
boundary of the flow field in the time interval[s, t]. Now we denote forx ∈ Γk

ak(x) :=
1
h

∫ tk

tk−1

at(Y(t; tk,x)
)

dt, Vk(x) :=
1
h

∫ tk

tk−1

Vt(Y(t; tk,x)
)

dt.
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Note that the termat ·∇u, which appears in equation (1) if we writev in the form
v = at +u, is now related to the difference at the beginning of (25):

Uk(x)−Uk−1

(
X(tk−1; tk,x)

)
=
∫ tk

tk−1

∇Uk

(
X(t; tk,x)

)
·at(X(t; tk,x)

)
dt.

The weak formulation of the BV problem (25)–(28). We can get rid of pressure
Pk in the classical formulation (25)–(28) if we formally multiply equation (25) by a
test functionΦk from W1,2

σ (Ωk). Furthermore, we integrate by parts in the “viscous
term” and we use the boundary conditions (27) and (28) in the same way as the
conditions (3) and (4) were used in (16). Thus, we arrive at the weak formulation:
we look forUk ∈W1,2

σ (Ωk) such that∫
Ωk

{
Uk(x)−Uk−1

(
X(tk−1; tk,x)

)
+hUk(x) ·

{
[∇a]k(x)+ ∇Uk(x)

}}
·Φk(x) dx

+
∫

Ωk

2ν h
{

[∇a]k(x)+ ∇Uk(x)
}

s : ∇Φk(x) dx

+
∫

Γk

Kh
[
ak(x)+Uk(x)−Vk(x)

]
·Φk(x) dS

=
∫

Ωk

hfk(x) ·Φk(x) dx+
∫

Ωk

Ak(x) ·Φk(x) dx (30)

for all Φk ∈W1,2
σ (Ωk). The solvability of this nonlinear elliptic problem can be

proved by standard methods, particularly of theory of the steady Navier–Stokes
equation. We refer e.g. to the book [9] by G. P. Galdi for the corresponding tech-
niques. The coerciveness of an associated quadratic form follows from the next es-
timates.

Apriori estimates of solutions of the BV problem (30). UsingΦk = Uk in (30),
we obtain:

1
2
‖Uk‖

2
2;Ωk

+
1
2

∫
Ωk

∣∣Uk(x)−Uk−1

(
X(tk−1; tkx)

)∣∣2dx+ ν h
∫

Ωk

(∇Uk)s : ∇Uk dx

+
∫

Γk

Kh|Uk|
2 dS ≤ 1

2
‖Uk−1‖

2
2;Ωk−1

+
∣∣∣∣h∫Ωk

fk ·Uk dx

∣∣∣∣+ ∣∣∣∣∫Ωk

Ak ·Uk dx

∣∣∣∣
+
∣∣∣∣h∫Ωk

Uk · [∇a]k ·Uk dx

∣∣∣∣+ ∣∣∣∣ν h
∫

Ωk

(
[∇a]k

)
s : ∇Uk dx

∣∣∣∣+ ∣∣∣∣∫Γk

K (ak−Vk) ·Uk dS

∣∣∣∣.
The integral of(∇Uk)s : ∇Uk can be estimated from below by12 ‖∇Uk‖

2
2;Ωk

by

means of the integration by parts, the identity∇(n ·Uk) ·Uk = 0 (valid onΓk) and
the negative semi–definiteness of∇n onΓk. The integrals on the right hand side can
be treated by analogy with the procedure explained in Section 1, which now leads
us to a discrete variant of the energy inequality (18):
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‖U j‖
2
2;Ω j

+
j

∑
k=1

∫
Ωk

∣∣Uk(x)−Uk−1

(
X(tk−1; tk,x)

)∣∣2dx+ ν h
j

∑
k=1

‖∇Uk‖
2
2;Ωk

+ 2Kh
j

∑
k=1

‖Uk‖
2
2;Γk
≤ ‖U0‖

2
2;Ω0

+
j

∑
k=1

ωk‖Uk‖
2
2;Ωk

+
j

∑
k=1

gk (31)

for j = 1, . . . ,n, whereωk, gk are certain positive numbers, depending on the same
quantities as functionsω andG in (18), and satisfying the estimates∑n

k=1 ωk ≤ c11
and ∑n

k=1gk ≤ c12 (with appropriate constantsc11 andc12 independent ofn).

5 The non–stationary approximations, their estimates and weak
convergence

We define fortk−1 < t ≤ tk (wherek = 1, . . . ,n)

un(x, t) :=

{
Uk(x) if x ∈Ω k,

0 if x ∈ R3
+rΩ k,

U
n(x, t) :=

{
∇Uk(x) if x ∈Ωk,

O if x ∈ R3
+rΩk,

un
∗(x, t) := un(Y(tk; t,x), t

)
= Uk

(
Y(tk; t,x)

)
if x ∈ Γ t .

Estimates of the sequences{un}, {Un} and {un
∗}. Inequality (31) implies that

there existc13(h) > 0 andc14(h) > 0 such that bothc13(h) andc14(h) tend to zero
ash→ 0+ and[

1−c13(h)
]
‖un(. , t)‖22;R3

+
+ ν

∫ t

0
‖Un(. ,s)‖22;R3

+
ds+2K

∫ t

0
‖un
∗(. ,s)‖22;Γ s ds

≤ ‖u0‖
2
2;Ω0 +

∫ t

0
λn(s)‖un(. ,s)‖22;R3

+
ds+c12+c14(h) (32)

whereλn(s) := ωk for tk−1 < s≤ tk. Applying Gronwall’s lemma, we deduce that
there existsc15> 0 (depending onc11, c12 and‖u0‖2;Ω0) such that for alln∈ N so

large thatc13(h)≤ 1
2 and for allt ∈ (0,T), we have

‖un(. , t)‖
2;R3

+
≤ c15. (33)

Using this estimate in (32), we observe that there existc16 andc17 independent ofn
and such that∫ T

0
‖Un(. ,s)‖22;R3

+
ds ≤ c16,

∫ T

0
‖un
∗(. ,s)‖22;Γ s ds ≤ c17. (34)

Inequalities (33) and (34) conversely yield:
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‖Uk‖2;Ωk
≤ c15 (k = 1, . . . ,n) and h

n

∑
k=1

‖∇Uk‖
2
2;Ωk
≤ c16. (35)

Weak convergence of selected subsequences.Estimates (33) and (34) imply that
there exist subsequences of{un}, {Un} and{un

∗} (we shall denote them again by
{un}, {Un} and{un

∗} in order not to complicate the notation) and functionsu ∈
L∞(0,T; L2(R3

+)3), U ∈ L2(0,T; L2(R3
+)9) andu∗ ∈ L2(Γ(0,T))

3 such that

un−⇀ u weakly–∗ in L∞(0,T; L2(R3
+)3) for n→+∞, (36)

U
n−⇀ U weakly inL2(0,T; L2(R3

+)9) for n→+∞, (37)

un
∗ −⇀ u∗ weakly inL2(Γ(0,T))

3 for n→+∞ (38)

with the following relations betweenu, U andu∗:

Lemma 2. a) U= ∇u in the sense of distributions in Q(0,T),

b) u ∈ L2(0,T; W1,2
σ (Ω t)),

c) u∗ = u onΓ(0,T) (hereu denotes the trace of functionu
∣∣
Q(0,T)

onΓ(0,T)).

The proof can be made by standard techniques.

6 The limit function u: a solution of the weak problem (17)

Suppose thatφ is a fixed infinitely differentiable divergence–free vector–function in
R+

3× [0,T] with a compact support inR+
3× [0,T), such thatφ ·n = 0 onΓ[0,T].

Using the relation betweenun and the solutions of the steady weak problem (30),
one can verify thatun (with Un standing for∇un andu∗ standing for the trace on
Γ(0,T)) satisfies the non–steady weak problem (17), up to a correction which tends

to zero asn→+∞. (The intermediate step is to use (30) withΦk = φ(. , tk).)
Applying (36)–(38), we can pass to the limit asn→ +∞ in all the linear terms.

Thus, the limit of the nonlinear term (the integral ofun ·Un · φ ) also exists. So we
obtain:∫ T

0

∫
Ω t

{
−[∂tφ +at ·∇φ ] · (at +u)−u ·∇φ ·at +2ν [∇(at +u)]s : ∇φ

}
dxdt

+ lim
n→+∞

∫ T

0

∫
Ω t

un ·Un ·φ dxdt +
∫ T

0

∫
Γ t

K [at +u−Vt ] ·φ dSdt

=
∫ T

0

∫
Ω t

f ·φ dxdt +
∫

Ω0
(a0 +u0) ·φ(. ,0) dx. (39)

Comparing (39) with (17), we observe that in order to verify thatu is a solution of
the weak problem (17),it is sufficient to show that there exists a subsequence of
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{un} (we shall denote it again by{un}) such that

lim
n→+∞

∫ T

0

∫
Ω t

un ·Un ·φ dxdt =
∫ T

0

∫
Ω t

u ·∇u ·φ dxdt. (40)

This limit procedure is not standard because of the variability of domainΩ t and the
choice of the test functionφ , which generally has only the normal component equal
to zero onΓ(0,T). We explain it in greater detail in the next six paragraphs.

Cutting–off function φ . Let ε1 > 0 be given. Then, due to (33) and (34), there
existsκ1 > 0 so small that∣∣∣∣∫ tc+κ1

tc−κ1

∫
Ω t

un ·Un ·φ dxdt

∣∣∣∣ ≤ c18

[
esssup
0<t<T

‖un(. , t)‖2;Ω t

] ∫ tc+κ1

tc−κ1

‖Un(. , t)‖2;Ω t dx

≤ c18 c15

√
2κ1c16 < ε1 (41)

for all n ∈ N sufficiently large. (Herec18 is the maximum of|φ | on R3
+× [0,T].)

Let η3 be an infinitely differentiable cut–off function of variablet defined on the
interval[0,T], with values in[0,1], such that

η3(t) :=

{
1 for t ∈ [0, tc−κ1]∪ [tc + κ1,T],

0 for t ∈
[
tc− 1

2κ1, tc + 1
2κ1

]
,

The functionφ ∗(x, t) := η3(t)φ(x, t) equals zero fortc− 1
2κ1≤ t ≤ tc + 1

2κ1 and∣∣∣∣∫ tc+κ1

tc−κ1

∫
Ω t

un ·Un · (φ −φ ∗) dxdt

∣∣∣∣ < ε1

due to (41). Sinceε1 can be chosen arbitrarily small, it is sufficient to prove (40)
with functionφ ∗ instead ofφ .

Approximation of function φ ∗. Since each of the domainsΩk (for k = 1, . . . ,n)
has the cone property (because all the time instantstk differ from tc), inequalities
(35) and the Sobolev imbedding theorem imply thatUk ∈ L6(Ωk)

3. This means that
un(. , t) ∈ L6(R3

+)3 for all t ∈ (0,T). Moreover, if we restrict ourselves to times
t ∈ I(κ1), where

I(κ1) :=
[
0, tc− 1

2κ1

)
∪
(
tc + 1

2κ1,T
]
,

then the cone parameters in the definition of the cone property of domainΩ t

can be chosen to be independent oft. Hence the constants in the imbedding
inequalities also become independent oft and we obtain the uniform estimate
‖un(. , t)‖

6;R3
+
≤ C(‖un(. , t)‖

2;R3
+

+ ‖Un(. , t)‖
2;R3

+
) for all t ∈ I(κ1). From this

information and from (34), we can deduce that the productun ·Un belongs to
L2
(
I(κ1); L1(R3

+)3
)
∩L1

(
I(κ1); L3/2(R3

+)3
)
. By interpolation, we obtain the inclu-

sionun ·Un ∈ Lr
(
I(κ1); Ls(R3

+)3
)

for r ≥ 1, s≥ 1 such that 2/r +3/s= 4. Particu-
larly, un ·Un ∈ L5/4

(
I(κ1); L5/4(R3

+)3
)
.
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Function φ ∗ can be approximated by infinitely differentiable divergence–free
vector–functions that have a compact support inQ[0,T) with an arbitrary accuracy

in the norm of the spaceL5
(
I(κ1); L5(Ω t)3

)
. Hence, givenε2 > 0, there exists such

a vector–functionφ ∗∗ which satisfies∣∣∣∣∫ T

0

∫
Ω t

un ·Un ·φ ∗ dx−
∫ T

0

∫
Ω t

un ·Un ·φ ∗∗ dx

∣∣∣∣ < ε2

for all n ∈ N sufficiently large. Sinceε2 can be chosen to be arbitrarily small, we
can prove (40) only with the functionφ ∗∗ instead ofφ (respectively instead ofφ ∗).
Partition of function φ ∗∗. Let m∈ N. We denoteτ j = jT/m (for j = 0, . . . ,m).
There existm+ 1 infinitely differentiable functionsθ0, . . . , θm on [0,T] with their
values in the interval[0,1] such that suppθ0 ⊂ I0 := [τ0,τ1), suppθ j ⊂ I j :=
(τ j−1,τ j+1) (for j = 1, . . . ,m−1), suppθm⊂ Im := (τm−1,τm] and ∑m

j=0 θ j(t) = 1
for 0≤ t ≤ T. Now we putφ ∗∗j := θ j φ ∗∗ (for j = 0,1, . . . ,m). The functionsφ ∗∗j
are divergence–free, they have compact supports inQI j

(where QI j
=
{

(x, t) ∈
R

3× [0,T]; t ∈ I j , x ∈Ω t
}

) and

m

∑
j=0

φ ∗∗j = φ ∗∗ in Q[0,T].

Denote byK j be the orthogonal projection of suppφ ∗∗j into R3. If m is large
enough then the distance betweenK j andΓ t is greater than one half of the distance
between suppφ ∗∗ andΓ[0,T] for all t ∈ I j . Thus, there exists a bounded open setΩ ∗j
inR3 with the boundary of the classC1,1 such thatK j ⊂Ω ∗j ⊂Ω ∗j ⊂Ω t for all t ∈ I j .
So, we conclude that in order to prove (40), it is sufficient to treat (40) separately
with φ = φ ∗∗j (for j = 0,1, . . . ,m) and to show that

lim
n→+∞

∫
I j

∫
Ω∗j

un ·∇un ·φ ∗∗j dxdt =
∫

I j

∫
Ω∗j

u ·∇u ·φ ∗∗j dxdt. (42)

The local Helmholtz decomposition of function un. We denote byP j
σ the Helm-

holtz projection inL2(Ω ∗j )3. Putw j
n := P j

σ un. The function(I −P j
σ )un has the form

∇ϕ j
n for an appropriate scalar functionϕ j

n. (42) can now be written as

lim
n→+∞

∫
I j

∫
Ω∗j

[
w j

n ·∇w j
n ·φ ∗∗j +w j

n ·∇2ϕ j
n ·φ ∗∗j + ∇ϕ j

n ·∇w j
n ·φ ∗∗j

+∇ϕ j
n ·∇2ϕ j

n ·φ ∗∗j
]

dxdt =
∫

I j

∫
Ω∗j

(u ·∇)u ·φ ∗∗j dxdt. (43)

Since∇ϕ j
n ·∇2ϕ j

n = ∇
(

1
2|∇ϕ j

n|2
)

andφ ∗∗j (. , t)∈ L2
σ (Ω ∗j ), the integral of∇ϕ j

n ·∇2ϕ j
n ·

φ ∗∗j on Ω ∗j equals zero.
The convergence (36) and (37), the coincidence ofU

n with ∇un on Ω ∗j × I j and

the boundedness of operatorP j
σ in L2(Ω ∗j )3 and inW1,2(Ω ∗j )3 imply that
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w j
n ⇀ w j = P j

σ u, and ∇ϕ j
n ⇀ ∇ϕ j = (I −P j

σ )u for n→+∞ (44)

weakly inL2(I j ; W1,2(Ω ∗j )3) and weakly–∗ in L∞(I j ; L2
σ (Ω ∗j )).

Strong convergence of a subsequence of{w j
n}. We are going to show that there

exists a subsequence of{w j
n} that tends tow j strongly inL2(I j ; L2

σ (Ω ∗j )) asn→
+∞. We shall therefore use the next lemma, see J. L. Lions [18, Theorem 5.2].

Lemma 3. Let0< γ < 1
2 and let H0, H and H1 be Hilbert spaces such that H0 ↪→↪→

H ↪→H1. LetHγ(R; H0, H1) denote the Banach space
{

w∈ L2(R; H0); |ϑ |γ ŵ(ϑ)∈
L2(R; H1)

}
with the norm

|||w|||γ;R :=
(
‖w‖2L2(R;H0) +‖|ϑ |γ ŵ(ϑ)‖2L2(R;H1)

)1/2
.

(Here ŵ(ϑ) is the Fourier transform of w(t).) LetHγ(a,b; H0, H1) further denote
the Banach space of restrictions of functions fromHγ(R; H0, H1) onto the interval
(a,b), with the norm

|||w|||γ;(a,b) := inf |||z|||γ;R

where the infimum is taken over all z∈Hγ(R; H0, H1) such that z= w a.e. in(a,b).
ThenHγ(0,T; H0, H1) ↪→↪→ L2(a,b; H).

Consider j ∈ {1; . . . ; m} fixed. We shall use Lemma 3 with(a,b) = I j , H0 =
W1,2

σ (Ω ∗j ), H = L2
σ (Ω ∗j ) and H1 = W−1,2

0,σ (Ω ∗j ). (HereW−1,2
0,σ (Ω ∗j ) denotes the dual

to W1,2
0,σ (Ω ∗j ) whereW1,2

0,σ (Ω ∗j ) is the closure ofC∞
0,σ (Ω ∗j ) in W1,2(Ω ∗j )3. The space

W1,2
0,σ (Ω ∗j ) can be characterized as the space of functions fromW1,2

σ (Ω ∗j ) that have

the trace on∂Ω ∗j equal to zero.) We claim that{w j
n} is bounded in the space

Hγ(I j ; H0, H1). The boundedness of{w j
n} in L2(I j ; H0) follows from (33), (34),

from the coincidence ofUn with ∇un onΩ ∗j × I j and from the boundedness of oper-

atorP j
σ in L2(Ω ∗j )3 and inW1,2(Ω ∗j )3. Thus, we only need to verify that{|ϑ |γ ŵ j

n}
is bounded in the spaceL2(I j ; H1), i.e. inL2(I j ; W−1,2

0,σ (Ω ∗j )). Let z j
n be an extension

by zero ofw j
n from the time intervalI j ontoR. Then

ẑ j
n(ϑ) =

∫ +∞

−∞
e−2π i tϑ w j

n(t)dt = ∑
k∈Λn

j

∫ tk

tk−1

e−2π i tϑ P j
σ Uk dt (45)

whereΛ n
j is the set of such indicesk∈ {1;. . . ;n} that[R3×(tk−1, tk)]∩suppφ ∗∗j 6= /0.

Λ n
j has the formΛ n

j = {l ; l +1;. . . ;q} where 1≤ l ≤ q≤ n. Calculating the integrals
in (45), we obtain

ẑ j
n(ϑ) =

q

∑
k=l

1
2π iϑ

[
e−2π i tk−1ϑ −e−2π i tkϑ ]P j

σ Uk

=
1

2π iϑ
[
e−2π i tl−1 P j

σ Ul −e−2π i tq P j
σ Uq

]
+

1
2π iϑ

q

∑
k=l+1

e−2π i tk−1ϑ [P j
σ Uk−P j

σ Uk−1].
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SinceΩ ∗j ⊂ Ω s for all s∈ I j , we also haveΩ ∗j ⊂ Ωk for all k ∈ Λ n
j (if n is large

enough). If|ϑ | ≤ 1 then, using (45) and (35), we can estimate the norm of|ϑ |γ ẑ j
n(ϑ)

in W−1,2
0,σ (Ω ∗j ) as follows:∥∥ |ϑ |γ ẑ j

n(ϑ)
∥∥
−1,2;Ω∗j

≤ C(Ω ∗j ) |ϑ |γ
q

∑
k=l

h‖Uk‖2:Ω∗j
≤ C(Ω ∗j ) |ϑ |γ . (46)

If |ϑ |> 1 then we must proceed more subtly:∥∥ |ϑ |γ ẑ j
n(ϑ)

∥∥
−1,2;Ω∗j

≤ |ϑ |
γ−1

2π
(
‖P j

σ Ul‖−1,2;Ω∗j
+‖P j

σ Uq‖−1,2;Ω∗j

)
+
|ϑ |γ−1

2π

q

∑
k=l+1

‖P j
σ Uk−P j

σ Uk−1‖−1,2;Ω∗j

≤ C(Ω ∗j ) |ϑ |γ−1(‖Ul‖2:Ω∗j
+‖Uq‖2:Ω∗j

)
+
|ϑ |γ−1

2π

q

∑
k=l+1

sup
ψk

1
‖ψk‖1,2;Ω∗j

∣∣∣∣∫Ω∗j
(Uk−Uk−1) ·ψk dx

∣∣∣∣ (47)

where the supremum is taken over allψk ∈W1,2
0,σ (Ω ∗j ) such that‖ψk‖1,2;Ω∗j

> 0. The

sum in (47) can be estimated byS1 +S2 where

S1 =
q

∑
k=l+1

sup
ψk

1
‖ψk‖1,2;Ω∗j

∣∣∣∣∫Ω∗j

[
Uk(x)−Uk−1

(
X(tk−1; tk,x)

)]
·ψk(x)dx

∣∣∣∣,
S2 =

q

∑
k=l+1

sup
ψk

1
‖ψk‖1,2;Ω∗j

∣∣∣∣∫Ω∗j

[
Uk−1(x)−Uk−1

(
X(tk−1; tk,x)

)]
·ψk(x)dx

∣∣∣∣.
The functionψk, extended by zero toR3

+rΩ ∗j , belongs toW1,2
σ (Ωk). Hence the

integral of
[
Uk(x)−Uk−1

(
X(tk−1; tk,x)

)]
·ψk(x) on Ω ∗j equals the integral of the

same function inΩk and it can be therefore expressed by means of (30). Thus,S1
can be estimated:

S1 ≤
q

∑
k=l+1

sup
ψk

1
‖ψk‖1,2;Ω∗j

∣∣∣∣−h
∫

Ωk

Uk(x) · [∇a]k(x) ·ψk(x) dx

− h
∫

Ωk

Uk(x) ·∇Uk(x) ·ψk(x) dx−h
∫

Ωk

ν
{

[∇a]k(x)+ ∇Uk(x)
}

s : ∇ψk(x) dx

−
∫

Γk

K
[
ak(x)+Uk(x)−Vk(x)

]
·ψk(x) dS

+
∫

Ωk

hfk(x) ·ψk(x) dx+
∫

Ωk

Ak(x) ·ψk(x) dx

∣∣∣∣.
The surface integral onΓk equals zero because the functionψk is zero onΓk. The
right hand side can be estimated byC(Ω ∗j ) by means of (7), (35), standard inequal-
ities based on the Sobolev imbedding theorem (applied inΩ ∗j ) and the Ḧolder in-



20 Jǐrı́ Neustupa and Patrick Penel

equality. Let us show the procedure in greater detail, for example, in the case of the
terms containing the productUk ·∇Uk ·ψk:

q

∑
k=l+1

sup
ψk

1
‖ψk‖1,2;Ω∗j

∣∣∣∣h∫Ωk

Uk ·∇Uk ·ψk dx

∣∣∣∣
≤ C(Ω ∗j )

( q

∑
k=l+1

h
∫

Ωk

|∇Uk|
2dx
)1/2( q

∑
k=l+1

h
∫

Ωk

|Uk|
3dx
)1/3

≤ C(Ω ∗j )
(

h
q

∑
k=l+1

‖∇Uk‖
3/2
2;Ωk
‖Uk‖

3/2
6;Ωk

)1/3

≤ C(Ω ∗j )
[
h

q

∑
k=l+1

‖∇Uk‖
3/2
2;Ωk

(
‖Uk‖

3/2
2;Ωk

+‖∇Uk‖
3/2
2;Ωk

)]1/3

≤ C(Ω ∗j )
[
1+
(

h
n

∑
k=1

‖∇Uk‖
2
2;Ωk

)3/4]1/3

≤ C(Ω ∗j ).

Here the constantC(Ω ∗j ) also depends on the right hand sides of (7) and (35). In
order to estimateS2, we use the identities

Uk−1(x)−Uk−1

(
X(tk−1; tk,x)

)
=
∫ tk

tk−1

d
dξ

Uk−1

(
X(ξ ; tk,x)

)
dξ

=
∫ tk

tk−1

aξ (X(ξ ; tk,x)
)
·∇Uk−1

(
X(ξ ; tk,x)

)
dξ .

Then the sumS2 can be estimated by means of (10) and (35) as follows:

S2 ≤ C(Ω ∗j ) sup
ψk

‖ψk‖6;Ω∗j
‖ψk‖1,2;Ω∗j

q

∑
k=l+1

[∫ tk

tk−1

∫
Ω∗j

∣∣∇Uk−1

(
X(ξ ; tk,x)

)∣∣2dxdξ
]1/2

·
[∫ tk

tk−1

(∫
Ω∗j

∣∣aξ (X(ξ ; tk,x)
)∣∣3dx

)2/3

dξ
]1/2

≤ C(Ω ∗j )
[ q

∑
k=l+1

∫ tk

tk−1

∫
Ωk−1

∣∣∇Uk−1(x)
∣∣2dxdξ

]1/2 [∫ T

0

∫
Ω ξ

∣∣aξ (x)
∣∣5dxdξ

]1/5

≤ C(Ω ∗j ).

Substituting the estimates ofS1 andS2 to (47), we finally obtain∥∥|ϑ |γ ẑ j
n(ϑ)

∥∥
−1,2;Ω∗j

≤ C(Ω ∗j ) |ϑ |γ−1. (48)

The constantC(Ω ∗j ) is independent ofn. Recall that inequality (48) holds for

|ϑ | > 1. Since the exponentγ satisfies 0< γ < 1
2, the right hand side of (48) is

integrable on(−∞,−1)∪ (1,+∞) with power 2. This, together with (46), implies
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that the sequence{|ϑ |γ ẑ j
n(ϑ)} is bounded inL2(R; W−1,2

0,σ (Ω ∗j )). Consequently, the

sequence{w j
n} is bounded inHγ(I j ; W1,2

σ (Ω ∗j ),W−1,2
0,σ (Ω ∗j )

)
. This space is reflex-

ive, hence there exists a subsequence (we denote it again by{w j
n}) which converges

weakly inHγ(I j ; W1,2
σ (Ω ∗j ), W−1,2

0,σ (Ω ∗j )
)
. Due to (44), the limit must bew j . Apply-

ing now Lemma 3, we have:w j
n −→ w j = P j

σ u strongly inL2
(
I j ; L2(Ω ∗j )3

)
. This

strong convergence, together with the weak convergence (44), enables us to pass
to the limit in the first three terms on the left hand side of (43). The procedure is
standard (see e.g. J. L. Lions [18] or R. Temam [26]), therefore we omit the details.
Using also the equation ∫

Ω∗j
(∇ϕ ·∇)∇ϕ ·φ ∗∗j dx = 0,

following from the inclusionφ ∗∗j ∈ L2
σ (Ω ∗j ) and from the identity(∇ϕ ·∇)∇ϕ =

∇
(

1
2|∇ϕ|2

)
, we can verify the validity of (43), and consequently also the validity of

(40). This confirms thatu is a weak solution of the weak problem (17). The proof
of Theorem 1 is thus completed.

7 Concluding remarks

Energy inequality for the weak solution. The limit processes (36)–(38) and
Lemma 2 imply that the limit functionu, which is a solution of (17), satisfies the
same estimates (33) and (34) as the approximations. Inequality (33) thus provides
an estimate of the kinetic energy associated with the flowu at a.a. timest ∈ (0,T)
and the first inequality in (34) estimates the dissipation of this energy in the time
interval(0,T). The question whetheru also satisfies the energy inequality (18), for-
mally derived in Section 2 (see Lemma 1), is open. To obtain (18), it would be
necessary to make the limit transition in inequality (32) (which is a discrete equiv-
alent of (18)). Here we need a piece of information on the strong convergence of
a subsequence{un} in L2(0,T; L2

σ (Ω t)) in order to control the second term on the
right hand side of (32). This is, however, a problem because we have only obtained
the strong convergence of appropriate local interior Helmholtz projections ofun in
Section 6. It was sufficient for the limit transition (40), but it does not enable us to
treat the integral on the right hand side of (32) in a similar way.

The condition of smallness (iv).Condition (iv) (see Lemma 1) requires a sufficient
smallness of the speed of the ballBt at times close to the critical instanttc of the
collision of the ball with the wall. We need this condition because estimate (13),
based on the continuous imbeddingW1,2(Ω t)) ↪→ L6(Ω t), cannot be used in order
to estimate the approximations at times close totc. (The constant in the imbedding
inequality increases “too rapidly” to infinity ast → tc.) Thus, we use estimate (11)
instead of (13) at times close totc and since we need the right hand side to be
absorbed by the “viscous term”, it must be “sufficiently small”.
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Flow around a body of a general shape striking the wall.We have mainly used
the information on the shape ofBt (i.e. that it is a ball) in the region close to the
point of the collision ofBt with the wall. (Particularly, the shape ofBt influences the
form of functiongt in Section 2. With another functiongt , we would obtain other
inequalities than (7)–(13) for functionat .) Thus, Theorem 1 could be generalized
in such a way that instead of the ballBt we would speak on a compact body of
another (however sufficiently smooth) shape, which coincides with a ball in the
neighborhood of the point of the collision.
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